首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xu N  Zhou S  Yuan Y  Qin H  Zheng Y  Shu C 《Bioresource technology》2011,102(17):7777-7783
A novel bioelectrochemical reactor with anodic biooxidation coupled to cathodic bioelectro-Fenton was developed for the enhanced treatment of highly concentrated organic wastewater. Using swine wastewater as a model, the anode-cathode coupled system was demonstrated to be both efficient and energy-saving. Without any external energy supply to the system, BOD5, COD, NH3-N and TOC in the wastewater could be greatly reduced at both 1.1 g COD L−1 d−1 and 4.6 g COD L−1 d−1 of OLR, with the overall removal rates ranging from 62.2% to 95.7%. Simultaneously, electricity was generated at around 3-8 W m−3 of maximum output power density. Based on electron balance calculation, 60-65% of all the electrons produced from anodic biooxidation were consumed in the cathodic bioelectro-Fenton process. This coupled system has a potential for enhanced treatment of high strength wastewater and provides a new way for efficient utilization of the electron generated from biooxidation of organic matters.  相似文献   

2.
In the process of biooxidation at 39°C in a continuous mode of the gold-arsenic concentrate from the Olympiadinskoe deposit, which was pretreated by chemical leaching with ferric ions, by a microbial association from the BIO department reactors of the Polyus gold mining company, a bacterial culture designated as strain HT-4 was isolated. The bacterium was a spore-forming rod 0.5–0.6 × 1.4–2.0 μm with a flagellum. The optimal temperature for growth and Fe2+ oxidation was 55°C. The strain grew in the pH range from 1.21 to 2.10 with the optimum at pH 1.6. The organism was incapable of lithotrophic and organotrophic growth. It grew mixotrophically by Fe2+ oxidation in the presence of 0.02% yeast extract. The DNA G+C base content was 48.6 mol %. Based on comparative phylogenetic analysis of 1472-bp nucleotide sequences of 16S rRNA genes, strain HT-4 was classified as Sulfobacillus thermosulfidooxidans. Analysis by pulse-field gel electrophoresis revealed a unique profile of the NotI fragments of the chromosomal DNA. These results demonstrate the strain and species diversity of sulfobacilli in microbial associations involved in biooxidation of concentrates in different technological conditions. The strain “S. olympiadicus S-5” dominated in the process of biooxidation of original concentrate not treated with ferric iron, while S. thermosulfidooxidans HT-4 was predominant in biooxidation of the chemically leached concentrate.  相似文献   

3.
Effectiveness of different pure and mixed cultures of three moderately thermophilic, extremely acidophilic bacterial strains (Acidimicrobium ferrooxidans ICP, Sulfobacillus sibiricus N1, Acidithiobacillus caldus KU) were investigated for biooxidation of highly refractory polymetallic gold ore concentrates. Despite of its complex mineralogy and the presence of a mixture of potentially inhibitory metals and metalloids, the concentrate was readily dissolved in defined mixed cultures including both iron and sulfur oxidizers, releasing as much as 80% of soluble Fe and 61% of soluble As. Factors to affect microbial mineral dissolution efficiencies (i.e. microbial As(III) oxidation ability, formation of secondary mineral precipitation (e.g. jarosite, elemental sulfur, scorodite, anglesite), and microbial population dynamics during biooxidation) were studied, based on which roles of individual microbes and their synergistic interactions during biooxidation were discussed. Applying the biooxidation pretreatment using the most efficient mixed cultures containing all three strains significantly improved the recovery of both Au (from 1.1% to 86%) and Ag (from 3.2% to 87%). Finally, this study provides one of the very few available comparisons of the effectiveness of different pretreatment techniques for refractory gold ore concentrates: Compared with other abiotic pretreatment approaches (roasting, pressure oxidation, and alkali dissolution), biooxidation was shown to be one of the most effective options in terms of the recovery of Au and Ag.  相似文献   

