首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosynthetically active radiation (PAR) and other solar components were observed for a period of 3 years at Wuhan, China to determine for the first time the temporal variability of PAR fraction [PAR/G (G here stands for global solar radiation)] and its dependence on different sky conditions in Central China. PAR, G and PAR/G showed similar seasonal features that peaked in summer and reached their lowest values in winter. The seasonal PAR/G ranged from 1.70 E MJ?1 (winter) to 2.01 E MJ?1 (summer) with an annual mean value of 1.89 E MJ?1. Hourly values of PAR/G increased from 1.78 to 2.11 E MJ?1 on average as sky conditions changed from clear to cloudy. Monthly mean hourly PAR/G revealed a diurnal variation, with highest values observed around sunrise and sunset, slightly higher PAR fractions were also found around noon for most months. The effect of daylength on PAR/G was also studied and no significant impact was found. Three models were developed to estimate PAR from G. These models consisted of atmospheric parameters that were found to cause substantial changes of PAR/G, such as sky clearness, brightness, path length and the sky clearness index. The estimations obtained from different models were very close to the measured values with maximum relative errors below 8 % (hourly values) in Wuhan. The models were not only tested at seven radiation stations in Central China, but also verified in six stations with different climates in China. The models were found to estimate PAR accurately from commonly available G data in Central China; however, the results also implied that the models need to be modified to account for local climatic conditions when applied to the whole country.  相似文献   

2.
The photosynthetic characteristics through P-E curves and the effect of UV radiation on photosynthesis (measured as rapid adjustment of photochemistry, F v/F m) and DNA damage (as formation of CPDs) were studied in field specimens of green, red and brown algae collected from the eulittoral and sublittoral zone of Fildes Peninsula (King George Island, Antarctic). The content of phenolic compounds (phlorotannins) and the antioxidant activity were also studied in seven brown algae from 0 to 40 m depth. The results indicated that photosynthetic efficiency (α) was high and did not vary between different species and depths, while irradiances for saturation (E k) averaged 55 μmol m?2 s?1 in subtidal and 120 μmol m?2 s?1 in eulittoral species. The studied species exhibited notable short-term UV tolerance along the vertical zonation. In intertidal and shallow water species, decreases in F v/F m by UV radiation were between 0 and 18 %, while in sublittoral algae, decreases in F v/F m varied between 3 and 35 % relative to PAR treatment. In all species, recovery was high averaging 84–100 %. The formation of CPDs increased (15–150 %) under UV exposure, with the highest DNA damage found in some subtidal species. Phlorotannin content varied between 29 mg g?1 DW in Ascoseira mirabilis from 8 m depth and 156 mg g?1 DW in Desmarestia menziesii from 17 m depth. In general, phlorotannin concentrations were constitutively high in deeper sublittoral brown algae, which were correlated with higher antioxidant activities of algal extracts and low decreases in photosynthesis. UV radiation caused a strong decrease in phlorotannin content in the deep-water Himantothallus grandifolius, whereas in D. menziesii and Desmarestia anceps, induction of the synthesis of phlorotannins by UV radiation was observed. The antioxidant activity was in general less affected by UV radiation.  相似文献   

3.
Photosynthetic activity and temperature regulation of microalgal cultures (Chlorella vulgaris and Scenedesmus obliquus) under different irradiances controlled by a solar tracker and different cell densities were studied in outdoor flat panel photobioreactors. An automated process control unit regulated light and temperature as well as pH value and nutrient concentration in the culture medium. CO2 was supplied using flue gas from an attached combined block heat and power station. Photosynthetic activity was determined by pulse amplitude modulation fluorometry. Compared to the horizontal irradiance of 55 mol photons m?2 d?1 on a clear day, the solar tracked photobioreactors enabled a decrease and increase in the overall light absorption from 19 mol photons m?2 d?1 (by rotation out of direct irradiance) to 79 mol photons m?2 d?1 (following the position of the sun). At biomass concentrations below 1.1 g cell dry weight (CDW) L?1, photoinhibition of about 35 % occurred at irradiances of ≥1,000 μmol photons m?2 s?1 photosynthetic active radiation (PAR). Using solar tracked photobioreactors, photoinhibition can be reduced and at optimum biomass concentration (≥2.3 g CDW L?1), the culture was irradiated up to 2,000 μmol photons m?2 s?1 to overcome light limitation with biomass yields of 0.7 g CDW mol photons?1 and high photosynthetic activities indicated by an effective quantum yield of 0.68 and a maximum quantum yield of 0.80 (F v/F m). Overheating due to high irradiance was avoided by turning the PBR out of the sun or using a cooling system, which maintained the temperature close to the species-specific temperature optima.  相似文献   

