首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ancient lakes have long been recognized as “hot spots of evolution” and “evolutionary theatres” and they have significantly contributed to a better understanding of speciation and radiation processes in space and time. Yet, phylogenetic relationships of many ancient lake taxa, particularly invertebrate groups, are still unresolved. Also, the lack of robust morphological, anatomical, and phylogeographical data has largely prevented a rigorous testing of evolutionary hypotheses. For the freshwater gastropod genus Valvata—a group with a high degree of endemism in several ancient lakes—different evolutionary scenarios are suggested for different ancient lakes. Lake Baikal, for example, is inhabited by several endemic Valvata taxa that presumably do not form a monophyletic group. For such an evolutionary pattern, the term ancient lake species scatter is introduced here. In contrast, for the Balkan Lake Ohrid, workers previously suggested the presence of a monophyletic group of endemic Valvata species, that is, an ancient lake species flock. Sequence data of the mitochondrial cytochrome oxidase c subunit I gene (COI) from worldwide taxa, with a strong emphasis on Balkan species, are here used to test whether the putative Ohrid Valvata endemics represent an ancient lake species flock and to study patterns of speciation both on the Ohrid and the Balkan scale. The study reveals three distinct clades of endemic Valvata in Lake Ohrid. Monophyly of these taxa, however, is rejected, and they therefore do not represent an ancient lake species flock, but rather an ancient lake species scatter. Also, in contrast to many other gastropod groups in Lake Ohrid, the valvatids apparently did not radiate. Many Valvata taxa in ancient lakes are characterized by enhanced levels of shell complexity. However, it remains unclear whether these patterns are associated with ancient lake environments per se. It is here suggested that similarities in shell structure between North American and Balkan taxa might simply be due to convergent evolution.  相似文献   

2.
Ancient sister lakes are considered to be ancient lakes lying in close geographic proximity, sharing a related origin and significant time of co-existence, usually having hydrological connection as well as a balanced degree of faunal overlap and distinctness. A paradigm for studying sister lake relationships are the ancient lakes Ohrid and Prespa in the Balkans, which are characterized by high degrees of endemicity. Three general patterns of endemic species can be distinguished for these lakes: (1) taxa that are endemic to either lake, with no close relatives in the respective sister lake, (2) closely related but distinct endemic taxa in both lakes (sister species) and (3) shared endemic taxa occurring in both lakes. In the present paper, two endemic freshwater pulmonate gastropod species, Radix relicta (Lake Ohrid) and R. pinteri (Lake Prespa), are used to study the evolution of presumed sister species based on biogeographical and comparative DNA data from world-wide Radix taxa. Phylogenetic, phylogeographical and parametric bootstrap analyses all suggest a sister group relationship of R. relicta and R. pinteri (pattern 2 of endemic diversity). Sister to these two taxa is the widespread R. ampla, which does not occur in the vicinity of lakes Ohrid and Prespa. The southern feeder spring complexes of Lake Ohrid are inhabited by another lineage (Radix sp. 1), which resembles Radix relicta in morphology/anatomy. For Lake Prespa, the widespread R. auricularia was reported in addition to the endemic R. pinteri. Comparative phylogenetic data favour a western Adriatic zoogeographical affinity of lakes Ohrid and Prespa over an Aegean-Anatolian faunal connection. The status of lakes Ohrid and Prespa as sister lakes is evaluated in the light of current knowledge on gastropod speciation and endemism in these hotspots of biodiversity.  相似文献   

3.
The morphologically remarkable endemic fauna within ancient lakes has received much attention in the literature. More inconspicuous taxa, however, often lack detailed molecular and morphometrical examination, although their proportion of the endemic fauna of an ancient lake must not be underestimated. Consequently, a better understanding of evolutionary patterns and processes within these lakes requires more knowledge about the often-neglected inconspicuous taxa. In the present study, we focus on the notoriously cryptic pea clam genus Pisidium (Bivalvia: Sphaeriidae). Though the genus is widely distributed, most endemic species are reported only from ancient lakes, including the European ancient sister lake system of Ohrid and Prespa on the Balkan Peninsula. Here we test for the first time hypotheses on the evolution of the endemic pea clams in this European biodiversity hotspot by molecular means. Combining a broad 16S phylogeny (comprising most European pea clam species), network analyses and morphometrical analyses, we found interesting biogeographical patterns and provide evidence for cryptic species in both lakes. Furthermore, we confirmed the proposed sister-species relationship of the endemics P. edlaueri in Lake Ohrid and P. maasseni in Lake Prespa, and we suggest scenarios of the endemic pea clam evolution within both lakes. The patterns of speciation found in the genus Pisidium are compared to patterns in morphologically distinct molluscan groups in lakes Ohrid und Prespa.  相似文献   

