首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility of determining the free energy of stabilization ΔG0 of native DNA structure with the help of calorimetric data on heats ΔH of transition from the native to denaturated state is considered. Results of microcalorimetric measurements of heats of denaturation of T2 phage DNA at, different values of pH and ionic strength of solution are given. Values of free energy of stabilization of the DNA native structure ΔG0 under various conditions have been obtained. It is shown that under conditions close to physiological ΔG0 approaches 1200 cal/mole per base pair.  相似文献   

2.
The hypervariable D3 domain of Salmonella flagellin, composed of residues 190-283, is situated at the outer surface of flagellar filaments. A flagellin mutant deprived of the complete D3 domain (ΔD3_FliC) exhibited a significantly decreased thermal stability (Tm 41.9 °C) as compared to intact flagellin (Tm 47.3 °C). However, the stability of filaments formed from ΔD3_FliC subunits was virtually identical with that of native flagellar filaments. While D3 comprises the most stable part of monomeric flagellin playing an important role in the stabilization of the other two (D1 and D2) domains, the situation is reversed in the polymeric state. Upon filament formation, ordering of the disordered terminal regions of flagellin in the core part of the filament results in the stabilization of the radially arranged D1 and D2 domains, and there is a substantial increase of stability even in the distant outermost D3 domain, which is connected to D2 via a pair of short antiparallel β-strands. Our experiments revealed that crosslinking the ends of the isolated D3 domain through a disulfide bridge gives rise to a stabilization effect reminiscent of that observed upon polymerization. It appears that the short interdomain linker between domains D2 and D3 serves as a stabilization center that facilitates propagation of the conformational signal from the filament core to the outer part of filament. Because D3 is a largely independent part of flagellin, its replacement by heterologous proteins or domains might offer a promising approach for creation of various fusion proteins possessing polymerization ability.  相似文献   

3.
Understanding the structural basis of recognition between antigen and antibody requires the structural comparison of free and complexed components. Previously, we have reported the crystal structure of the complex between Fab fragment of murine monoclonal antibody 2A8 (Fab2A8) and Plasmodium vivax P25 protein (Pvs25) at 3.2 Å resolution. We report here the crystallization and X-ray structure of native Fab2A8 at 4.0 Å resolution. The 2A8 antibody generated against Pvs25 prevents the formation of P. vivax oocysts in the mosquito, when assayed in membrane feeding experiment.Comparison of native Fab2A8 structure with antigen bound Fab2A8 structure indicates the significant conformational changes in CDR-H1 and CDR-H3 regions of VH domain and CDR-L3 region of VL domain of Fab2A8. Upon complex formation, the relative orientation between VL and VH domains of Fab2A8 is conserved, while significant differences are observed in elbow angles of heavy and light chains. The combing site residues of complexed Fab2A8 exhibited the reduced temperature factor compared to native Fab2A8, suggesting a loss of conformational entropy upon antigen binding.  相似文献   

4.
Intact antibodies and antigen binding fragments (Fab) have been previously shown to form an alternatively folded state (AFS) at low pH. This state consists primarily of secondary structure interactions, with reduced tertiary structure content. The AFS can be distinguished from the molten globule state by the formation of nonnative structure and, in particular, its high stability. In this study, the isolated domains of the MAK33 (murine monoclonal antibody of the subtype κ/IgG1) Fab fragment were investigated under conditions that have been reported to induce the AFS. Surprising differences in the ability of individual domains to form the AFS were observed, despite the similarities in their native structures. All Fab domains were able to adopt the AFS, but only for VH (variable domain of the heavy chain) could a significant amount of tertiary structure be detected and different conditions were needed to induce the AFS. VH, the least stable of the domains under physiological conditions, was the most stable in the AFS, yet all domains showed significant stability against thermal and chemical unfolding in their AFS. Formation of the AFS was found to generally proceed via the unfolded state, with similar rates for most of the domains. Taken together, our data reveal striking differences in the biophysical properties of the AFS of individual antibody domains that reflect the variation possible for domains of highly homologous native structures. Furthermore, they allow individual domain contributions to be dissected from specific oligomer effects in the AFS of the antibody Fab fragment.  相似文献   