4.
Long-term effects of ultraviolet (UV) radiation on flavonoid biosynthesis were investigated in Arabidopsis thaliana using the sun simulators of the Helmholtz Zentrum München. The plants, which are widely used as a model system, were grown (1) at high photosynthetically active radiation (PAR; 1,310 µmol m?2?s?1) and high biologically effective UV irradiation (UV-BBE 180 mW m?2) during a whole vegetative growth period. Under this irradiation regime, the levels of quercetin products were distinctively elevated with increasing UV-B irradiance. (2) Cultivation at high PAR (1,270 µmol m?2?s?1) and low UV-B (UV-BBE 25 mW m?2) resulted in somewhat lower levels of quercetin products compared to the high-UV-BBE conditions, and only a slight increase with increasing UV-B irradiance was observed. On the other hand, when the plants were grown (3) at low PAR (540 µmol m?2?s?1) and high UV-B (UV-BBE 180 mW m?2), the accumulation of quercetin products strongly increased from very low levels with increasing amounts of UV-B but the accumulation of kaempferol derivatives and sinapoyl glucose was less pronounced. We conclude (4) that the accumulation of quercetin products triggered by PAR leads to a basic UV protection that is further increased by UV-B radiation. Based on our data, (5) a combined effect of PAR and different spectral sections of UV radiation is satisfactorily described by a biological weighting function, which again emphasizes the additional role of UV-A (315–400 nm) in UV action on A. thaliana.  相似文献   

5.
The net photosynthetic rate (P N), the sample room CO2 concentration (CO2S) and the intercellular CO2 concentration (C i) in response to PAR, of C3 (wheat and bean) and C4 (maize and three-colored amaranth) plants were measured. Results showed that photorespiration (R p) of wheat and bean could not occur at 2 % O2. At 2 % O2 and 0 μmol mol?1 CO2, P N can be used to estimate the rate of mitochondrial respiration in the light (R d). The R d decreased with increasing PAR, and ranged between 3.20 and 2.09 μmol CO2 m?2 s?1 in wheat. The trend was similar for bean (between 2.95 and 1.70 μmol CO2 m?2 s?1), maize (between 2.27 and 0.62 μmol CO2 m?2 s?1) and three-colored amaranth (between 1.37 and 0.49 μmol CO2 m?2 s?1). The widely observed phenomenon of R d being lower than R n can be attributed to refixation, rather than light inhibition. For all plants tested, CO2 recovery rates increased with increasing light intensity from 32 to 55 % (wheat), 29 to 59 % (bean), 54 to 87 % (maize) and 72 to 90 % (three-colored amaranth) at 50 and 2,000 μmol m?2 s?1, respectively.  相似文献   

6.
Photosynthetic and respiratory responses (P–E curves) of Gracilaria parvispora from the southeast Gulf of California were studied at four temperatures (20, 25, 30, 35 °C) and salinity (25, 30, 35, 40 psu) combinations. The alga showed acclimation in its photosynthetic and respiratory responses to tropical temperature as well as to oceanic salinity. A positive effect of temperature on photosynthetic rate (P max) was observed for all salinities. Photosynthetic rates for treatments at 20 and 25 °C were lower (<9.2 mg O2?g dry weight (dw)?1?h?1) than for treatments at 30 and 35 °C (>12 mg O2 g dw?1?h?1). G. parvispora showed limited tolerance to low salinities (25 psu) and low temperatures (20 °C) and the interaction between temperature and salinity was significant (analysis of variance, P?<?0.05). Responses to salinity indicated adaptation to oceanic salinity. Photosynthetic responses were lower at 25 psu than at higher salinities. The lowest P max values (6.2–8.2 mg O2?g dw?1?h?1) were observed at the lowest salinity (25 psu) regardless of temperature. Compensation and saturation irradiances (26–170 and 57–149 μmol photons m?2?s?1, respectively) indicate adaptation to lower irradiances in shallow (1–2 m depth) habitats, where turbidity can be high, and the capacity of shade adaptation has been developed. Results suggest distribution of this species is mainly related to salinity or temperature. The potential mariculture efforts of G. parvispora would be limited by low temperatures in winter, and indicate that this species will probably not be able to spread further due to low temperatures (<15 °C) in the upper part of the Gulf of California.  相似文献   