4.
Conditions fostering coexistence of native species with invasive species have received little attention in invasion biology, especially for closely related invasive and native species. We used long-term datasets on multiple replicate invasions to define conditions under which native virile crayfish (Orconectes virilis) can coexist with invasive rusty crayfish (O. rusticus). We examined multiple drivers of coexistence involving habitat use and predation at between-lake and within-lake scales to derive predictions that could guide prioritization efforts to prevent future introductions of rusty crayfish and mitigate impacts of existing invasions. Lakes in which native species persisted for many years had significantly less cobble and sand habitats, and significantly more vegetated habitats compared to lakes from which native crayfish have been displaced. In the presence of rusty crayfish, virile crayfish alter their habitat use to vegetated habitats relative to habitat use in the absence of rusty crayfish. Such vegetated habitats had greater plant standing crop, plant species richness, and sediment percent organic matter compared to vegetated sites occupied by rusty crayfish. Our results suggest that low abundance of cobble habitat and altered habitat use allows native crayfish to coexist with the rusty crayfish invader. At the within-lake scale, virile crayfish persist by escaping predation in the vegetated habitats, despite suboptimal abiotic conditions. By understanding these abiotic and biotic conditions that promote coexistence, managers could enhance native crayfish persistence by targeting high cobble lakes for efforts to prevent the introduction of invasive crayfish, and targeting vegetated habitats for protection in already invaded lakes.  相似文献   

5.
Ancient Lake Ohrid: biodiversity and evolution   总被引:1,自引:1,他引:0  
Worldwide ancient lakes have been a major focal point of geological, biological, and ecological research, and key concepts in, for example, evolutionary biology are partly based on ancient lake studies. Ancient lakes can be found on most continents and climate zones with most actual or putative ancient lakes in Europe being restricted to the Balkan Region. The arguably most outstanding of them is the oligotrophic and karstic Lake Ohrid, a steep-sided graben of rift formation origin situated in the central Balkans. Here, an attempt is made to summarize current knowledge of the geological, limnological, and faunal history of Lake Ohrid. Additionally, existing data on biodiversity and endemism in Lake Ohrid are updated and evaluated, and patterns and processes of speciation are reviewed in the context of the Ohrid watershed, including its sister lake, Lake Prespa. Whereas the geological history of the Ohrid Graben is relatively well studied, there is little knowledge about the limnological and biotic history of the actual lake (e.g., the age of the extant lake or from where the lake first received its water, along with its first biota). Most workers agree on a time frame of origin for Lake Ohrid of 2–5 million years ago (Mya). However, until now, the exact limnological origin and the origin of faunal or floral elements of Lake Ohrid remain uncertain. Two largely contrasting opinions either favour the theory of de novo formation of Lake Ohrid in a dry polje with a spring or river hydrography or a palaeogeographical connection of Lake Ohrid to brackish waters on the Balkan Peninsula. Whereas neither theory can be rejected at this point, the data summarized in the current review support the de novo hypothesis. An assessment of the fauna and flora of Lake Ohrid confirms that the lake harbours an incredible endemic biodiversity. Despite the fact that some biotic groups are poorly studied or not studied at all, approximately 1,200 native species are known from the lake, including 586 animals, and at least 212 species are endemic, including 182 animals. The adjusted rate of endemicity is estimated at 36% for all taxa and 34% for Animalia. In terms of endemic biodiversity, Lake Ohrid is with these 212 known endemic species and a surface area of 358 km2 probably the most diverse lake in the world, taking surface area into account. Preliminary phylogeographical analyses of endemic Lake Ohrid taxa indicate that the vast majority of respective sister taxa occurs in the Balkans and that therefore the most recent common ancestors of Ohrid- and non-Ohrid species likely resided in the region when Lake Ohrid came into existence. These data also indicate that there is relatively little faunal exchange and overlap between Lake Ohrid and its sister lake, Lake Prespa, despite the fact that the latter lake is a major water supplier for Lake Ohrid. Studies on selected species flocks and scatters, mostly in molluscs, point towards the assumption that only few lineages originally colonized Lake Ohrid from the Balkans and that the majority of endemic species seen today probably started to evolve within the lake during the early Pleistocene. Within the Ohrid watershed, endemism occurs at different spatial and taxonomic scales, ranging from species endemic to certain parts of Lake Ohrid to species endemic to the whole watershed and from subspecies to genus level and possibly beyond. Modes of speciation in the Ohrid watershed are largely affected by its degree of isolation. Observational evidence points towards both allopatric (peripatric) and parapatric speciation. Though sympatric speciation within a habitat is conceivable, so far there are no known examples. Today, the lake suffers from increasing anthropogenic pressure and a “creeping biodiversity crisis”. Some endemic species presumably have already gone extinct, and there are also indications of invasive species penetrating Lake Ohrid. The comparatively small size of Lake Ohrid and the extremely small range of many endemic species, together with increasing human pressure make its fauna particularly vulnerable. It is thus hoped that this review will encourage future research on the ecology and evolutionary biology of the lake’s taxa, the knowledge of which would ultimately help protecting this unique European biodiversity hot spot. Guest editors: T. Wilke, R. V?in?l? & F. Riedel Patterns and Processes of Speciation in Ancient Lakes: Proceedings of the Fourth Symposium on Speciation in Ancient Lakes, Berlin, Germany, September 4–8, 2006  相似文献   