4.
The composition was studied of the microbial association involved in tank biooxidation of the concentrate of a refractory pyrrhotite-containing pyrite-arsenopyrite gold-arsenic ore from the Olympiadinskoe deposit at 50°C. The two Sulfobacillus thermosulfidooxidans strains predominant in the association were phylogenetically different from the strains used as inocula. The isolates were found to differ significantly both from each other and from the strains that dominated in the processes of biooxidation of a similar concentrate by traditional tank technology at 39°C or at 39°C with treatment of the concentrate with ferric iron prior to biooxidation. These results indicate the strain and species diversity of sulfobacilli in microbial associations involved in biooxidation of the concentrates under different technological modes.  相似文献   

5.
Rate of elemental sulphur biooxidation by Thiobacillus thiooxidans bacteria in continuous culture with nutrient circulation was determined for oxygen concentration in liquid in the range 1–17?mg/dm3 for temperature range 19–40?°C, pH from 1.5 to 4.5 and for CO2 concentration above 110?mg/dm3. Equation describing the influence of above mentioned parameters on the rate of sulphur oxidation was presented.  相似文献   

6.
Abstract: Two years of BIOX pilot plant data have been examined for steady state conditions and then correlated using logistic kinetics. It was found that the logistic equation not only predicted the performance of individual stages but also the degree of biooxidation across the entire cascade of bioreactors. It was found that the rate constant was 1.3 day-1 in the first three stages and 0.3 day-1 in the fourth stage. The maximum removal constant was 0.90 in stage 1 and 0.99 in the remaining stages. Plant retention time ranged from 4 to 12 days with corresponding sulphide oxidation varying from 82 to 98% respectively, and primary stage removal rates varying from 8.9 to 4.4 kg m-3 day-l, respectively. In addition, batch biooxidation data were obtained. The biooxidation rate was found to be about half that for the continuous bioreactors. This is in agreement with the findings of several other workers. The specific rates of bioxidation of pyrite and arsenopyrite were very similar for the bulk concentrate at about 0.15 day-1. However, it was significant that the biooxidation of arsenopyrite in the mixed mineral preceded that of pyrite, suggesting a sequential mechanism. Gold liberation was found to be linearly related to arsenopyrite biooxidation but oxidation of pyrite appears to be preferential in the gold-rich regions.  相似文献   

7.
Ferrous iron oxidation by Thiobacillus ferrooxidans was studied in shake flasks and a bubble column under different aeration conditions. The maximum biooxidation rate constant was affected by oxygen transfer only at low aeration intensities. At oxygen transfer rates higher than 0.03 mmol O2 l−1 min−1, the maximum biooxidation rate constant was about 0.050 h−1 in both shake flasks of different size and the bubble column. The oxygen transfer rate could be used as a basis for scaling up bioreactors for ferrous iron biooxidation by T. ferrooxidans.  相似文献   

8.
CO2 supply at 4% (v/v) in air increased the biooxidation of a gold concentrate (41% enargite, 43% pyrite) with Thiobacillus ferrooxidans in a 2-l bioreactor at 4% (w/v) solids concentration, 35°C and pH 2.4. Extraction increased from 21 to 69% for Fe, 19 to 25% for As, and 16 to 19% for Cu. Suspended biomass increased from 2.6·107 to 1.2·108 cells/ml. It is concluded that the biooxidation of this gold concentrate is limited by the rate of CO2 supply. © Rapid Science Ltd. 1998  相似文献   

9.
The introduction of more imaginative enrichment and isolation procedures has permitted the isolation of pure cultures of thermotolerant methylotrophic bacteria, a group that was previously unknown. One potential application for such bacteria is in the aerobic biotreatment of petrochemical industry wastewaters at elevated temperatures. Here, the growth and biooxidation characteristics of one such bacterium, Bacillus sp. NCIB 12522, in co-culture with a Gram-negative thermophilic non-methylotrophic solvent utilizing bacterium, NA 17, on a mixture of methanol, ethanol and isopropanol, under both steady and transient state continuous flow culture conditions are reported. The results indicate that at dilution rates <0.2 h–1 effective biooxidation can be achieved at temperatures between 50° and 57 °C. As a result of step increases in bioreactor feed concentrations, the fraction of the methylotroph present in the co-culture changed according to whether the methanol or the ethanol concentrations were increased, but when isopropanol was increased, no change in the methylotroph fraction occurred between the initial and final steady states.  相似文献   