7.
This work addresses the question of occurrence and function of photosystem II (PSII) in bundle sheath (BS) cells of leaves possessing NADP-malic enzyme-type C4 photosynthesis (Zea mays). Although no requirement for PSII activity in the BS has been established, several component proteins of PSII have been detected in BS cells of developing maize leaves exhibiting O2-insensitive photosynthesis. We used the basal fluorescence emissions of PSI (F 0I) and PSII (F 0II) as quantitative indicators of the respective relative photosystem densities. Chl fluorescence induction was measured simultaneously at 680 and 750 nm. In mature leaves, the F m(680)/F 0(680) ratio was 10.5 but less in immature leaves. We propose that the lower ratio was caused by the presence of a distinct non-variable component, F c, emitting at 680 and 750 nm. After F c was subtracted, the fluorescence of PSI (F 0I) was detected as a non-variable component at 750 nm and was undetectably low at 680 nm. Contents of Chls a and b were measured in addition to Chl fluorescence. The Chl b/(a + b) was relatively stable in developing sunflower leaves (0.25–0.26), but in maize it increased from 0.09 to 0.21 with leaf tissue age. In sunflower, the F 0I/(F 0I + F 0II) was 0.39 ± 0.01 independent of leaf age, but in maize, this parameter was 0.65 in young tissue of very low Chl content (20–50 mg m?2) falling to a stable level of 0.53 ± 0.01 at Chl contents >100 mg m?2. The values of F 0I/(F 0I + F 0II) showed that in sunflower, excitation was partitioned between PSII and PSI in a ratio of 2:1, but the same ratio was 1:1 in the C4 plant. The latter is consistent with a PSII:PSI ratio of 2:1 in maize mesophyll cells and PSI only in BS cells (2:1:1 distribution). We suggest, moreover, that redox mediation of Chl synthesis, rather than protein accumulation, regulates photosystem assembly to ensure optimum excitation balance between functional PSII and PSI. Indeed, the apparent necessity for two Chls (a and b) may reside in their targeted functions in influencing accumulation of PSI and PSII, respectively, as opposed to their spectral differences.  相似文献   

8.
Natural rubber is a valuable source of income in many tropical countries and rubber trees are increasingly planted in tropical areas, where they contribute to land-use changes that impact the global carbon cycle. However, little is known about the carbon balance of these plantations. We studied the soil carbon balance of a 15-year-old rubber plantation in Thailand and we specifically explored the seasonal dynamic of soil CO2 efflux (F S) in relation to seasonal changes in soil water content (W S) and soil temperature (T S), assessed the partitioning of F S between autotrophic (R A) and heterotrophic (R H) sources in a root trenching experiment and estimated the contribution of aboveground and belowground carbon inputs to the soil carbon budget. A multiplicative model combining both T S and W S explained 58 % of the seasonal variation of F S. Annual soil CO2 efflux averaged 1.88 kg C m?2 year?1 between May 2009 and April 2011 and R A and R H accounted for respectively 63 and 37 % of F S, after corrections of F S measured on trenched plots for root decomposition and for difference in soil water content. The 4-year average annual aboveground litterfall was 0.53 kg C m?2 year?1 while a conservative estimate of belowground carbon input into the soil was much lower (0.17 kg C m?2 year?1). Our results highlighted that belowground processes (root and rhizomicrobial respiration and the heterotrophic respiration related to belowground carbon input into the soil) have a larger contribution to soil CO2 efflux (72 %) than aboveground litter decomposition.  相似文献   

9.

