首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The multimodular guanine nucleotide exchange factors (GEFs) of the Dbl family mostly share a tandem Dbl homology (DH) and pleckstrin homology (PH) domain organization. The function of these and other domains in the DH-mediated regulation of the GDP/GTP exchange reaction of the Rho proteins is the subject of intensive investigations. This comparative study presents detailed kinetic data on specificity, activity, and regulation of the catalytic DH domains of four GEFs, namely p115, p190, PDZ-RhoGEF (PRG), and leukemia-associated RhoGEF (LARG). We demonstrate that (i) these GEFs are specific guanine nucleotide exchange factors for the Rho isoforms (RhoA, RhoB, and RhoC) and inactive toward other members of the Rho family, including Rac1, Cdc42, and TC10. (ii) The DH domain of LARG exhibits the highest catalytic activity reported for a Dbl protein till now with a maximal acceleration of the nucleotide exchange by 10(7)-fold, which is at least as efficient as reported for GEFs specific for Ran or the bacterial toxin SopE. (iii) A novel regulatory region at the N terminus of the DH domain is involved in its association with GDP-bound RhoA monitored by a fluorescently labeled RhoA. (iv) The tandem PH domains of p115 and PRG efficiently contribute to the DH-mediated nucleotide exchange reaction. (v) In contrast to the isolated DH or DH-PH domains, a p115 fragment encompassing both the regulator of G-protein signaling and the DH domains revealed a significantly reduced GEF activity, supporting the proposed models of an intramolecular autoinhibitory mechanism for p115-like RhoGEFs.  相似文献   

2.
Plexins are receptors for the axon guidance molecule semaphorins, and several lines of evidence suggest that Rho family small GTPases are implicated in the downstream signaling of Plexins. Recent studies have demonstrated that Plexin-B1 activates RhoA and induces growth cone collapse through Rho-specific guanine nucleotide exchange factor PDZ-RhoGEF. Here we show that Rnd1, a member of Rho family GTPases, directly interacted with the cytoplasmic domain of Plexin-B1. In COS-7 cells, coexpression of Rnd1 and Plexin-B1 induced cell contraction in response to semaphorin 4D (Sema4D), a ligand for Plexin-B1, whereas expression of Plexin-B1 alone or coexpression of Rnd1 and a Rnd1 interaction-defective mutant of Plexin-B1 did not. The Sema4D-induced contraction in Plexin-B1/Rnd1-expressing COS-7 cells was suppressed by dominant negative RhoA, a Rho-associated kinase inhibitor, a dominant negative form of PDZ-RhoGEF, or deletion of the carboxyl-terminal PDZ-RhoGEF-binding region of Plexin-B1, indicating that the PDZ-RhoGEF/RhoA/Rho-associated kinase pathway is involved in this morphological effect. We also found that Rnd1 promoted the interaction between Plexin-B1 and PDZ-RhoGEF and thereby dramatically potentiated the Plexin-B1-mediated RhoA activation. We propose that Rnd1 plays an important role in the regulation of Plexin-B1 signaling, leading to Rho activation during axon guidance and cell migration.  相似文献   

3.
Small GTP-binding proteins of the Rho family play a critical role in signal transduction. However, there is still very limited information on how they are activated by cell surface receptors. Here, we used a consensus sequence for Dbl domains of Rho guanine nucleotide exchange factors (GEFs) to search DNA data bases, and identified a novel human GEF for Rho-related GTPases harboring structural features indicative of its possible regulatory mechanism(s). This protein contained a tandem DH/PH domain closely related to those of Rho-specific GEFs, a PDZ domain, a proline-rich domain, and an area of homology to Lsc, p115-RhoGEF, and a Drosophila RhoGEF that was termed Lsc-homology (LH) domain. This novel molecule, designated PDZ-RhoGEF, activated biological and biochemical pathways specific for Rho, and activation of these pathways required an intact DH and PH domain. However, the PDZ domain was dispensable for these functions, and mutants lacking the LH domain were more active, suggesting a negative regulatory role for the LH domain. A search for additional molecules exhibiting an LH domain revealed a limited homology with the catalytic region of a newly identified GTPase-activating protein for heterotrimeric G proteins, RGS14. This prompted us to investigate whether PDZ-RhoGEF could interact with representative members of each G protein family. We found that PDZ-RhoGEF was able to form, in vivo, stable complexes with two members of the Galpha12 family, Galpha12 and Galpha13, and that this interaction was mediated by the LH domain. Furthermore, we obtained evidence to suggest that PDZ-RhoGEF mediates the activation of Rho by Galpha12 and Galpha13. Together, these findings suggest the existence of a novel mechanism whereby the large family of cell surface receptors that transmit signals through heterotrimeric G proteins activate Rho-dependent pathways: by stimulating the activity of members of the Galpha12 family which, in turn, activate an exchange factor acting on Rho.  相似文献   