6.
Species invasions can alter food web structure and change ecosystem-level functioning, but it is often unclear how these invasions may affect the life history of native species. The Lake Sturgeon (Acipenser fulvescens), a large long-lived native fish species in the Great Lakes, has increased in abundance in the lower Niagara River and nearby Lake Ontario during a period of invasive species-induced ecosystem change precipitated most recently by Dreissenid mussels (Driessena polymorpha and Driessena bugensis) and Round Goby (Neogobius melanostomus). Material taken from cross-sections of archived pectoral spines from Niagara River Lake Sturgeon captured in 1998–2000 and 2010–2012 were analyzed for stable isotopes across discrete growth zones to provide an ontogenetic assessment of diet, and diet analysis of Lake Sturgeon captured in 2014 was conducted to assess the contribution of invasive prey. Round Goby was the most important Lake Sturgeon prey item (86% by weight) in 2014, which corroborated results of δ15N and δ13C. Lake Sturgeon captured after the invasion of Round Goby exhibited ontogenetic changes in δ15N that differed from pre-Round Goby patterns, though this effect was weaker for δ13C. Values of δ15N from spine growth zones indicated non-linear increases in trophic position with age and increased rate of δ15N enrichment after the Round Goby invasion. We conclude that Round Goby establishment in western Lake Ontario changed the feeding ecology of Lake Sturgeon, which may have a positive effect on population growth for this native species.  相似文献   

7.
Ancient lakes as places of extensive speciation processes have been characterized by a high degree of endemicity and biodiversity. The most outstanding European ancient lake is the oligotrophic and karstic Balkan Lake Ohrid. The lake is inhabited by a number of endemic species, but their evolutionary history is largely unresolved. in the present study, the genetic structure, gene genealogy and demographic history of the representatives of the Ohridian endemic Proasellus species were studied using both biparentally (allozyme loci) and maternally (partial mitochondrial cytochrome oxidase subunit I gene) inherited markers. Both data sets gave similar results and supported discrepancies among genetic differentiation, the current morphology-based taxonomy and bathymetric segregation. Horizontal distribution of endemic Proasellus species (Lake Ohrid vs adjacent feeder springs) within the lake presumably promote parapatric speciation whereas the main role of vertical barriers into diversification processes was not fully supported. The analyses of demographic history suggested the decline of endemic isopod populations. The radiation of endemic Proasellus populations within the lake could have started from the sublittoral/profundal zone towards the littoral or in the opposite direction — from the littoral to the profundal. Our analyses did not exclude both possibilities.  相似文献   