5.
Human alpha2M (alpha2-macroglobulin) and the complement components C3 and C4 are thiol ester-containing proteins that evolved from the same ancestral gene. The recent structure determination of human C3 has allowed a detailed prediction of the location of domains within human alpha2M to be made. We describe here the expression and characterization of three alpha(2)M domains predicted to be involved in the stabilization of the thiol ester in native alpha2M and in its activation upon bait region proteolysis. The three newly expressed domains are MG2 (macroglobulin domain 2), TED (thiol ester-containing domain) and CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domain. Together with the previously characterized RBD (receptor-binding domain), they represent approx. 42% of the alpha2M polypeptide. Their expression as folded domains strongly supports the predicted domain organization of alpha2M. An X-ray crystal structure of MG2 shows it to have a fibronectin type-3 fold analogous to MG1-MG8 of C3. TED is, as predicted, an alpha-helical domain. CUB is a spliced domain composed of two stretches of polypeptide that flank TED in the primary structure. In intact C3 TED interacts with RBD, where it is in direct contact with the thiol ester, and with MG2 and CUB on opposite, flanking sides. In contrast, these alpha2M domains, as isolated species, show negligible interaction with one another, suggesting that the native conformation of alpha2M, and the consequent thiol ester-stabilizing domain-domain interactions, result from additional restraints imposed by the physical linkage of these domains or by additional domains in the protein.  相似文献   

6.
Fluorescence measurements and H/2H exchange experiments monitored by mass spectrometry have been applied to investigate the influence of the conserved disulfide bridges on the folding behavior and in vitro aggregation properties of the scFv fragment of the antibody hu4D5-8. A set of four proteins, carrying none, one, or both of the disulfide bridges have been compared regarding their stabilities, folding kinetics and tendency to aggregate. The results show that refolding of all four scFvs is ultimately limited by a slow proline isomerization in the VLdomain, since the native cis -conformation of proline L95 seems to be a prerequisite for formation of the native interface. Starting from short-term denatured protein, with the proline residues in their native conformation, a kinetically trapped intermediate is populated depending on the conditions, whose rate of conversion is slower than that of the fast-folding molecules. According to deuteron protection patterns determined by mass spectrometry, those domains retaining the disulfide bridge are able to form stable native-like structure, independent of native interface formation. The disulfide-free domains, in contrast, require the native interface for sufficient stabilization. The resistance of the scFvs towards aggregation seems to be critically dependent on the presence of the disulfide bridge in the VHdomain, and thus on the ability of the VHdomain to form stable structure prior to interaction with the VLdomain. The presence of a stable VLdomain in combination with a disulfide-free VHdomain appears to further promote aggregation, indicating the involvement of structured domains in the aggregates.  相似文献   

7.
The NH2-terminal sequence of rhodanese influences many of its properties, ranging from mitochondrial import to folding. Rhodanese truncated by >9 residues is degraded in Escherichia coli. Mutant enzymes with lesser truncations are recoverable and active, but they show altered active site reactivities (Trevino, R. J., Tsalkova, T., Dramer, G., Hardesty, B., Chirgwin, J. M., and Horowitz, P. M. (1998) J. Biol. Chem. 273, 27841-27847), suggesting that the NH2-terminal sequence stabilizes the overall structure. We tested aspects of the conformations of these shortened species. Intrinsic and probe fluorescence showed that truncation decreased stability and increased hydrophobic exposure, while near UV CD suggested altered tertiary structure. Under native conditions, truncated rhodanese bound to GroEL and was released and reactivated by adding ATP and GroES, suggesting equilibrium between native and non-native conformers. Furthermore, GroEL assisted folding of denatured mutants to the same extent as wild type, although at a reduced rate. X-ray crystallography showed that Delta1-7 crystallized isomorphously with wild type in polyethyleneglycol, and the structure was highly conserved. Thus, the missing NH2-terminal residues that contribute to global stability of the native structure in solution do not significantly alter contacts at the atomic level of the crystallized protein. The two-domain structure of rhodanese was not significantly altered by drastically different crystallization conditions or crystal packing suggesting rigidity of the native rhodanese domains and the stabilization of the interdomain interactions by the crystal environment. The results support a model in which loss of interactions near the rhodanese NH2 terminus does not distort the folded native structure but does facilitate the transition in solution to a molten globule state, which among other things, can interact with molecular chaperones.  相似文献   

