首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of this research was to evaluate the acute toxicity of fenitrothion to the crayfish (Astacus leptodactylus Eschscholtz, 1823), which is chosen as an alternative aquatic organism to fish by using the static test system and evaluate the basic lipid peroxidation parameters for the first 24 h. Crayfish of 27.3 ± 0.56 g mean weight and 10.0 ± 0.72 cm mean length were selected for the bioassay experiments. The experiments were repeated three times in 20 liters of tap water. The temperature of water was 21 ± 1°C. The data obtained were statistically evaluated by using a computer program developed by the United States Environmental Protection Agency, based on Finney's probit analysis method and the 96-h LC(50) value for crayfish was calculated to be 15.75 μg/L. The 95% lower and upper confidence limits for the LC(50) were 9.45 to 25.01 μg/L. In addition to the acute toxicity bioassay experiments, 24-h oxidative stress parameters such as malondialdehyde (MDA) levels and ferrous oxidation assay (FOX HP [hydrogen peroxide] equivalents) were also determined. Only MDA levels of hepatopancreas decreased at 5, 10, and 20 μg/L of fenitrothion doses. We can conclude that fenitrothion is highly toxic to crayfish, a nontarget organism in the ecosystem, and the lipid peroxidation indicators can be easily used for monitoring environmental effects.  相似文献   

2.
Osmoregulation was studied during the postembryonic development of Astacus leptodactylus Eschscholtz 1823 in juvenile stages 1-8 and in adults. Juveniles hatch and later stages develop in freshwater or in moderately saline waters. The time of acclimation from freshwater to a saline medium increased from early juveniles to adults. At all stages, it was longer than in comparable stages of marine crustaceans, reflecting the high impermeability of the teguments to water and ions. All stages were able to hyperisoosmoregulate. In freshwater, the ability to hyperosmoregulate was established at hatching and increased during development. The hemolymph osmolality increased from 286 mosm kg-1 in stage 1 juveniles to 419 mosm kg-1 in adults. All stages also hyperregulated at low salinities (7 per thousand and 13 per thousand salinity) and were osmoconformers at higher salinities up to 21 per thousand salinity. The lowest isosmotic salinity tended to increase with the developmental stages. The ability to osmoregulate at hatch and throughout postembryonic development is probably a key physiological adaptation in this and other freshwater crayfish.  相似文献   

3.
Species-specific differences in dynamics of agonistic interactions may influence the outcome of interspecific competition and potentially contribute to competitive advantage of one species over another. In this study, we compared the dynamics of agonistic interactions of one of the most successful crayfish invaders of European freshwater ecosystems, the signal crayfish (Pacifastacus leniusculus) and the widespread native European species currently undergoing range expansion in Croatia and Europe, the narrow-clawed crayfish (Astacus leptodactylus). Comparisons between P. leniusculus pairs and the A. leptodactylus pairs demonstrated significant differences in frequency and duration of agonistic encounters: P. leniusculus dyads engaged in fewer fights, but their duration was significantly longer. In staged interactions between size-matched interspecific pairs, agonistic behaviour of P. leniusculus individuals translated into dominance over their A. leptodactylus counterparts. This indicates that the success of P. leniusculus in agonistic encounters with the native competitor might stem from its readiness to continue fighting for a longer time period, and could lead to ecological advantages during niche competition even when facing a successful native crayfish species.  相似文献   

4.
5.
Summary An ultrastructural study of the sinus gland of the crayfish Astacus leptodactylus demonstrates that this gland is mainly composed of glial cells, axons and axon terminals. On the basis of the size, shape and electron density of the neurosecretory granules, we could distinguish five different types of axon terminals.  相似文献   

6.
The many inland waters in Finland make crayfish production an important potential resource. The rational utilization and management of this resource requires knowledge of the size and structure of the crayfish populations. The difficulties often encountered in catching crayfish complicate population studies. Mark-recapture and electric fishing have been used in the studies. The number of adult crayfish measuring more than 70 mm in a 4-ha lake was estimated at 620, and the number in a 13-ha lake at 3 480. In the lakes, the density of adult crayfish was around 0.6–1.4 m–2 and in one stream studied about 2.5 m–2 rising to several individuals per m2 in the best biotopes.  相似文献   

