首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular genetic techniques (FISH and metagenomic analysis) were used to investigate prokaryotic complexes in native soils (gray forest soil and urbostratozema typical), soils contaminated by petroleum products (gasoline or diesel fuel), and soils subject to remediation by addition of a nitrogen-containing polysaccharide biopolymer chitin. The share of metabolically active prokaryotic cells in the hydrolytic complex of soil microcosms was determined, as well as their biomass and biodiversity. Compared to the control, in the pollutant-containing experimental microcosms, a decrease in the share of metabolically active prokaryotic cells was observed, as well as changes of the hydrolytic complex structure, such as an increase in the share of the phylum Actinobacteria (specifically of the genera Galiella and Nocardioides in the samples contaminated with gasoline and diesel fuel, respectively). Supplementing the hydrocarbon-contaminated system the biopolymer chitin resulted in processing of mixed-minerals with an increase in the number of layers of the smectite type and, as a result, in formation of aggregates and improved aeration. An increase in the number of metabolically active prokaryotic cells and decreased diversity of the soil prokaryotic complex were observed, which were probably associated with the development of a selective group of the hydrolytic complex of chitindegrading microorganisms.  相似文献   

2.
With the help of the molecular-biological method of cell hybridization in situ (FISH), the abundance of a physiologically active hydrolytic prokaryotic complex in chernozem and gley-podzolic soils is determined. The total proportion of metabolically active cells, which were detected by hybridization with universal probes as representatives of the domains Bacteria and Archaea, in samples of the studied soil, was from 38% for chernozem up to 78% for gley-podzolic soil of the total number of cells. The differences in the structure of chitinolytic and pectinolytic prokaryotic soil complexes are detected. Along with the high abundance of Actinobacteria and Firmicutes in the soils with chitin, an increase in phylogenetic groups such as Alphaproteobacteria and Bacteroidetes is observed.  相似文献   

3.
A prokaryotic mesophilic organotrophic community responsible for 10% of the total microbial number determined by epifluorescence microscopy was reactivated in the samples of Antarctic permafrost retrieved from the environment favoring long-term preservation of microbial communities (7500 years). No culturable forms were obtained without resuscitation procedures (CFU = 0). Proteobacteria, Actinobacteria, and Firmicutes were the dominant microbial groups in the complex. Initiation of the reactivated microbial complex by addition of chitin (0.1% wt/vol) resulted in an increased share of metabolically active biomass (up to 50%) due to the functional domination of chitinolytics caused by the target resource. Thus, sequential application of resuscitation procedures and initiation of a specific physiological group (in this case, chitinolytics) to a permafrost-preserved microbial community made it possible to reveal a prokaryotic complex capable of reversion of metabolic activity (FISH data), to determine its phylogenetic structure by metagenomic analysis, and to isolate a pure culture of the dominant microorganism with high chitinolytic activity.  相似文献   

4.
Microbiology of vadose zone paleosols in south-central Washington State   总被引:1,自引:0,他引:1  
Three unsaturated subsurface paleosols influenced by moisture recharge, including a highly developed calcic paleosol, were studied to investigate the microbiology of paleosols. Two near-surface paleosols, one impacted by moisture recharge and the other beyond the influence of recharge, were also sampled to directly assess the effect of moisture recharge on the activity and composition of the microbial community associated with paleosols. The highly developed paleosol had a higher population of culturable heterotrophs, a greater glucose mineralization potential, a higher microbial diversity based on colony morphology, and a more than 20-fold higher concentration of ATP than the two weakly developed paleosols. The recharged near-surface paleosol, as compared to the near-surface paleosol unaffected by recharge, had a lower population of culturable heterotrophs, smaller mineralization rate constant, and lower richness based on colony morphology. The recharged paleosols contained predominantly gram-negative isolates, whereas the paleosol unaffected by recharge contained predominantly gram-positive isolates. Storage at 4°C of subsurface and near-surface paleosol samples containing high water potential increased the population of culturable aerobic heterotrophs, decreased diversity in colony morphology, and increased first-order rate constants and decreased lag times for glucose mineralization. These results indicate that aerobic heterotrophs are present in deep vadose zone paleosols and that there is potential for stimulation of their in situ growth and activity.Offprint requests to: F. J. Brockman.  相似文献   