8.
A semi-empirical approach has been used to estimate the intramolecular electrostatic interactions in pepsin and penicillopepsin. The pH-dependence of the free energy electrostatic term was calculated, and the pH-dependence of the domain interactions has been estimated. As it was shown, the contribution of electrostatic interactions is rather small for the stabilization of the native structure. At the same time the electrostatic repulsion between domains increases with the increase of pH. The later can be the cause of the alkaline denaturation of pepsin and domain mobility.  相似文献   

9.
We considered alpha-chymotrypsin (CT) in homogeneous water-organic media as a model system to examine the influence of enzyme chemical modification with hydrophilic and hydrophobic substances on its stability, activity and structure. Both types of modifying agents may lead to considerable stabilization of the enzyme in water-ethanol and water-DMF mixtures: (i) the range of organic cosolvent concentration at which enzyme activity (Vm) is at least 100% of its initial value is broadened and (ii) the range of organic cosolvent concentration at which the residual enzyme activity is observed is increased. We found that for both types of modification the stabilization effect can be correlated with the changes in protein surface hydrophobicity/hydrophilicity brought about by the modification. Circular dichroism studies indicated that the effects of these two types of modification on CT structure and its behavior in water-ethanol mixtures are different. Differential scanning calorimetry studies revealed that after modification two or three fractions or domains, differing in their stability, can be resolved. The least stable fractions (or domains) have properties similar to native CT.  相似文献   

10.
The serine hydroxymethyltransferase from Bacillus subtilis (bsSHMT) and B. stearothermophilus (bstSHMT) are both homodimers and share approximately 77% sequence identity; however, they show very different thermal stabilities and unfolding pathways. For investigating the role of N- and C-terminal domains in stability and unfolding of dimeric SHMTs, we have swapped the structural domains between bs- and bstSHMT and generated the two novel chimeric proteins bsbstc and bstbsc, respectively. The chimeras had secondary structure, tyrosine, and pyridoxal-5'-phosphate microenvironment similar to that of the wild-type proteins. The chimeras showed enzymatic activity slightly higher than that of the wild-type proteins. Interestingly, the guanidium chloride (GdmCl)-induced unfolding showed that unlike the wild-type bsSHMT, which undergoes dissociation of native dimer into monomers at low guanidium chloride (GdmCl) concentration, resulting in a non-cooperative unfolding of enzyme, its chimera bsbstc, having the C-terminal domain of bstSHMT was resistant to low GdmCl concentration and showed a GdmCl-induced cooperative unfolding from native dimer to unfolded monomer. In contrast, the wild-type dimeric bstSHMT was resistant to low GdmCl concentration and showed a GdmCl-induced cooperative unfolding, whereas its chimera bstbsc, having the C- terminal domain of bsSHMT, showed dissociation of native dimer into monomer at low GdmCl concentration and a GdmCl-induced non-cooperative unfolding. These results clearly demonstrate that the C-terminal domain of dimeric SHMT plays a vital role in stabilization of the oligomeric structure of the native enzyme hence modulating its unfolding pathway.  相似文献   