4.
The regulator of G protein signaling homology (RH) Rho guanine nucleotide exchange factors (RhoGEFs) (p115RhoGEF, leukemia-associated RhoGEF, and PDZ-RhoGEF) contain an RH domain and are specific GEFs for the monomeric GTPase RhoA. The RH domains interact specifically with the α subunits of G12 heterotrimeric GTPases. Activated Gα13 modestly stimulates the exchange activity of both p115RhoGEF and leukemia-associated RhoGEF but not PDZ-RhoGEF. Because all three RH-RhoGEFs can localize to the plasma membrane upon expression of activated Gα13, cellular localization of these RhoGEFs has been proposed as a mechanism for controlling their activity. We use a small molecule-regulated heterodimerization system to rapidly control the localization of RH-RhoGEFs. Acute localization of the proteins to the plasma membrane activates RhoA within minutes and to levels that are comparable with activation of RhoA by hormonal stimulation of G protein-coupled receptors. The catalytic activity of membrane-localized RhoGEFs is not dependent on activated Gα13. We further show that the conserved RH domains can rewire two different RacGEFs to activate Rac1 in response to a traditional activator of RhoA. Thus, RH domains act as independent detectors for activated Gα13 and are sufficient to modulate the activity of RhoGEFs by hormones via mediating their localization to substrate, membrane-associated RhoA.  相似文献   

5.
Plexins represent a novel family of transmembrane receptors that transduce attractive and repulsive signals mediated by the axon-guiding molecules semaphorins. Emerging evidence implicates Rho GTPases in these biological events. However, Plexins lack any known catalytic activity in their conserved cytoplasmic tails, and how they transduce signals from semaphorins to Rho is still unknown. Here we show that Plexin B2 associates directly with two members of a recently identified family of Dbl homology/pleckstrin homology containing guanine nucleotide exchange factors for Rho, PDZ-RhoGEF, and Leukemia-associated Rho GEF (LARG). This physical interaction is mediated by their PDZ domains and a PDZ-binding motif found only in Plexins of the B family. In addition, we show that ligand-induced dimerization of Plexin B is sufficient to stimulate endogenous RhoA potently and to induce the reorganization of the cytoskeleton. Moreover, overexpression of the PDZ domain of PDZ-RhoGEF but not its regulator of G protein signaling domain prevents cell rounding and neurite retraction of differentiated PC12 cells induced by activation of endogenous Plexin B1 by semaphorin 4D. The association of Plexins with LARG and PDZ-RhoGEF thus provides a direct molecular mechanism by which semaphorins acting on Plexin B can control Rho, thereby regulating the actin-cytoskeleton during axonal guidance and cell migration.  相似文献   

6.
SmgGDS is an atypical guanine nucleotide exchange factor (GEF) that promotes both cell proliferation and migration and is up-regulated in several types of cancer. SmgGDS has been previously shown to activate a wide variety of small GTPases, including the Ras family members Rap1a, Rap1b, and K-Ras, as well as the Rho family members Cdc42, Rac1, Rac2, RhoA, and RhoB. In contrast, here we show that SmgGDS exclusively activates RhoA and RhoC among a large panel of purified GTPases. Consistent with the well known properties of GEFs, this activation is catalytic, and SmgGDS preferentially binds to nucleotide-depleted RhoA relative to either GDP- or GTPγS-bound forms. However, mutational analyses indicate that SmgGDS utilizes a distinct exchange mechanism compared with canonical GEFs and in contrast to known GEFs requires RhoA to retain a polybasic region for activation. A homology model of SmgGDS highlights an electronegative surface patch and a highly conserved binding groove. Mutation of either area ablates the ability of SmgGDS to activate RhoA. Finally, the in vitro specificity of SmgGDS for RhoA and RhoC is retained in cells. Together, these results indicate that SmgGDS is a bona fide GEF that specifically activates RhoA and RhoC through a unique mechanism not used by other Rho family exchange factors.  相似文献   