5.
Cryoturbation, the burial of topsoil material into deeper soil horizons by repeated freeze–thaw events, is an important storage mechanism for soil organic matter (SOM) in permafrost-affected soils. Besides abiotic conditions, microbial community structure and the accessibility of SOM to the decomposer community are hypothesized to control SOM decomposition and thus have a crucial role in SOM accumulation in buried soils. We surveyed the microbial community structure in cryoturbated soils from nine soil profiles in the northeastern Siberian tundra using high-throughput sequencing and quantification of bacterial, archaeal and fungal marker genes. We found that bacterial abundances in buried topsoils were as high as in unburied topsoils. In contrast, fungal abundances decreased with depth and were significantly lower in buried than in unburied topsoils resulting in remarkably low fungal to bacterial ratios in buried topsoils. Fungal community profiling revealed an associated decrease in presumably ectomycorrhizal (ECM) fungi. The abiotic conditions (low to subzero temperatures, anoxia) and the reduced abundance of fungi likely provide a niche for bacterial, facultative anaerobic decomposers of SOM such as members of the Actinobacteria, which were found in significantly higher relative abundances in buried than in unburied topsoils. Our study expands the knowledge on the microbial community structure in soils of Northern latitude permafrost regions, and attributes the delayed decomposition of SOM in buried soils to specific microbial taxa, and particularly to a decrease in abundance and activity of ECM fungi, and to the extent to which bacterial decomposers are able to act as their functional substitutes.  相似文献   

6.
The structural and functional specificity of the chitinolytic microbial complex changes dramatically depending on the incubation temperature of soil microcosms. It was shown that the highest rates of chitin degradation occurred in desert soils at high temperatures (50°C); in the moderate and northern zones, these rates peaked at lower temperatures (5°C). The role of prokaryotes as the main chitin degraders in soils incubated at high temperatures, with fungi more actively participating in chitin decomposition at low temperatures, was shown for the first time. Fluorescent in situ hybridization (FISH) revealed the predominance of actinomycetes in the metabolically active chitinolytic prokaryotic complex of desert soils (high temperatures); in the soils of the northern latitudes (low temperatures), proteobacteria prevailed. The relationship between the taxonomic position of the dominant members of the chitinolytic complex of soil microorganisms, isolated in pure cultures with the dominant phylogenetic groups and the sequence types obtained by using molecular biological techniques (FISH) was revealed.  相似文献   

7.
Biofumigation (BIOF) is carried out mainly by the incorporation of brassica plant parts into the soil, and this fumigation activity has been linked to their high glucosinolate (GSL) content. GSLs are hydrolyzed by the endogenous enzyme myrosinase to release isothiocyanates (ITCs). A microcosm study was conducted to investigate the effects induced on the soil microbial community by the incorporation of broccoli residues into soil either with (BM) or without (B) added myrosinase and of chemical fumigation, either as soil application of 2-phenylethyl ITC (PITC) or metham sodium (MS). Soil microbial activity was evaluated by measuring fluorescein diacetate hydrolysis and soil respiration. Effects on the structure of the total microbial community were assessed by phospholipid fatty acid analysis, while the impact on important fungal (ascomycetes (ASC)) and bacterial (ammonia-oxidizing bacteria (AOB)) guilds was evaluated by denaturating gradient gel electrophoresis (DGGE). Overall, B, and to a lesser extent BM, stimulated microbial activity and biomass. The diminished effect of BM compared to B was particularly evident in fungi and Gram-negative bacteria and was attributed to rapid ITC release following the myrosinase treatment. PITC did not have a significant effect, whereas an inhibitory effect was observed in the MS-treated soil. DGGE analysis showed that the ASC community was temporarily altered by BIOF treatments and more persistently by the MS treatment, while the structure of the AOB community was not affected by the treatments. Cloning of the ASC community showed that MS application had a deleterious effect on potential plant pathogens like Fusarium, Nectria, and Cladosporium compared to BIOF treatments which did not appear to inhibit them. Our findings indicate that BIOF induces changes on the structure and function of the soil microbial community that are mostly related to microbial substrate availability changes derived from the soil amendment with fresh organic materials.  相似文献   