11.
We previously studied a 16‐amino acid‐residue fragment of the C‐terminal β‐hairpin of the B3 domain (residues 46–61), [IG(46–61)] of the immunoglobulin binding protein G from Streptoccocus, and found that hydrophobic interactions and the turn region play an important role in stabilizing the structure. Based on these results, we carried out systematic structural studies of peptides derived from the sequence of IG (46–61) by systematically shortening the peptide by one residue at a time from both the C‐ and the N‐terminus. To determine the structure and stability of two resulting 12‐ and 14‐amino acid‐residue peptides, IG(48–59) and IG(47–60), respectively, we carried out circular dichroism, NMR, and calorimetric studies of these peptides in pure water. Our results show that IG(48–59) possesses organized three‐dimensional structure stabilized by hydrophobic interactions (Tyr50–Phe57 and Trp48–Val59) at T = 283 and 305 K. At T = 313 K, the structure breaks down because of increased chain entropy, but the turn region is preserved in the same position observed for the structure of the whole protein. The breakdown of structure occurs near the melting temperature of this peptide (Tm = 310 K) measured by differential scanning calorimetry (DSC). The melting temperature of IG(47–60) determined by DSC is Tm = 330 K and its structure is similar to that of the native β‐hairpin at all (lower) temperatures examined (283–313 K). Both of these truncated sequences are conserved in all known amino acid sequences of the B domains of the immunoglobulin binding protein G from bacteria. Thus, this study contributes to an understanding of the mechanism of folding of this whole family of proteins, and provides information about the mechanism of formation and stabilization of a β‐hairpin structural element. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
The proenzyme form of C1r catalytic domains was generated by limited proteolysis of native C1r with thermolysin in the presence of 4-nitrophenyl-4'-guanidinobenzoate. The final preparation, isolated by high-pressure gel permeation in the presence of 2 M-NaCl, was 70-75% proenzyme and consisted of a dimeric association of two gamma B domains, each resulting from cleavage of peptide bonds at positions 285 and 286 of C1r. Like native C1r, the isolated domains autoactivated upon incubation at 37 degrees C. Activation was inhibited by 4-nitrophenyl-4'-guanidinobenzoate but was nearly insensitive to di-isopropyl phosphorofluoridate; likewise, compared to pH 7.4, the rate of activation was decreased at pH 5.0, but was not modified at pH 10.0. In contrast, activation of the (gamma B)2 domains was totally insensitive to Ca2+. Activation of the catalytic domains, which was correlated with an irreversible increase of intrinsic fluorescence, comparable with that previously observed with native C1r [Villiers, Arlaud & Colomb (1983) Biochem. J. 215, 369-375], was reversibly inhibited at high ionic strength (2 M-NaCl), presumably through stabilization of a non-activatable conformational state. Detailed comparison of the properties of native C1r and its catalytic domains indicates that the latter contain all the structural elements that are necessary for intramolecular activation, but probably lack a regulatory mechanism associated with the N-terminal alpha beta region of C1r.  相似文献   

13.
G-protein-coupled receptors (GPCRs) must properly insert and fold in the membrane to adopt a stable native structure and become biologically active. The interactions between transmembrane (TM) helices are believed to play a major role in these processes. Previous studies in our group showed that specific interactions between TM helices occur, leading to an increase in helical content, especially in weakly helical TM domains, suggesting that helix–helix interactions in addition to helix–lipid interactions facilitate helix formation. They also demonstrated that TM peptides interact in a similar fashion in micelles and lipid vesicles, as they exhibit relatively similar thermal stability and α-helicity inserted in SDS micelles to that observed in liposomes. In this study, we perform an analysis of pairwise interactions between peptides corresponding to the seven TM domains of the human A2A receptor (A2AR). We used a combination of Förster resonance energy transfer (FRET) measurement and circular dichroism (CD) spectroscopy to detect and analyze these interactions in detergent micelles. We found that strong and specific interactions occur in only seven of the 28 possible peptide pairs. Furthermore, not all interactions, identified by FRET, lead to a change in helicity. Our results identify stabilizing contacts that are likely related to the stability of the receptor and that are consistent with what is known about the three-dimensional structure and stability of rhodopsin and the β2 adrenergic receptor.  相似文献   

14.
Bakht O  Pathak P  London E 《Biophysical journal》2007,93(12):4307-4318
Despite the importance of lipid rafts, commonly defined as liquid-ordered domains rich in cholesterol and in lipids with high gel-to-fluid melting temperatures (Tm), the rules for raft formation in membranes are not completely understood. Here, a fluorescence-quenching strategy was used to define how lipids with low Tm, which tend to form disordered fluid domains at physiological temperatures, can stabilize ordered domain formation by cholesterol and high-Tm lipids (either sphingomyelin or dipalmitoylphosphatidylcholine). In bilayers containing mixtures of low-Tm phosphatidylcholines, cholesterol, and high-Tm lipid, the thermal stability of ordered domains decreased with the acyl-chain structure of low-Tm lipids in the following order: diarachadonyl > diphytanoyl > 1-palmitoyl 2-docosahexenoyl = 1,2 dioleoyl = dimyristoleoyl = 1-palmitoyl, 2-oleoyl (PO). This shows that low-Tm lipids with two acyl chains having very poor tight-packing propensities can stabilize ordered domain formation by high-Tm lipids and cholesterol. The effect of headgroup structure was also studied. We found that even in the absence of high-Tm lipids, mixtures of cholesterol with PO phosphatidylethanolamine (POPE) and PO phosphatidylserine (POPS) or with brain PE and brain PS showed a (borderline) tendency to form ordered domains. Because these lipids are abundant in the inner (cytofacial) leaflet of mammalian membranes, this raises the possibility that PE and PS could participate in inner-leaflet raft formation or stabilization. In bilayers containing ternary mixtures of PO lipids, cholesterol, and high-Tm lipids, the thermal stability of ordered domains decreased with the polar headgroup structure of PO lipids in the order PE > PS > phosphatidylcholine (PC). Analogous experiments using diphytanoyl acyl chain lipids in place of PO acyl chain lipids showed that the stabilization of ordered lipid domains by acyl chain and headgroup structure was not additive. This implies that it is likely that there are two largely mutually exclusive mechanisms by which low-Tm lipids can stabilize ordered domain formation by high-Tm lipids and cholesterol: 1), by having structures resulting in immiscibility of low-Tm and high-Tm lipids, and 2), by having structures allowing them to pack tightly within ordered domains to a significant degree.  相似文献   