10.
Biomining is the use of microorganisms to catalyze metal extraction from sulfide ores. However, the available water in some biomining environments has high chloride concentrations and therefore, chloride toxicity to ferrous oxidizing microorganisms has been investigated. Batch biooxidation of Fe2+ by a Leptospirillum ferriphilum‐dominated culture was completely inhibited by 12 g L?1 chloride. In addition, the effects of chloride on oxidation kinetics in a Fe2+ limited chemostat were studied. Results from the chemostat modeling suggest that the chloride toxicity was attributed to affects on the Fe2+ oxidation system, pH homeostasis, and lowering of the proton motive force. Modeling showed a decrease in the maximum specific growth rate (µmax) and an increase in the substrate constant (Ks) with increasing chloride concentrations, indicating an effect on the Fe2+ oxidation system. The model proposes a lowered maintenance activity when the media was fed with 2–3 g L?1 chloride with a concomitant drastic decrease in the true yield (Ytrue). This model helps to understand the influence of chloride on Fe2+ biooxidation kinetics. Biotechnol. Bioeng. 2010; 106: 422–431. © 2010 Wiley Periodicals, Inc.  相似文献   

11.

Objectives

To develop a bioelectrochemical system (BES) to couple the biooxidation of chalcopyrite (CuFeS2), bioelectrogenesis, and the cathodic Cu2+ reduction, bioanodes of acidophilic (pH < 2) and aerobic chemolithoautotrophic bacteria Acidithiobacillus thiooxidans (sulfur oxidizing) and Leptospirillum sp. (Fe2+ oxidizing) were used.

Results

CuFeS2 biooxidation increases the charge transfer from the media due to the bioleaching of Cu and Fe. The biofilm on a graphite bar endows a more electropositive (anodic) character to the bioelectrode. By adding the bioleachate generated by both bacteria into the anodic chamber, the acidic bioleachate provides the faradaic intensity. The maximum current density was 0.86 ± 19 mA cm?2 due to the low potential of the BES of 0.18 ± 0.02 V. Such low potential was sufficient for the cathodic deposit of Cu2+.

Conclusions

This work demonstrates a proof of concept for energy savings for mining industries: bioanodes of A. thiooxidans and Leptospirillum sp. are electroactive during the biooxidation of CuFeS2.
  相似文献   

12.
Optimal aeration conditions were determined and the effect of yeast extract on biooxidation of high-pyrrhotite sulfide ore flotation concentrate in the course of continuous cultivation of an acidophilic chemolithotrophic microbial community was studied in a line of four sequential laboratory reactors; the aeration rate was 3 L/(L min), yeast extract concentration was 0.02%. The gold recovery level was 96.45% at 2.23% elemental sulfur content in the solid residue. The dominant strains identified in the community responsible for biooxidation were Acidithiobacillus caldus OL13-1, At. caldus OL13-3 = At. caldus OL12-3, and an ‘Acidiferrobacter’ strain. Strains Sulfobacillus thermosulfidooxidans OL13-2 = S. thermosulfidooxidans OL12-1 and Ferroplasma acidiphilum OL13-4 = F. acidiphilum OL12-4 were isolated in pure culture and identified.  相似文献   