8.
Highlights of large lake research and management in Europe   总被引:1,自引:0,他引:1  
Lakes in Europe have a bipolar distribution by latitude with higher lake densities in the north (58–65° N) and south (38–48° N). By area, 95% of the large lakes (>100 km2) are located at altitudes lower than 100 m above sea level (ASL) and only 1% lie higher than 1,000 m ASL. Physically large lakes exhibit several similarities to seas and oceans in their thermal structure and circulation dynamics. From the chemical point of view, lakes are important accumulation sites for substances transported from the watershed or built up in the lake itself but they may contribute positively to global greenhouse gas emission. Fauna and flora of ancient large lakes such as the Caspian Sea and Lake Ohrid include large numbers of endemic species, which become endangered if conditions change because of direct human impact, alien species invasions or climate change. Large lakes offer a wide range of ecosystem services to society, the multiple use of which creates multiple pressures on these water bodies such as nutrient load and toxic pollution, modification of hydrology and shore line structure, and shifting of the food web balance by stocking or harvesting various species. Although large lakes are among the best-studied ecosystems in the world, the application to them of environmental regulations such as the European Water Framework Directive is a challenging task and requires that several natural and management aspects specific to these water bodies are adequately considered.  相似文献   

9.
Ancient lakes have long been recognized as evolutionary theatres and hot spots of endemism; the evolution of their morphologically often highly diverse species flocks has received much attention. However, as each ancient lake has its own geological and evolutionary history, modes of speciation may differ from system to system. Ancient lakes can act as evolutionary reservoirs that assure the survival of relict species, but at the same time extant species may evolve through intralacustrine speciation. Other aspects of interest are the actual rates of immigration, diversification or extinction as well as the temporal framework of morphological change. Many of these questions have been addressed in the African (e.g. Lake Tanganyika) and Asian (e.g. Lake Baikal) ancient lakes. For an European ancient lakes (e.g. Lakes Ohrid and Prespa), such studies are largely missing. In the present paper, extraordinarily shaped endemic freshwater limpets of the genus Ancylus from the Balkan Lake Ohrid are used in a phylogeographic and phylogenetic context to test whether they represent an ancient lake species flock, to study the mode of speciation, and to assess the timing of morphological change. Based on DNA data from two mitochondrial genes (COI, LSU rDNA), it has been found that the Lake Ohrid Ancylus species form an endemic monophyletic group. In addition, the lake's feeder springs are inhabited by another, undescribed Ancylus species. All other studied waterbodies within the watershed do not support their own Ancylus lineages but are inhabited by a widespread Mediterranean taxon. The split between the species endemic to the lake and its sister taxon is dated to 1.4±0.6 million years ago. The study presents the first genetic confirmation for the existence of a species flock in a European ancient lake. Contrary to the prevailing opinion it shows that, concerning Ancylus, Lake Ohrid represents a site of intralacustrine speciation rather than an evolutionary reservoir. Moreover, it provides the first evidence for rapid morphological change in an European ancient lake species flock. See also Electronic Supplement at: http://www.senckenberg.de/odes/06-12.htm.  相似文献   

10.
Important insights on the invasion ecology of woody plants are emerging from the study of model groups, but it is important to test how widely such results can be generalised. We examined whether drivers of introduction and invasion in the genus Casuarina are similar to those identified for other groups. We reviewed the literature, mapped current global distributions, and modelled the potential global distribution of the genus. We assessed the rationale behind introductions, impacts of invasions, and the evolution of management approaches. Casuarinas have been introduced to about 150 countries. Ten of the 14 species in the genus have been introduced outside their native ranges, but only three species are recorded as naturalized or invasive (C. equisetifolia, C. cunninghamiana and C. glauca). Species with large native ranges are more likely to be introduced, and the three invasive species have the largest native ranges and the most records of introduction. There were no clear relationships between life-history traits (e.g. seed mass, plant height, or resprouting ability) and the extent of invasion. About 8 % of the Earth’s land surface is potentially suitable for casuarinas and large-scale plantings in some climatically suitable areas have not yet resulted in large-scale invasions; there is a substantial global Casuarina invasion debt. Experiences in Florida and the Mascarene Islands highlight that casuarinas have the potential to transform ecosystems with significant control costs. The challenge is to develop management approaches that minimise the impacts of invasions while preserving economic, environmental and cultural values of species in their introduced ranges.  相似文献   