15.
The catalytic core of Group I self-splicing introns has been proposed to consist of two structural domains, P4-P6 and P3-P9. Each contains helical segments and conserved unpaired nucleotides, and the isolated P4-P6 domain has been shown to have substantial native tertiary structure. The proposed tertiary structure domains of the Tetrahymena intron were synthesized separately and shown to self-assemble into a catalytically active complex. Surprisingly, the concentration dependence of these reactions revealed that the domains interact with nanomolar apparent dissociation constants, even though there is no known base pairing between P4-P6 and P3-P9. This suggests that the domains interact through multiple tertiary contacts, the nature of which can now be explored in this system. For example, a circularly permuted version of the P4-P6 domain, which folds similarly to the native P4-P6 molecule, formed a stable but inactive complex. Interestingly, activity was demonstrated with the permuted molecule when nucleotides proposed to form a triple-strand interaction with P4 and P6 were restored as part of the P1-P3 substrate or as part of the P3-P9 RNA. Thus, beyond stabilization of the P4-P6 domain, the triple-strand region may facilitate correct orientation of the RNA domains or participate more directly in catalysis.  相似文献   

16.
Antibodies are modular proteins consisting of domains that exhibit a β-sandwich structure, the so-called immunoglobulin fold. Despite structural similarity, differences in folding and stability exist between different domains. In particular, the variable domain of the light chain VL is unusual as it is associated with misfolding diseases, including the pathologic assembly of the protein into fibrillar structures. Here, we have analysed the folding pathway of a VL domain with a view to determine features that may influence the relationship between productive folding and fibril formation. The VL domain from MAK33 (murine monoclonal antibody of the subtype κ/IgG1) has not previously been associated with fibrillisation but is shown here to be capable of forming fibrils. The folding pathway of this VL domain is complex, involving two intermediates in different pathways. An obligatory early molten globule-like intermediate with secondary structure but only loose tertiary interactions is inferred. The native state can then be formed directly from this intermediate in a phase that can be accelerated by the addition of prolyl isomerases. However, an alternative pathway involving a second, more native-like intermediate is also significantly populated. Thus, the protein can reach the native state via two distinct folding pathways. Comparisons to the folding pathways of other antibody domains reveal similarities in the folding pathways; however, in detail, the folding of the VL domain is striking, with two intermediates populated on different branches of the folding pathway, one of which could provide an entry point for molecules diverted into the amyloid pathway.  相似文献   

17.
The structure of soybean β-amylase in trigonal (P3221) crystals was determined at 4.5 Å resolution by X-ray crystallographic techniques using the isomorphous replacement method. X-Ray diffraction data were collected by the screened precession method for the native enzyme and two heavy atom derivatives. The shape of the enzyme molecule and the locations of mercurial binding are presented. The molecule appeared to be composed of two domains: the larger domain contains one mercurial site on its surface and the smaller domain has another mercurial site, which seemed to be the so-called essential sulfhydryl group. A distinct cleft formed between the domains near the latter sulfhydryl group may be a substrate binding region.  相似文献   