13.
A technology for tank biooxidation of refractory gold-bearing concentrate under variable temperature conditions has been improved: the temperature of the first of two stages was changed from 30°C to 34–36°C. Gold in this concentrate is mainly associated with sulfide minerals: arsenopyrite and pyrite, which underlies a low gold recovery (16.68%) as a result of cyanidation. To resolve the problem, an association of mesophilic acidophilic chemolithotrophic microorganisms and moderately thermophilic bacteria of the Sulfobacillus genus were used for the concentrate oxidation. The composition of the used microbial association was studied; it was shown that it depends upon temperature: at 42°C, the population of the mesophilic thiobacteria decreased, whereas that of thermophilic sulfobacilli enhanced as compared to 36°C. The accepted scheme of the process ensures a high extent of gold recovery (94.6%) within a short space of time for biooxidation (96 h).  相似文献   

14.
An original strategy for universal laboratory testing of Baeyer-Villiger monooxygenases based on continuous packed-bed minireactor connected with flow calorimeter and integrated with bubble-free oxygenation is reported. Model enantioselective Baeyer-Villiger biooxidations of rac-bicyclo[3.2.0]hept-2-en-6-one to corresponding lactones (1R,5S)-3-oxabicyclo-[3.3.0]oct-6-en-3-one and (1S,5R)-2-oxabicyclo-[3.3.0]oct-6-en-3-one as important chiral synthons for the synthesis of bioactive compounds were performed in the minireactor equipped with a column packed with encapsulated recombinant cells Escherichia coli overexpressing cyclohexanone monooxygenase. The cells were encapsulated in polyelectrolyte complex capsules formed by reaction of oppositely charged polymers utilizing highly reproducible and controlled encapsulation process. Encapsulated cells tested in minireactor exhibited high operational stability with 4 complete substrate conversions to products and 6 conversions above 80% within 14 repeated consecutive biooxidation tests. Moreover, encapsulated cells showed high enzyme stability during 91 days of storage with substrate conversions above 80% up to 60 days of storage. Furthermore, usable thermometric signal of Baeyer-Villiger biooxidation obtained by flow calorimetry using encapsulated cells was utilized for preparatory kinetic study in order to guarantee sub-inhibitory initial substrate concentration for biooxidation tests.  相似文献   

15.
Leaching of sulfide-oxidized copper concentrate of the Udokan deposit ore with a copper content of 37.4% was studied. In the course of treatment in a sulfuric acid solution with pH 1.2, a copper leaching rate was 6.9 g/kg h for 22 hours, which allowed extraction of 40.6% of copper. At subsequent chemical leaching at 80°C during 7 hours with a solution of ferric sulfate obtained after biooxidation by an association of micro-organisms, the rate of copper recovery was 52.7 g/kg h. The total copper recovery was 94.5% (over 29 hours). Regeneration of the Fe3+ ions was carried out by an association of moderately thermophilic microorganisms, including bacteria of genus Sulfobacillus and archaea Ferroplasma acidiphilum, at 1.0 g/L h at 40°C in the presence of 3% solids obtained by chemical leaching of copper concentrate. A flowsheet scheme of a complex copper concentrate process with the use of bacterial-chemical leaching is proposed.  相似文献   

16.
The in vitro biooxidation of 4-hydroxy-2,2,6,6-tetramethylpiperidine (TEMP), 4-hydroxy-2,2,4,4-tetramethyl-1,3-oxazolidine (TEMO) and diphenylamine (DPA) by hog liver microsomes to their respective nitroxide free radicals, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), 2,2,4,4-tetramethyl-1,3-oxazolidine-1-oxyl (TEMOO), and diphenylnitroxide (DPNO) has been investigated. For extending the life span of the liver microsomes, a calcium alginate immobilization procedure was used. The biooxidation rates of the above amines to their respective nitroxide metabolites were measured by means of oxygen uptake at 37 degrees C and pH 7.4. N-octylamine was found to be an activator in the biooxidation of the amines. The formation of the nitroxide radicals was identified by E.S.R. spectroscopy.  相似文献   