8.
Sediment cores taken from Great Slave Lake, Canada, were analysed to investigate their metabolically active microbial populations and geochemistry. The amplification of cDNA detected metabolically active bacterial (50 separate bands) and archaeal (49 separate band) communities. The bacterial communities were further resolved indicating active actinobacterial and γ-proteobacterial communities (36 and 43 individual bands respectively). Redundancy discriminate analysis and Monte Carlo permutation testing demonstrated the significant impact of geochemical parameters on microbial community structures. Geochemical analyses suggest that the upper 0.4 m represents soil weathering and erosion in the lake catchment. An increase in organic carbon in the lower core suggests either more primary productivity, indicating warmer climate conditions, associated with Holocene Climatic Optimum conditions pre 5,000 years BP or change from a reducing environment in the lower core to an oxidizing environment during more recent deposition. Drivers for bacterial, archaeal and actinobacterial community structures were sediment particle size, and its mineral composition. Depth also significantly affected γ- proteobacterial community structure. In contrast the organic carbon content did not significantly shape the microbial community structures within the sediment. This study indicates that geochemical parameters significantly contribute to microbial community structure in these sediments.  相似文献   

9.
Khomutova  T. E.  Demkina  T. S.  Demkin  V. A. 《Microbiology》2004,73(2):196-201
Microorganisms that were isolated from steppe soils buried below kurgans from 5800 to 750 years ago were analyzed for the completeness of isolation, total biomass (the sum of glucose-reactivated and resting microbial cells), and active biomass (metabolically active cells). The metabolic state of microbial communities in buried and modern background soils was estimated from the proportion of active and total biomasses. The paleosoils were found to be characterized by lower total and active biomasses and a lower proportion of active microorganisms as compared to the modern background soils. The age-dependent decrease in the content of active microorganisms in the microbial communities of paleosoils was not monotonic. For instance, the 4000-year-old paleosoil was characterized by a high total biomass and a relatively low content of active microorganisms, whereas the 1950-year-old paleosoil was characterized by a relatively low total biomass and a relatively high content of active microorganisms. This could reflect the temporal dynamics of paleoclimatic conditions in the geographic region under study.  相似文献   

10.
Microorganisms that were isolated from steppe soils buried below kurgans from 5800 to 750 years ago were analyzed for the completeness of isolation, total biomass (the sum of glucose-reactivated and resting microbial cells), and active biomass (metabolically active cells). The metabolic state of microbial communities in buried and modern background soils was estimated from the proportion of active and total biomasses. The paleosoils were found to be characterized by lower total and active biomasses and a lower proportion of active microorganisms as compared to the modern background soils. The age-dependent decrease in the content of active microorganisms in the microbial communities of palesoils was not monotonic. For instance, the 4000-year-old paleosoil was characterized by a high total biomass and a relatively low content of active microorganisms, whereas the 1950-year-old paleosoil was characterized by a relatively low total biomass and a relatively high content of active microorganisms. This could reflect the temporal dynamics of paleoclimatic conditions in the geographic region under study.  相似文献   