Key message

Analysis of sap flux density during drought suggests that the large sapwood and rooting volumes of larger trees provide a buffer against drying soil.

Abstract

The southern conifer Agathis australis is amongst the largest and longest-lived trees in the world. We measured sap flux densities (F d) in kauri trees with a DBH range of 20–176 cm to explore differences in responses of trees of different sizes to seasonal conditions and summer drought. F d was consistently higher in larger trees than smaller trees. Peak F d was 20 and 8 g m?2 s?1 for trees of diameters of 176 and 20 cm, respectively, during the wet summer. Multiple regression analysis revealed photosynthetically active radiation (PAR) and vapour pressure deficit (D) were the main drivers of F d. During drought, larger trees were more responsive to D whilst smaller trees were more responsive to soil drying. Our largest tree had a sapwood area of 3,600 cm2. Preliminary analysis suggests stem water storage provides a buffer against drying soil in larger trees. Furthermore, F d of smaller trees had higher R 2 values for soil moisture at 30 and 60 cm depth than soil moisture at 10 cm depth (R 2 = 0.68–0.97 and 0.55–0.67, respectively) suggesting that deeper soil moisture is more important for these trees. Larger trees did not show a relationship between F d and soil moisture, suggesting they were accessing soil water deeper than 60 cm. These results suggest that larger trees may be better prepared for increasing frequency and intensity of summer droughts due to deeper roots and/or larger stem water storage capacity.
  相似文献   

10.
1. We studied the seasonal dynamics of suspended particulate matter in a turbid, large shallow lake during an annual period (2005–06). We relate the patterns of seston concentration (total suspended solids), phytoplankton biomass and water transparency to the seasonal pattern of incident solar radiation (I0). We also report the seasonal trends of phytoplankton primary production (PP) and photosynthesis photoinhibition due to photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) (Iβ and UV50). 2. We first collected empirical evidence that indicated the conditions of light limitation persisted during the study period. We found that the depth‐averaged irradiance estimated for the time of the day of maximum irradiance (Imean–noon) was always lower than the measured onset of light saturation of photosynthesis (Ik). 3. We then contrasted the observations with theoretical expectations based on a light limitation scenario. The observed temporal patterns of seston concentration, both on a volume and area basis, were significantly explained by I0 (R2 = 0.39 and R2 = 0.37 respectively). The vertical diffuse attenuation coefficient (kdPAR) (R2 = 0.55) and the depth‐averaged irradiance (Imean) (R2 = 0.66), significantly increased with the I0; while the irradiance reaching the lake bottom (Iout) significantly decreased with the incident irradiance (R2 = 0.49). However, phytoplankton biovolume maxima were not coincident with the time of the year of maximum irradiance. 4. A significant positive relationship was observed between PP estimated on an area basis and I0 (R2 = 0.51, P < 0.001). In addition, the parameters describing the photosynthetic responses to high irradiances displayed marked seasonal trends. The photosynthesis photoinhibition due to PAR as well as to UV were significantly related to incident solar radiation (PAR: R2 = 0.73; UV: R2 = 0.74). These results suggest adaptation of the phytoplankton community in response to changes in incident solar radiation.  相似文献   

11.
Field‐collected specimens of three species of Laminaria and three species of subtidal red algae (Delesseria sanguinea, Plocamium cartilagineum and Phyllophora pseudoceranoides) were exposed to natural summer sunlight on Helgoland (southern North Sea) for up to 4 h at 15 °C. Dark‐adapted variable fluorescence (Fv : Fm) was measured immediately after these treatments, and following 6, 24 and 48 h of recovery in moderate irradiances of white light. The response of plants to the full spectrum of natural sunlight was compared with that to PAR alone, UV‐A + visible, UV‐A + UV‐B, or UV‐A alone. The Fv : Fm values of all species were reduced to minimal values after 4 h in all of these treatments, but those of the more resistant species (Laminaria spp. and P. pseudoceranoides) were higher after shorter exposures to UV radiation alone than to PAR with or without UV. The recovery of Fv : Fm in all species was also more rapid in the two treatments that contained UV radiation alone than in those that included PAR. These results suggest that it is the high irradiances of PAR in natural sunlight which are responsible for the photoinhibition of photosynthesis of subtidal seaweeds and that the current ambient irradiances of UV radiation (either UV‐B or UV‐A) in northern temperate latitudes would not contribute significantly to this photoinhibition.  相似文献   

12.