7.
Dbl homology (DH) domains are almost always followed immediately by pleckstrin homology (PH) domains in Dbl family proteins, and these DH-PH fragments directly activate GDP-bound Rho GTPases by catalyzing the exchange of GDP for GTP. New crystal structures of the DH-PH domains from leukemia-associated Rho guanine nucleotide exchange factor (RhoGEF) and PDZ-RhoGEF bound to RhoA reveal how DH-PH domains cooperate to specifically activate Rho GTPases.  相似文献   

8.
Heo J  Thapar R  Campbell SL 《Biochemistry》2005,44(17):6573-6585
Vav proteins are Rho GTPase-specific guanine nucleotide exchange factors (GEFs) that are distinguished by the tandem arrangement of Dbl homology (DH), Pleckstrin homology (PH), and cysteine rich domains (CRD). Whereas the tandem DH-PH arrangement is conserved among Rho GEFs, the presence of the CRD is unique to Vav family members and is required for efficient nucleotide exchange. We provide evidence that Vav2-mediated nucleotide exchange of Rho GTPases follows the Theorell-Chance mechanism in which the Vav2.Rho GTPase complex is the major species during the exchange process and the Vav2.GDP-Mg(2+).Rho GTPase ternary complex is present only transiently. The GTPase specificity for the DH-PH-CRD Vav2 in vitro follows this order: Rac1 > Cdc42 > RhoA. Results obtained from fluorescence anisotropy and NMR chemical shift mapping experiments indicate that the isolated Vav1 CRD is capable of directly associating with Rac1, and residues K116 and S83 that are in the proximity of the P-loop and the guanine base either are part of this binding interface or undergo a conformational change in response to CRD binding. The NMR studies are supported by kinetic measurements on Rac1 mutants S83A, K116A, and K116Q and Vav2 CRD mutant K533A in that these mutants affect both the initial binding event of Vav2 with Rac1 (k(on)) and the rate-limiting dissociation of Vav2 from the Vav2.Rac1 binary complex (thereby influencing the enzyme turnover number, k(cat)). The results suggest that the CRD domain in Vav proteins plays an active role, affecting both the k(on) and the k(cat) for Vav-mediated nucleotide exchange on Rho GTPases.  相似文献   

9.
Small guanosine triphosphatases (GTPases) become activated when GDP is replaced by GTP at the highly conserved nucleotide binding site. This process is intrinsically very slow in most GTPases but is significantly accelerated by guanine nucleotide exchange factors (GEFs). Nucleotide exchange in small GTPases has been widely studied using spectroscopy with fluorescently tagged nucleotides. However, this method suffers from effects of the bulky fluorescent moiety covalently attached to the nucleotide. Here, we have used a newly developed real-time NMR-based assay to monitor small GTPase RhoA nucleotide exchange by probing the RhoA conformation. We compared RhoA nucleotide exchange from GDP to GTP and GTP analogues in the absence and presence of the catalytic DH-PH domain of PDZ-RhoGEF (DH-PHPRG). Using the non-hydrolyzable analogue guanosine-5′-O-(3-thiotriphosphate), which we found to be a reliable mimic of GTP, we obtained an intrinsic nucleotide exchange rate of 5.5 × 10−4 min−1. This reaction is markedly accelerated to 1179 × 10−4 min−1 in the presence of DH-PHPRG at a ratio of 1:8,000 relative to RhoA. Mutagenesis studies confirmed the importance of Arg-868 near a conserved region (CR3) of the Dbl homology (DH) domain and revealed that Glu-741 in CR1 is critical for full activity of DH-PHPRG, together suggesting that the catalytic mechanism of PDZ-RhoGEF is similar to Tiam1. Mutation of the single RhoA (E97A) residue that contacts the pleckstrin homology (PH) domain rendered the mutant 10-fold less sensitive to the activity of DH-PHPRG. Interestingly, this mutation does not affect RhoA activation by leukemia-associated RhoGEF (LARG), indicating that the PH domains of these two homologous GEFs may play different roles.  相似文献   