11.
The effect of secondary-treated wastewater irrigation of a short-rotation willow coppice on soil microbial parameters was evaluated twice in 3 years using microbiological and biochemical properties. The soil metabolically active microbial biomass, basal respiration, N-mineralization, potential nitrification, alkaline and acid phosphatase and dehydrogenase activities were measured. The microbial community metabolic profile was determined with Biolog EcoPlates and bacterial community structure was assessed using denaturing gradient gel electrophoresis. After 2 years, a significant increase had occurred in soil microbial biomass, respiration and nitrogen mineralization activity both in the irrigated and in the non-treated plots. Wastewater irrigation increased the soil potassium concentration and enhanced the activity of alkaline phosphatase. Plant growth and irrigation affected the nitrogen mineralization activity—the increase was twice as high in the control plots as in the irrigated plots after 2 years. Potential nitrification, acid phosphatase activity and microbial community metabolic activity did not differ significantly (P > 0.05) between the control and the irrigated plots during the study. The comparison of soil profiles indicated that the observed increases in the soil microbiological parameters were allocated to the upper 10 cm. The establishment of willow plants on the fields affected the microbial community structure, with an increased diversity and higher similarity among the planted plots after 2 years. From our results we conclude that the willow coppice affected the soil bacterial community structure and had a positive effect on soil biological activity. Irrigation with pre-treated wastewater affected soil chemical and biochemical properties.  相似文献   

12.
Samples of paleosols from locality AL-333, known for numerous specimens of Australopithecus afarensis, were analyzed in order to reconstruct the original soils and environment of burial of the associated fossil hominids. The bones were found in swale-like features, within the calcareous and coarse-grained basal portion of a paleosol. This is more like an assemblage of bones buried during a single depositional episode, such as a flood, than an assemblage accumulated on a soil over a long period of time by carnivores or other means of death. What killed the hominids remains unclear, but considering the association of originally disarticulated bones of such hydraulically distinct types as phalanges and maxillae, it is very likely that they died and partially rotted at or very near this site. The paleosols at AL-333, here named the Fo and Go clay paleosols, have calcareous rhizoconcretions, granular surface horizons, prismatic peds, and shallow calcareous nodules and stringers like soils now supporting grassy woodland in semiarid regions. Although this group of hominids was buried in streamside gallery woodland, there is evidence from Laetoli, Tanzania, that A. afarensis ventured out into open wooded grassland as well. Evidence for this should be sought from other paleosols at Hadar.  相似文献   

13.
退化泥炭地的恢复是目前受关注的重要环境问题。若尔盖退化泥炭地原核微生物群落结构对水位恢复的早期响应可以为其生态恢复提供理论依据。为探究原核微生物群落结构对水位恢复的短期响应, 该研究以若尔盖退化泥炭地为研究对象, 设置水位恢复(10和30 cm)和对照组(-10 cm), 进行了1年野外原位水位恢复试验。采集0-15 cm土壤样品, 测定土壤有机碳(SOC)、总氮(TN)、总磷(TP)含量和pH等化学性质, 采用16S rRNA基因高通量测序技术分析微生物群落结构。结果表明: 水位恢复一定程度上能提高SOC、TN、TP含量及其化学计量比, 但与对照组差异不显著。主要优势微生物在门水平为酸杆菌(Acidobacteria)、变形菌(Proteobacteria)和疣微菌(Verrucomicrobia)。短期水位恢复(10和30 cm)对土壤原核微生物的α多样性没有显著影响, 而只是显著降低疣微菌和Spartobacteria的相对丰度, 增加了产甲烷菌种类。疣微菌和Spartobacteria相对丰度与水位和土壤pH呈显著负相关关系。退化泥炭地水位恢复过程中原核微生物群落结构对C:P、N:P和SOC含量响应较为敏感。综上, 短期水位恢复没有改变原核微生物α多样性, 而主要降低了疣微菌和Spartobacteria的相对丰度, 增加了产甲烷菌种类, 这将可能导致甲烷产生途径发生变化。土壤C:P、N:P和SOC含量控制了退化泥炭地随短期水位恢复过程中原核微生物群落结构变异。该研究在一定程度上丰富了原核微生物群落结构对短期水位响应的认识。  相似文献   