Objectives

To prepare (R)-phenyl-1,2-ethanediol ((R)-PED) with high enantiomeric excess (ee p) and yield from racemic styrene oxide (rac-SO) at high concentration by bi-enzymatic catalysis.

Results

The bi-enzymatic catalysis was designed for enantioconvergent hydrolysis of rac-SO by a pair of novel epoxide hydrolases (EHs), a Vigna radiata EH3 (VrEH3) and a variant (AuEH2A250I) of Aspergillus usamii EH2. The simultaneous addition mode of VrEH3 and AuEH2A250I, exhibiting the highest average turnover frequency (aTOF) of 0.12 g h?1 g?1, was selected, by which rac-SO (10 mM) was converted into (R)-PED with 92.6% ee p and 96.3% yield. Under the optimized reaction conditions: dry weight ratio 14:1 of VrEH3-expressing E. coli/vreh3 to AuEH2A250I-expressing E. coli/Aueh2 A250I and reaction at 20 °C, rac-SO (10 mM) was completely hydrolyzed in 2.3 h, affording (R)-PED with 98% ee p. At the weight ratio 0.8:1 of rac-SO to two mixed dry cells, (R)-PED with 97.4% ee p and 98.7% yield was produced from 200 mM (24 mg/ml) rac-SO in 10.5 h.

Conclusions

Enantioconvergent hydrolysis of rac-SO at high concentration catalyzed by both VrEH3 and AuEH2A250I is an effective method for preparing (R)-PED with high ee p and yield.
  相似文献   

13.
Coarse woody debris (CWD) is an important component of the forest carbon cycle, acting as a carbon pool and a source of CO2 in temperate forest ecosystems. We used a soda-lime closed-chamber method to measure CO2 efflux from downed CWD (diameter ≥5 cm) and to examine CWD respiration (R CWD) under field conditions over 1 year in a temperate secondary pioneer forest in Takayama forest. We also investigated tree mortality (input to the CWD pool) from the data obtained from the annual tree census, which commenced in 2000. We developed an exponential function of temperature to predict R CWD in each decay class (R 2 = 0.81–0.97). The sensitivity of R CWD to changing temperature, expressed as Q 10, ranged from 2.12 to 2.92 and was relatively high in decay class III. Annual C flux from CWD (F CWD) was extrapolated using continuous air temperature measurements and CWD necromass pools in the three decay classes. F CWD was 3.0 (class I), 17.8 (class II), and 13.7 g C m?2 year?1 (class III) and totaled 34 g C m?2 year?1 in 2009. Annual input to CWD averaged 77 g C m?2 year?1 from 2000 to 2009. The budget of the CWD pool in the Takayama forest, including tree mortality inputs and respiratory outputs, was 0.43 Mg C ha?1 year?1 (net C sink) owing to high tree mortality in the mature pioneer forest. The potential CWD sink is important for the carbon cycle in temperate successional forests.  相似文献   

14.
The net photosynthetic rate (F), transpiration rate (Q) and water use efficiency (F/Q) of oilseed rape (Brassica campestris L. cv. Span) was studied under a range of atmospheric conditions by gas exchange techniques. The plants were at the full bloom/pod initiation stage of development at the time of measurement. The environmental conditions consisted of various levels of photosynthetically active radiation (100 to 2800 (μmol m?2 s?1 PAK: 400–700 nm), air temperature (10 to 42°C) and vapour pressure deficit (0.7 to 2.1 kPa VPD). The peak values ofF were recorded at 1600 μmol m?2 s?1 PAR, 20°C air temperature and 1.2 kPa VPD of air in the chamber. Q increased with increasing PAR, air temperature and VPD. However, theF/Q remained high and almost constant from 600 to 1600 μmol m?2 s?1 PAR, but declined at the low and high photon flux densities.F/Q decreased progressively with increase in air temperature and VPD of air in the chamber.  相似文献   