11.
Ecosystems may suffer from the impact of invasive species. Thus, understanding the mechanisms contributing to successful invasions is fundamental for limiting the effects of invasive species. Most intuitive, the enemy release hypothesis predicts that invasive species might be more successful in the exotic range than resident sympatric species owing to the absence of coevolution with native enemies. Here, we test the enemy release hypothesis for the invasion of Europe by the North American spider Mermessus trilobatus. We compare the susceptibility of invasive Mermessus trilobatus and a native species with similar life history to a shared predator with which both species commonly co‐occur in Europe. Contrary to our expectations, invasive Mermessus trilobatus were consumed three times more frequently by native predators than their native counterparts. Our study shows that invasive Mermessus trilobatus is more sensitive to a dominant native predator than local sympatric species. This suggests that the relation between the invasive spider and its native predator is dominated by prey naïveté rather than enemy release. Further studies investigating evolutionary and ecological processes behind the invasion success of Mermessus trilobatus, including testing natural parasites and rapid reproduction, are needed to explain its invasion success in Europe.  相似文献   

12.
Introductions or alien species invasions will induce changes in aquatic ecosystems but are rarely reported in Chinese highland lakes. The Japanese smelt (Hypomesus nipponensis) invaded and has become a dominant fish species in Lake Erhai, a highland lake in southwestern China, since 2016. Here, we engineered Ecopath models for two different periods, 2008–2009 (preinvasion) and 2016–2018 (postinvasion), in Lake Erhai to model ecosystem impacts from the Japanese smelt invasion. In the dynamic Ecosim model based on the 2016–2018 Ecopath model, we ran three 50-year scenarios to simulate the potential effects of Japanese smelts on the system. Our results showed competition between invasive and native species as well as changes in trophic structures, highlighting the impacts of the invasive species over time. The lake ecosystem additionally experienced significant degradation after invasion, mainly reflected in several related indicators, such as total biomass/total system throughput (TB/TST), total primary production/total biomass (TPP/TB), total primary production/total respiration (TPP/TR), Finn's mean path length (FML), Finn's cycling index (FCI) and the Connectance Index (CI). The simulation results indicated that the relative biomass of icefish (Neosalanx taihuensis), bighead carp (Hypophthalmichthys nobilis), sharpbelly (Hemiculter leucisculus), and zooplankton were significantly affected by increasing the strength of the top-down control of the Japanese smelt on its prey. It is also important to do ecological regulation of planktivorous fishes in the studied Lake Erhai, especially the Japanese smelt.  相似文献   

13.
Do invasive plant species act more as “passengers” or drivers of ecological change in native plant communities? Snapshot studies based on correlations at the site scale ignore longer-term dynamics and variation in how particular invaders affect particular native species. We analyzed patterns of co-occurrence between three invading species (Alliaria petiolata, Lonicera x bella, and Rhamnus cathartica) and 70 native plant species in 94 southern Wisconsin forests at two scales to test four hypotheses. Surveys at these sites in the 1950s and again in the 2000s allowed us to assess how initial plant diversity and site conditions affected subsequent patterns of invasion. Sites with more native species in the 1950s experienced fewer invasions of Lonicera and Rhamnus. However, this result may reflect the fact that more fragmented habitat patches supported both fewer species in the 1950s and more invasions. At the site-level, few negative correlations exist between invasive and native species’ abundances. Sites with higher Alliaria densities in the 2000s, however, support fewer native species and lower populations of several declining natives. Rhamnus-invaded sites support lower populations of two increasing species. Association (C-score) analyses detect more associations and more negative associations at the 1 m2 scale than at the site scale. Most strong associations between invasive and increasing native species are positive while those with declining natives are often negative. Species restricted to specialized habitats rarely co-occur with invaders. Alliaria has more negative associations at fragmented sites where it is more abundant and invasions may be older. Fine-scale invasive-native associations were stronger, easier to detect, and less consistent than those detectable at the site-level. Thus, screening large numbers of local associations using observational data may allow us to identify particular invasive-native interactions worth further investigation. Although invading plants sometimes act as passive passengers, increasing in tandem with certain native plants in response to disturbed fragmented habitats, they may also contribute to the declines we observe in many native species. Monitoring invasions would allow us to assess whether local associations serve to predict subsequent invasive species impacts.  相似文献   