14.
【目的】黄土-古土壤序列是记录第四纪气候环境变化的良好载体,其内部的土壤微生物特征是蕴含土壤环境变化的重要信息。由于黄土与古土壤成壤环境的气候差异,微生物群落结构特征可能会有不同的响应,但针对该问题的研究还十分有限。【方法】选择任家坡(R)和九州台(J)两地黄土(RL和JL)-古土壤(RS和JS)序列,运用高通量测序技术和线性判别分析效应大小(linear discriminant analysis effect size, LEfSe)识别土壤原核生物群落结构和类群差异,基于原核生物分类单元功能注释(functional annotation of prokaryotic taxa, FAPROTAX)数据库进行群落功能预测,以及利用Mantel test探讨影响土壤原核生物群落稳定的环境因子。【结果】土壤中碳氮营养物质与气候变化的代用指标磁化率、Rb/Sr变化趋势一致,含量整体表现为古土壤(RS和JS)高,对应的黄土(RL和JL)低,这一特征在任家坡古土壤(RS)中尤为显著;在同一气候时期,九州台较任家坡更为干冷,并且九州台古土壤沉积阶段也受到较强冬季风的影响,使其气候冷干与暖湿转变呈渐变型。原核生物群落结构中酸杆菌门(Acidobacteria)、泉古菌门(Crenarchaeota)、绿弯菌门(Chloroflexi)等具有嗜热嗜温性质的细菌和古菌在任家坡黄土-古土壤(RL和RS)中丰度较高,芽单胞菌门(Gemmatimonadetes)、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)、广古菌门(Euryarchaeota)、异常球菌-栖热菌门(Deinococcus-Thermus)等耐旱、适宜极端环境中生存的细菌和古菌在九州台黄土-古土壤中(JL和JS)丰度较高。同时,生命产能、氮、锰、铁、氯元素循环相关功能基因在任家坡古土壤(RS)中表达量最高,而碳、氢、硫元素循环相关功能基因在任家坡黄土(RL)中表达量最高。与任家坡相比,九州台原核生物群落具有物种多样性高、功能种类少的特点。Mantel test分析进一步表明,有机碳(soil organic carbon, SOC)、含水率(soil water content, SWC)、总氮(total nitrogen, TN)和硝态氮(nitrate nitrogen, NO3--N)是影响任家坡原核生物群落和功能稳定的关键环境因子,而TN、SOC、pH值和铵态氮(NH4+-N)是影响九州台原核生物群落和功能稳定的关键环境因子。【结论】在暖湿期,微生物群落分化出更多的功能种类,具有更旺盛的生命活动;在冷干期,微生物群落通过提高物种多样性来完成主要的生命活动功能,通过协同共生维持群落生存和稳定来适应环境胁迫。研究成果对认识气候变化对土壤微生物多样性和功能的影响具有重要意义。  相似文献   

15.
This study provides a detailed pedogenic evaluation of two Upper Triassic (Late Norian through Rhaetian) stratigraphic intervals in New Mexico in order to assess the climate and ecology of the Latest Triassic, which ended in a mass extinction. The two study areas are located in north–central and east-central New Mexico and are separated by 200 km. Each section contains abundant paleosols of varying maturity with features that reflect an arid to semiarid climate. There is little pedogenic variation throughout the strata at each location, and a typical paleosol profile is about 1 m thick and has an AB–Bw–Bk–BC horizon succession. Bkm, Bss, Bssk, or Bssg horizons are present in some paleosols. Micromorphological features suggest dominantly well-drained sola (e.g., abundant carbonate nodules, illuviated clay) with minor periods of moist or saturated conditions (e.g., FeMn concretions, FeMn coatings and hypocoatings, sepic-plasmic fabrics). Trace fossils are abundant in these strata and are dominated by Taenidium serpentinum and root traces. Depth-to-carbonate functions estimate that mean annual precipitation was between 200 and 450 +/? 95 mm. Relative to location 1 (eastern New Mexico), location 2 (north–central New Mexico) produced higher paleo-precipitation estimates and has stronger and more abundant sepic-plasmic fabrics in thin sections. The presence of a gleyed paleosol, Camborygma eumnkenomos, and slickensides at location 2 also suggests conditions wetter than at location 1. Taxonomically, all of the paleosols in this study appear to be Entisols or Aridisols and can be grouped into seven representative pedotypes of varying maturity. By comparing these paleosols to modern soils, this study demonstrates that the Late Triassic Western Interior during the Late Norian to Rhaetian was arid to semiarid and supported a desert shrub environment that had localized and periodic moist or saturated soil conditions.  相似文献   