7.
8.
The coupling mechanisms which coordinate the movement of ipsilateral walking legs in the crayfish have been described in earlier investigations. Concerning the coupling between contralateral legs it was only known that these influences are weaker than those acting between ipsilateral legs. The nature of these coupling mechanisms between contralateral legs of the crayfish are investigated here by running left and right legs on separate walking belts at different speeds. The results show that coordination is performed by a phase-dependent shift of the anterior extreme position of the influenced leg. This backward shift leads to a shortening of both the return stroke and the following power stroke. As the coupling influence is only weak, several steps might be necessary to retain normal coordination after a disturbance. This corresponds to v. Holst's relative coordination. The influences act in both directions, from left to right and vice versa. However, one side may be more or less dominant. A gradient was found in the way that anterior leg pairs show less strong coordination than posterior legs. In some cases the coupling between diagonally neighbouring legs was found to be stronger than between contralateral legs of the same segment. The interpretation of this result is still open.  相似文献   

9.
10.
The carotenoid pigment concentrations of whole animal, epidermis and hepatopancreas of the crayfish Astacus leptodactylus were studied every three hours during a period of 24 h. The extract of whole animal exhibits a total pigment concentration which remains noticeably stable. Circadian variations were observed in extracts from the hepatopancreas and epidermis; the maxima observed for the epidermis as well as the minima recorded for the hepatopancreas are related to the alternating light and dark periods. The symmetry of such variations suggests a transfer of pigment between the two tissues.  相似文献   

11.
12.
Summary Active ion transport against a high electrochemical potential gradient occurs across the epithelium of the gill processes of crayfish. The transport occurs in a thin sheet of cytoplasm underlying cuticula. This cytoplasm is supplied with irregular microvilli on the apical side. The basal plasma membrane invaginates into the cytoplasm forming a dense membrane system which is in close contact with numerous elongated mitochondria. The cytoplasm of the adhering cells is divided by a septated desmosome. It is suggested that the infolded membranes are the main place of ion transport and the close contact of mitochondria with them supplies the optimal energetic conditions for transport.Abbreviations ATP Adenosine-5-triphosphate - ADP adenosine-5-diphosphate  相似文献   

13.
14.
15.
Action potentials (APs) and impulse responses in the soma and axon of the rapidly and slowly adapting (SA) abdominal stretch receptor neurons of the crayfish (Astacus leptodactylus) were recorded with single microelectrode current-clamp technique. Impulse frequency response to constant current injection was almost constant in the SA neuron while the response decayed completely in the rapidly adapting (RA) neuron. Mean impulse frequency responses to current stimulations were similar in the receptor neuron pairs. In the RA neuron additional current steps evoked additional impulses while a sudden drop in the current amplitude caused adaptation. Impulse duration was dependent on the rate of rise when current ramps were used. Adaptation was facilitated when calculated receptor current was used. Exposing the neuron to 3 mmol/l TEA or scorpion venom resulted in partly elongated impulse responses. SA neuron could continuously convert the current input into impulse frequency irrespective of previous stimulation conditions. Exposing the SA neuron to 3 mmol/l TEA or 1 mmol/l Lidocaine reduced impulse duration to large current stimulations. The SA neuron fired spontaneously if it was exposed to 5-10 mmol/l Lidocaine or 10(-2) mg/ml Leiurus quinquestriatus venom. The action potential (AP) amplitudes in the RA soma, RA axon, SA soma, and SA axon were significantly different between components of all pairs. Duration of the AP in the axon of the RA neuron was significantly shorter than those in the RA soma, SA soma, and SA axon. Diameter of the RA axon was larger than that of the SA axon. Non-adapting impulse responses were promptly observed only in the SA axons. The results indicate that the RA neuron is a sort of rate receptor transducing the rapid length changes in the receptor muscle while the SA neuron is capable of transducing the maintained length changes in the receptor muscle. The differences in firing properties mainly originate from the differences in the active and passive properties of the receptor neurons.  相似文献   