14.
The biotic resistance hypothesis predicts that more diverse communities should have greater resistance to invasions than species-poor communities. However for facultative and obligate epiphytic invaders a high native species richness, abundance and community complexity might provide more resources for the invader to thrive to. We conducted surveys across space and time to test for the influence of native algal species abundance and richness on the abundance of the invasive facultative epiphytic filamentous alga Lophocladia lallemandii in a Mediterranean Cystoseira balearica seaweed forest. By removing different functional groups of algae, we also tested whether these relationships were dependent on the complexity and abundance of the native algal community. When invasion was first detected, Lophocladia abundance was positively related to species richness, but the correlation became negative after two years of invasion. Similarly, a negative relationship was also observed across sites. The removal experiment revealed that more complex native communities were more heavily invaded, where also a positive relationship was found between native algal richness and Lophocladia, independently of the native algal abundance. Our observational and experimental data show that, at early stages of invasion, species-rich seaweed forests are not more resistant to invasion than species-poor communities. Higher richness of native algal species may increase resource availability (i.e. substrate) for invader establishment, thus facilitating invasion. After the initial invasion stage, native species richness decreases with time since invasion, suggesting negative impacts of invasive species on native biodiversity.  相似文献   

15.
Biological invasions are typically associated with disturbance, which often makes their impact on biodiversity unclear—biodiversity decline might be driven by disturbance, with the invader just being a ‘passenger’. Alternatively, an invader may act as a ‘back-seat driver’, being facilitated by disturbance that has already caused some biodiversity decline, but then causing further decline. Here we examine the interactive effects of anthropogenic fire and invasive ant species (Anoplolepis gracilipes or Wasmannia auropunctata) on native ant diversity in New Caledonia, a globally recognized biodiversity hotspot. We first examined native ant diversity at nine paired burnt and unburnt sites, with four pairs invaded by Anoplolepis, 5 years after an extensive fire. In the absence of invasion, native epigaeic ants were resilient to fire, but native ant richness and the abundance of Forest Opportunists were markedly lower in invaded burnt sites. Second, we examined native ant diversity along successional gradients from human-derived savanna to natural rainforest in the long-term absence of fire, where there was a disconnection between disturbance-mediated variation in microhabitat and the abundance of the disturbance specialist Wasmannia. All native ant diversity responses (total abundance, richness, species composition, functional group richness and the abundance of Forest Opportunists) declined independently of microhabitat variables but in direct association with high Wasmannia abundance. Our results indicate that invasive ants are acting as back-seat drivers of biodiversity decline in New Caledonia, with invasion facilitated by disturbance but then causing further biodiversity decline.  相似文献   

16.
Recent increases in biological invasions frequency may have important consequences on native communities. However, functional redundancy between invasive and native species could reduce non-native species effects on native ecosystems. Despite this, even small differences in functional traits between these species may still have unpredictable effects on colonized ecosystems. Invasive crayfish, as ecosystem engineers, potentially have wide and complex effects on recipient ecosystems, even when replacing a native counterpart. We used laboratory microcosms to test whether native (Astacus astacus) and invasive crayfish species (Orconectes limosus, Pacifastacus leniusculus and Procambarus clarkii) are actually functionally redundant in their effects on prey/shredder density and leaf litter breakdown. Results show that crayfish strongly influenced macroinvertebrate numbers and leaf litter breakdown and indicate that differences in direct (prey and leaf litter consumption) and indirect (prey habitat use and leaf litter breakdown) effects between crayfish species do exist. While the replacement of A. astacus by O. limosus may have induced only minor changes in freshwater ecosystems, invasions by the larger and more aggressive P. clarkii and P. leniusculus will likely have strong effects on invaded ecosystem. Overall, there seems to be no functional redundancy between these four species and outcomes of crayfish invasion will likely be species specific.  相似文献   

17.
Whether bioinvasions are associated with a loss of genetic diversity and a change in mating system is instrumental for understanding the evolutionary fate of invasive species. Little loss is expected under strong propagule pressure which might be a general situation in widespread, efficient invader. In hermaphroditic species, we have few examples of a transition between outcrossing and selfing as a consequence of invasion, though this is classically predicted (as a corollary to Baker’s law). We estimated microsatellite variation in 44 populations of the widespread freshwater snail Physa acuta sampled at worldwide scale (including several populations from its native North America). Neither loss of variation (or bottleneck), nor increase in selfing rate was detected in invaded areas. Moreover there was no isolation by distance at large geographic scale, and limited geographic coherence in genetic patterns was detected using STRUCTURE software—the West Mediterranean area being an exception. Such patterns might be explained by (1) multiple introductions in the invaded areas, presumably fostered by aquarium trade, followed by regional spread in some cases—in which case mating partners might be numerous enough to prevent transition towards higher selfing rates, and (2) invasions from the whole native area. This suggests that P. acuta is an exceptionally efficient invader (which is not true of related species), but the reasons of its success remain elusive.  相似文献   