15.
Orlando Necchi Jr 《Hydrobiologia》2004,525(1-3):139-155
Photosynthetic characteristics in response to irradiance were analysed in 42 populations of 33 macroalgal species by two distinct techniques (chlorophyll fluorescence and oxygen evolution). Photosynthesis–irradiance (PI) curves based on the two techniques indicated adaptations to low irradiance reflected by low saturation values, high to moderate values of photosynthetic efficiency (α) and photoinhibition (β), for Bacillariophyta and Rhodophyta, which suggests they are typically shade-adapted algae. In contrast, most species of Chlorophyta were reported as sun adapted algae, characterized by high values of I k and low of α, and lack of or low photoinhibition. Cyanophyta and Xanthophyta were intermediate groups in terms of light adaptations. Photoinhibition was observed in variable degrees in all algal groups, under field and laboratory conditions, which confirms that it is not artificially induced by experimental conditions, but is rather a common and natural phenomenon of the lotic macroalgae. Low values of compensation irradiance (I c) were found, which indicate that these algae can keep an autotrophic metabolism even under very low irradiances. High ratios (>2) of photosynthesis/respiration were found in most algae, which indicates a considerable net gain. These two physiological characteristics suggest that macroalgae may be important primary producers in lotic ecosystems. Saturation parameters (I k and I s) occurred in a relatively narrow range of irradiances (100–400 μmol photons m?2s?1), with some exceptions (higher in some filamentous green algae or lower in red algae). These parameters were way below the irradiances measured at collecting sites for most algae, which means that most of the available light energy was not photochemically converted via photosynthesis. Acclimation to ambient PAR was observed, as revealed by lower values of I k and I cand higher values of α and quantum yield in algae from shaded streams, and vice versa. Forms living within the boundary layer (crusts) showed responses of shade-adapted species and had the highest values of P max, α and quantum yield, whereas the opposite trend was observed in gelatinous forms (colonies and filaments). These results suggests adaptation to the light regime rather than functional attributes related to the growth form.  相似文献   

16.
《Biomass》1990,21(4):273-284
A field experiment was conducted at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Center, Patancheru, India to study photosynthetically active radiation (PAR) interception and dry matter production relationships in pearl millet (Pennisetum americanum (L.) Leeke). Two pearl millet genotypes, BJ 104 (G1) and ICH 226 (G2) were sown at three planting geometries obtained by using combinations of row and plant spacings (S1: 37·5 cm × 26·6 cm; S2: 75·0 cm × 13·3 cm; S3: 150·0 cm × 6·6 cm) such that plant population was constant at 100 000 ha−1 in all treatments. Cumulative intercepted PAR was maximum (330 MJ m−2) in G2S2 and minimum (268 MJ m−2) in G1S3. Conversion efficiency values ranged from 1·87 g MJ−1 in G1S2 to 2·32 g MJ−1 in G2S3. Final above-ground dry matter followed the pattern of cumulative intercepted PAR and maximum dry matter (7·22 Mg ha−1) was produced by G2S2 while G1S3 produced minimum dry matter (4·97 Mg ha−1).  相似文献   

17.
In this study, chlorophyll fluorescence parameters (?F/F m′, F v/F m) and oxygen evolution of female vegetative tissues of Porphyra katadai var. hemiphylla in unisexual culture (FV) and in mixed culture with male vegetative tissues (FV-M) were followed at 5–20 °C, 10 and 80 μmol photons m?2 s?1. The formation of reproductive tissues was closely correlated with decreasing photosynthetic activities. At the same temperature the tissues cultured under 80 μmol photons m?2 s?1 showed a greater extent of maturation than those under 10 μmol photons m?2 s?1, and their decrease in photosynthesis was also larger. Under the same light intensity the extent of maturation increased with increasing temperature, and both cultures showed higher values of ?F/F m′ and F v/F m at 10 and 15 °C, while their oxygen evolution became negative at 15–20 °C during the later period. Under the same culture condition the maturation of FV-M culture was relatively faster than that of FV culture, while their photosynthetic activity, especially ?F/F m′, was lower.  相似文献   