16.
Methods of reactivating the dormant forms (DFs) and nonculturable cells (NCs) of the bacterial communities of buried paleosoils and subsoil permafrost stored for long periods of time (thousands to millions of years), including completely sterile samples (CFU = 0), were developed. They were based on washing the DFs and NCs to remove anabiosis autoinducers (spore germination autoinhibitors) and introducing low molecular weight extracellular growth regulators of microbial or plant origin, such as alkylhydroxybenzenes of the alkylresorcinol subtype, indoleacetic acid, and wheat germ agglutinin. It was revealed that the dormant communities of permafrost and buried soils differed in their sensitivity to reactivating factors, probably due to different natural storage conditions of the tested soil substrates and the heterogeneity of dormant populations. The latter was confirmed by FISH (fluorescent in situ hybridization): applying the reactivation methods to the cells of the dormant permafrost community resulted in an increase in the number of metabolically active cells from 5 to 77% of their total number. In contrast, the addition of microbial anabiosis autoinducers (C12-AHB) to background surface soil and permafrost samples caused the transition of bacterial cells to the dormant or the nonculturable state, depending on the C12-AHB concentration and the sensitivity of the cells from the control soil or permafrost’ to it. The data obtained contribute to our knowledge concerning the role of intercellular communication factors and the survival of microorganisms under extreme environmental conditions.  相似文献   

17.
The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.  相似文献   

18.
19.
The current study aimed to test the hypothesis that both land-use change and soil type are responsible for the major changes in the fungal and archaeal community structure and functioning of the soil microbial community in Brazilian Pampa biome. Soil samples were collected at sites with different land-uses (native grassland, native forest, Eucalyptus and Acacia plantation, soybean and watermelon field) and in a typical toposequence in Pampa biome formed by Paleudult, Albaqualf and alluvial soils. The structure of soil microbial community (archaeal and fungal) was evaluated by ribosomal intergenic spacer analysis and soil functional capabilities were measured by microbial biomass carbon and metabolic quotient. We detected different patterns in microbial community driven by land-use change and soil type, showing that both factors are significant drivers of fungal and archaeal community structure and biomass and microbial activity. Fungal community structure was more affected by land-use and archaeal community was more affected by soil type. Irrespective of the land-use or soil type, a large percentage of operational taxonomic unit were shared among the soils. We accepted the hypothesis that both land-use change and soil type are drivers of archaeal and fungal community structure and soil functional capabilities. Moreover, we also suggest the existence of a soil microbial core.  相似文献   

20.
Ruidera Pools Natural Park, Spain, constitutes one of the most representative systems of carbonate precipitation in Europe. The prokaryotic community of a dry modern stromatolite recovered from the park has been analyzed by molecular techniques that included denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library analysis, together with microscopic observations from the sample and cultures. Ribosomal RNA was directly extracted to study the putatively active part of the microbial community present in the sample. A total of 295 16S rRNA gene sequences were analyzed. Libraries were dominated by sequences related to Cyanobacteria, most frequently to the genus Leptolyngbya. A diverse and abundant assemblage of non-cyanobacterial sequences was also found, including members of Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Acidobacteria,Planctomycetes and Chloroflexi groups. No amplification was obtained when using archaeal primers. The results showed that at the time of sampling, when the pool was dry, the bacterial community of the stromatolites was dominated by groups of highly related Cyanobacteria, including new groups that had not been previously reported, although a high diversity outside this phylogenetic group was also found. The results indicated that part of the Cyanobacteria assemblage was metabolically active and could thus play a role in the mineralization processes inside the stromatolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号