18.
A peptide fragment corresponding to the third helix of Staphylococcus Aureus protein A, domain B, was chosen to study the effect of the main‒chain direction upon secondary structure formation and stability, applying the retro‒enantio concept. For this purpose, two peptides consisting of the native (Ln) and reversed (Lr) sequences were synthesized and their conformational preferences analysed by CD and NMR spectroscopy. A combination of CD and NMR data, such as molar ellipcitity, NOE connectivities, Hα and NH chemical shifts, 3JαN coupling constants and amide temperature coefficients indicated the presence of nascent helices for both Ln and Lr in water, stabilized upon addition of the fluorinated solvents TFE and HFIP. Helix formation and stabilization appeared to be very similar in both normal and retro peptides, despite the unfavourable charge–macrodipole interactions and bad N-capping in the retro peptide. Thus, these helix stabilization factors are not a secondary structure as determined for this specific peptide. In general, the synthesis and confirmational analysis of peptide pairs with opposite main‒chain directions, normal and retro peptides, could be useful in the determination of secondary structure stabilization factors dependent on the direction. © 1997 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Synaptotagmin-1 (Syt-1) and synaptotagmin-7 (Syt-7) contain analogous tandem C2 domains, C2A and C2B, which together sense Ca2+ to bind membranes and promote the stabilization of exocytotic fusion pores. Syt-1 triggers fast release of neurotransmitters, whereas Syt-7 functions in processes that involve lower Ca2+ concentrations such as hormone secretion. Syt-1 C2 domains are reported to bind membranes cooperatively, based on the observation that they penetrate farther into membranes as the C2AB tandem than as individual C2 domains. In contrast, we previously suggested that the two C2 domains of Syt-7 bind membranes independently, based in part on measurements of their liposome dissociation kinetics. Here, we investigated C2A-C2B interdomain cooperativity with Syt-1 and Syt-7 using directly comparable measurements. Equilibrium Ca2+ titrations demonstrate that the Syt-7 C2AB tandem binds liposomes lacking phosphatidylinositol-4,5-bisphosphate (PIP2) with greater Ca2+ sensitivity than either of its individual domains and binds to membranes containing PIP2 even in the absence of Ca2+. Stopped-flow kinetic measurements show differences in cooperativity between Syt-1 and Syt-7: Syt-1 C2AB dissociates from PIP2-free liposomes much more slowly than either of its individual C2 domains, indicating cooperativity, whereas the major population of Syt-7 C2AB has a dissociation rate comparable to its C2A domain, suggesting a lack of cooperativity. A minor subpopulation of Syt-7 C2AB dissociates at a slower rate, which could be due to a small cooperative component and/or liposome clustering. Measurements using an environment-sensitive fluorescent probe indicate that the Syt-7 C2B domain inserts deeply into membranes as part of the C2AB tandem, similar to the coinsertion previously reported for Syt-1. Overall, coinsertion of C2A and C2B domains is coupled to cooperative energetic effects in Syt-1 to a much greater extent than in Syt-7. The difference can be understood in terms of the relative contributions of C2A and C2B domains toward membrane binding in the two proteins.  相似文献   

20.
Laser-Raman spectra of the bacteriophage MS2, and of its isolated coat-protein and RNA components, have been obtained as a function of temperature in both H2O and D2O (deuterium oxide) solutions. The prominent Raman lines in the spectra are assigned to the amino acid residues and polypeptide backbone of the viral coat protein and to the nucleotide residues and ribosyl-phosphate backbone of the viral RNA. The Raman frequencies and intensities, and their temperature dependence, indicate the following features of MS2 structure and stability. Coat-protein molecules in the native phage maintain a conformation determined largely by regions of β-sheet (~60%) and random-chain (~40%) structures. There are no disulfide bridges in the virion and all sulfhydryl groups are accessible to solvent molecules. Protein-protein interactions in the virion are stable up to 50 °C. Release of viral RNA from the virion does not affect either the conformation of the coat-protein molecules or the thermal stability of the capsid. MS2 RNA within the virion contains a highly ordered secondary structure in which most (~85%) of the bases are either paired or stacked or both paired and stacked and in which the RNA backbone assumes a geometry of the A-type. When RNA is partially or fully released from the virion its overall secondary structure at 32 °C is unchanged. However, the exposed RNA is more susceptible to changes in secondary structure promoted by increasing the temperature. Thus the viral capsid exerts a significant stabilizing effect on the secondary structure of MS2 RNA. This stabilization is ionic-strength dependent, being more pronounced in solutions containing high concentrations of KCl. Raman intensity profiles as a function of temperature reveal that disordering of the MS2 RNA backbone and rupture of hydrogen-bonding between complementary bases are gradual processes, the major portions of which occur above 40 °C. However, the unstacking of purine and pyrimidine bases is a more co-operative phenomenon occurring almost exclusively above 55 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号