18.
Managing invasive species requires information about their distributions and potential effects, but community-level impacts of invasive animals remain poorly understood. The Chinese mystery snail (Bellamya chinensis) is a large invasive gastropod that achieves high densities in waters across North America, yet little is known about its ecological significance in invaded systems. We surveyed 44 lakes to describe the patterns and determinants of B. chinensis distributions in northern Wisconsin, USA, and to assess the likelihood of effects on native snail communities in the invaded systems. B. chinensis was widespread among surveyed lakes (21 of 42 lakes with snails) and its occurrence was correlated with indicators of lake productivity and anthropogenic dispersal vectors (boat landings, distance to population centers, shoreline housing density). Some native snail species tended not to occur at sites where B. chinensis was abundant; among these was Lymnaea stagnalis, which suffered reduced survival in the presence of B. chinensis in a recently published mesocosm study. However, there was no difference in overall snail assemblage structure at either the site or lake level as a function of B. chinensis presence or abundance. Lake occurrences of many snail species have apparently been lost over time, but a comparison to a 1930s survey showed that there was no increased likelihood of species loss in lakes invaded by B. chinensis (or by the invasive crayfish Orconectes rusticus). Although B. chinensis is widespread and sometimes abundant in northern Wisconsin lakes, it does not appear to have strong systematic impacts on native snail assemblages.  相似文献   

19.
Is Lake Prespa Jeopardizing the Ecosystem of Ancient Lake Ohrid?   总被引:1,自引:0,他引:1  
Lake Prespa and Lake Ohrid, located in south-eastern Europe, are two lakes of extraordinary ecological value. Although the upstream Lake Prespa has no surface outflow, its waters reach the 160 m lower Lake Ohrid through underground hydraulic connections. Substantial conservation efforts concentrate on oligotrophic downstream Lake Ohrid, which is famous for its large number of endemic and relict species. In this paper, we present a system analytical approach to assess the role of the mesotrophic upstream Lake Prespa in the ongoing eutrophication of Lake Ohrid. Almost the entire outflow from Lake Prespa is found to flow into Lake Ohrid through karst channels. However, 65% of the transported phosphorus is retained within the aquifer. Thanks to this natural filter, Lake Prespa does not pose an immediate threat to Lake Ohrid. However, a potential future four-fold increase of the current phosphorus load from Lake Prespa would lead to a 20% increase (+0.9 mg P m−3) in the current phosphorus content of Lake Ohrid, which could jeopardize its fragile ecosystem. While being a potential future danger to Lake Ohrid, Lake Prespa itself is substantially endangered by water losses to irrigation, which have been shown to amplify its eutrophication.  相似文献   

20.
Biological invasions provide unique opportunities for studying life history trait changes over contemporary time scales. As spatial spread may be related to changes in parasite communities, several hypotheses (such as the evolution of increased competitive ability (EICA) or EICA‐refined hypotheses) suggest immune changes in invasive species along invasion gradients. Although native hosts may be subject to similar changes in parasite selection pressures, their immune responses have been rarely investigated in invasion contexts. In this study, we evaluated immune variations for invasive house mice Mus musculus domesticus, invasive black rats Rattus rattus and native rodents Mastomys erythroleucus and Mastomys natalensis along well‐characterised invasion gradients in Senegal. We focused on antibody‐mediated (natural antibodies and complement) and inflammatory (haptoglobin) responses. One invasion route was considered for each invasive species, and environmental conditions were recorded. Natural‐antibody mediated responses increased between sites of long‐established invasion and recently invaded sites only in house mice. Both invasive species exhibited higher inflammatory responses at the invasion front than in sites of long‐established invasion. The immune responses of native species did not change with the presence of invasive species. These patterns of immune variations do not support the EICA and EICA refined hypotheses, and they rather suggest a higher risk of exposure to parasites on the invasion front. Altogether, these results provide a first basis to further assess the role of immune changes in invasion success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号