18.
An extracellular β-glucosidase (BGL) from Fusarium oxysporum was purified to homogeneity by a single chromatography step on a gel filtration column. The optimum activity of BGL on cellobiose was observed at pH 5.0 and 60 °C. Under the same conditions, the K m and V max values for p-nitrophenyl β-d-glucopyranoside and cellobiose were 2.53 mM, 268 U?mg protein?1 and 20.3 mM, 193 U?mg protein?1, respectively. The F. oxysporum BGL enzyme was highly stable at acidic pH (t 1/2?=?470 min at pH 3). A commercial BGL Novo188 (Novozymes) and F. oxysporum BGL were compared in their ability to supplement Celluclast 1.5 L (Novozymes). In comparison with the commercial Novo188 (267 mg?g substrate?1), F. oxysporum BGL supplementation released more reducing sugars (330 mg?g substrate?1) from cellulose under simulated gastric conditions. These properties make F. oxysporum BGL a good candidate as a new commercial BGL to improve the nutrient bioavailability of animal feed.  相似文献   

19.
The title compound has been synthesized and subjected to crystal structure analysis. Mr = 548.50, m.p. 108.1 °C (decom.), orthorhombic, Im2m,a = 7.006(2), b = 8.938(2), c = 13.619(2) Å V = 852.8(3) Å3, Z = 2, Dx = 2.136, Dm, (flotation in CCl4/CH2I2) = 2.128 g cm?3, λ(Mo-Kα) = 0.71069 Å, μ = 90.79 cm?1, F(000) = 519.89, T = 295 K, final RF = 0.036 and RG = 0.044 for 566 observed reflections. The discrete [UO2F4(H20)]2? anion has site symmetry m2m, its virtually linear uranyl moiety being surrounded by fluoro and aquo ligands occupying the vertices of a pentagon in the equatorial plane. Watet molecules serve to link the complex anions by hydrogen bonds into layers, between which the organic cations are accommodated.  相似文献   

20.
Photosynthesis-irradiance relationships were determined in the field for five species of littoral and shallow sublittoral marine benthic green algae (Chlorophyta) of differing morphologies. Each species exhibited a linear increase in photosynthetic rate with increasing irradiance up to a maximum light-saturated value. Full sunlight (1405 to 1956 μE·m?2·s?1) inhibited photosynthesis of all species except the thick, optically dense, Codium fragile (Sur.) Har. Compensation irradiances ranged from 6.1 μE·m?2·s?1 for Enteromorpha intestinalis (L.) Link to 11.4 μE·m?2·s?1 for Ulva lobata (Kütz) S. & G. and did not reveal a consistent relationship to seaweed morphology. Saturation irradiances were determined statistically (Ik) and visually from graphical plots. with the latter technique resulting in values three to eight times higher and different comparative rankings of species than the former. Ik saturation irradiances were highest for Chaetomorpha linum (Müll.) Kütz. (81.9 μE·m?2·s?1) and lowest for Codium fragile (49.6 μE·m?2·s?1) and did not reveal a relationship with seaweed morphology. Regression equations describing light-limited photosynthetic rates and the relative magnitudes of the maximal net photosynthetic responses both strongly suggested a relationship with seaweed morphology. Highest net photosynthetic rates were obtained for the thin, sheet-like algae Ulva lobata (9.2 mg C·g dry wt?1·h?1), U. rigida C. Ag. (6.5 mg C·g dry wt?1·h?1) and the tubular form, Enteromorpha intestinalis (7.3 mg C·g dry wt?1·h?1), while lowest rates occurred for Codium fragile (0.9 mg C·g dry wt?1·h?1). Similarly, steepest light-limited slopes were found for the algae of simpler morphology, while the most gradual slope was determined for Codium fragile, the alga with greatest thallus complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号