16.
17.
18.
The ontogeny of the antennal glands was studied during the embryonic and post-embryonic development of Astacus leptodactylus. The future glands arising from undifferentiated columnar cells were detectable at the metanauplius stage EI 150 m (EI: eye index; approximately 440 m at hatching). The tubule and labyrinth differentiated in embryos at EI 190 m, and the bladder and coelomosac at EI 250 m. At EI 350 m, the tubule lengthened and divided into proximal and distal sub-regions. In later stages, the gland retained the same morpho-anatomy but the differentiation and size of each part increased. The cells of the coelomosac displayed the cytological features of podocytes in late embryonic development at EI 440 m. Only small apical microvilli and a few mitochondria were observable in the labyrinth cells at EI 250 m; by EI 440 m, these cells presented well-shaped apical microvilli, formed bodies, basal infoldings and mitochondria. In the cells of the tubules and bladder, mitochondria and basal infoldings occurred at EI 440 m and EI 250 m, respectively. The differentiation of the tubules and bladder cells suggested that they were involved in active transport at EI 440 m. Following hatching, the differentiation of the cells and the size of the glands increased. The ontogeny of the antennal glands thus starts in early embryos, the specific cellular functional features being differentiated in the various parts of the glands by EI 440 m. The antennal glands are probably functional just before hatching, i.e., before the juveniles are confronted with the low osmolality of freshwater.Thanks are due to the University of Tarbiat Modarres and Ministry of Science, Research and Technology, Islamic Republic of Iran, for financial aid and support. Special thanks are also extended to the Société Française dExportation des Ressources Educatives (SFERE) for a scholarship to S.K.  相似文献   

19.
The structure of both the slow- and the fast-adapting abdominal muscle receptor organ of Astacus leptodactylus is described with particular reference to differences between the two systems. The receptors are composed of a thin muscle that extends from the front edge of one segment to the front edge of the following and a sensory cell connected with this muscle. In the zone where the sensory cells enter their respective muscle, muscle fibers are reduced (zone of relative muscle exclusion = ZRME) and partly replaced by connective tissue. The occurrence of dendritic processes of both the slow and the fast neurons is confined to this zone. The following differences between the two receptor types are established: (1) The fast receptor muscle reveals a smaller sarcomere length than the slow receptor muscle and a higher myosin/actin filament ratio. (2) Muscle fibers that pass the ZRME are always found at its periphery in the fast system, separated from dendritic processes by layers of connective tissue, while in the slow system muscle fibers frequently are intermingled with the sensory elements. (3) The ZRME of the slow receptor is 20-30% longer than that of the fast receptor. (4) The dendritic varicosities of the slow neuron, on an average, contain many more mitochondria than those of the fast neuron. (5) Dendritic processes (fine twigs as well as varicosities) are juxtaposed to the sarcolemma of the muscle fibers only in the slow system; in the fast system dendrites and muscle are spatially separated by connective tissue. It is assumed that these differences between the two receptor types are at least in part responsible for the different thresholds observed in physiological experiments.  相似文献   

20.
1. The reflex activity elicited by movement of the mero-carpopodite (M-C) joint in the cheliped of the crayfish Astacus leptodactylus is investigated and the role of the different proprioceptors (chordotonal and myochordotonal organs) separately studied. 2. The reflex discharge involves mainly the tonic motoneurones of the extensor (E), the flexor (F) and the accessory flexor (AF) muscles. 3. M-C joint posture is also regulated by the cuticular stress detector (CSD2) afferents: they increase mainly the F discharge and secondarily the AF command. 4. The activity of the motor axons supplying the muscles of the meropodite can be also influenced by a variety of natural stimuli applied to other appendages. The effect usually produced is a general flexion reaction which is characterized by a reciprocity between E and F involving both central and peripheral mechanisms. 5. The AF muscle is innervated by two antagonistic motoneurones, an excitatory neurone functionally linked in its discharge with one of the four excitors supplying F and an inhibitory motoneurone, common with E. The resulting competitive effect between these two neurones has been recorded intracellularly in AF muscle fibres. 6. The role of the myochordotonal organ (MCO) in the crayfish is discussed. In particular the modulation of the AF command in relation to the discharges of the motor nerves to the main muscle E and F is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号