17.
The percolation biooxidation parameters of ore from the Bakyrchik deposit were studied. An investigation of the technological parameters (such as the concentration of leaching agents, irrigation intensity, and pauses at various stages of the leaching) revealed the optimal mode for precious metal extraction. The stages of the ore processing were biooxidation, gold extraction by cyanidation or thiosulfate leaching, and biological destruction of cyanide. The gold and silver recovery rates by cyanidation were 64.0 and 57.3%, respectively. The gold and silver recovery rates by thiosulfate leaching were 64.0 and 57.3%, respectively. Gold and silver recovery rates from unoxidized ore (control experiment) by cyanidation were 20.9 and 26.8%, respectively. Thiosulfate leaching of unoxidized ore allowed the extraction of 38.8 and 24.2% of the gold and silver, respectively. Cyanidation residues were treated with bacteria of the genus Alcaligenes in order to destruct cyanide.  相似文献   

18.
Quantitative and qualitative changes in the content of elements in the solid and liquid phases occurred as the pulp moved through reactors during biooxidation of an ore flotation concentrate. The association of microorganisms were adapted for utilizing sulfur-containing substrates; however, the rate of their oxidation was insufficient, which led to an increase in the amount of sodium cyanide required for gold recovery. The replacement of one-fourth of the liquid phase of the pulp (density, 13%) with a mineral medium without an energy source, the fractional addition of FeSO4 · 7H2O (1 g/l per day), and the improvement of pulp aeration made it possible to increase the content of SO 4 2? by 80.7, 86.2, and 58.5%, respectively. When one-fourth of the liquid phase of the pulp (density, 24%) was replaced with a mineral medium without an energy source, the rate of additional oxidation of sulfide minerals increased, which increased the efficiency of gold extraction into solution and gold recovery on charcoal by 3.4 and 3.6%, respectively, and reduced sodium cyanide consumption by 3 kg/ton.  相似文献   

19.
This review presents developments and applications in bioleaching and mineral biooxidation since publication of a previous mini review in 2003 (Olson et al. Appl Microbiol Biotechnol 63:249–257, 2003). There have been discoveries of newly identified acidophilic microorganisms that have unique characteristics for effective bioleaching of sulfidic ores and concentrates. Progress has been made in understanding and developing bioleaching of copper from primary copper sulfide minerals, chalcopyrite, covellite, and enargite. These developments point to low oxidation–reduction potential in concert with thermophilic bacteria and archaea as a potential key to the leaching of these minerals. On the commercial front, heap bioleaching of nickel has been commissioned, and the mineral biooxidation pretreatment of sulfidic-refractory gold concentrates is increasingly used on a global scale to enhance precious metal recovery. New and larger stirred-tank reactors have been constructed since the 2003 review article. One biooxidation–heap process for pretreatment of sulfidic-refractory gold ores was also commercialized. A novel reductive approach to bioleaching nickel laterite minerals has been proposed.  相似文献   

20.
The results of modeling the biooxidation of a mixed sulfidic concentrate by Thiobacillus ferrooxidans is reported here. A kinetic model, which accounts for the dissolution of sulfide matrix due to both bacterial attachment onto the mineral surface and indirect leaching, has been proposed. A comprehensive system approach is employed for modeling the complex biooxidation process by (a) the decomposition of the complete system into several subsystems, (b) modeling individual systems, and (c) integrating the subsystems model in a final system model. The model for subsystems was developed by writing mass balance equations for the different species involved. The bacterial balance accounts for its growth, both on solid substrate and in solution, and for the attachment to and detachment from the surface. The kinetic parameters of the model were determined by designing the experiments in such a manner that only one subsystem was operational. This model was tested in both laboratory scale batch and continuous biooxidation processes. The model predictions agreed with the experimental data reasonably well. A further analysis of the model was carried out to predict the conditions for efficient biooxidation. Studies on the effect of residence time and pulp density on steady-state behavior showed that there is a critical residence time and pulp density below which washout conditions occur. Operation at pulp densities lower than 5% and residence times lower than 72 h was found unfavorable for efficient leaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号