10.
Plexins are widely expressed transmembrane proteins that, in the nervous system, mediate repulsive signals of semaphorins. However, the molecular nature of plexin-mediated signal transduction remains poorly understood. Here, we demonstrate that plexin-B family members associate through their C termini with the Rho guanine nucleotide exchange factors PDZ-RhoGEF and LARG. Activation of plexin-B1 by semaphorin 4D regulates PDZ-RhoGEF/LARG activity leading to RhoA activation. In addition, a dominant-negative form of PDZ-RhoGEF blocks semaphorin 4D-induced growth cone collapse in primary hippocampal neurons. Our study indicates that the interaction of mammalian plexin-B family members with the multidomain proteins PDZ-RhoGEF and LARG represents an essential molecular link between plexin-B and localized, Rho-mediated downstream signaling events which underly various plexin-mediated cellular phenomena including axonal growth cone collapse.  相似文献   

11.
Rho GTPases control actin reorganization and many other cellular functions. Guanine nucleotide-exchange factors (GEFs) activate Rho GTPases by promoting their exchange of GDP for GTP. Trio is a unique Rho GEF, because it has separate GEF domains, GEFD1 and GEFD2, that control the GTPases RhoG/Rac1 and RhoA, respectively. Dbl-homology (DH) domains that are common to GEFs catalyse nucleotide exchange, and pleckstrin-homology (PH) domains localize Rho GEFs near their downstream targets. Here we show that Trio GEFD1 interacts through its PH domain with the actin-filament-crosslinking protein filamin, and localizes with endogenous filamin in HeLa cells. Trio GEFD1 induces actin-based ruffling in filamin-expressing, but not filamin-deficient, cells and in cells transfected with a filamin construct that lacks the Trio-binding domain. In addition, Trio GEFD1 exchange activity is not affected by filamin binding. Our results indicate that filamin, as a molecular target of Trio, may be a scaffold for the spatial organization of Rho-GTPase-mediated signalling pathways.  相似文献   

12.
Calcium sensitization in smooth muscle is mediated by the RhoA GTPase, activated by hitherto unspecified nucleotide exchange factors (GEFs) acting downstream of Galphaq/Galpha(12/13) trimeric G proteins. Here, we show that at least one potential GEF, the PDZRhoGEF, is present in smooth muscle, and its isolated DH/PH fragment induces calcium sensitization in the absence of agonist-mediated signaling. In vitro, the fragment shows high selectivity for the RhoA GTPase. Full-length fragment is required for the nucleotide exchange, as the isolated DH domain enhances it only marginally. We crystallized the DH/PH fragment of PDZRhoGEF in complex with nonprenylated human RhoA and determined the structure at 2.5 A resolution. The refined molecular model reveals that the mutual disposition of the DH and PH domains is significantly different from other previously described complexes involving DH/PH tandems, and that the PH domain interacts with RhoA in a unique mode. The DH domain makes several specific interactions with RhoA residues not conserved among other Rho family members, suggesting the molecular basis for the observed specificity.  相似文献   

13.
XPLN,a guanine nucleotide exchange factor for RhoA and RhoB,but not RhoC   总被引:3,自引:0,他引:3  
Rho proteins cycle between an inactive, GDP-bound state and an active, GTP-bound state. Activation of these GTPases is mediated by guanine nucleotide exchange factors (GEFs), which promote GDP to GTP exchange. In this study we have characterized XPLN, a Rho family GEF. Like other Rho GEFs, XPLN contains a tandem Dbl homology and pleckstrin homology domain topography, but lacks homology with other known functional domains or motifs. XPLN protein is expressed in the brain, skeletal muscle, heart, kidney, platelets, and macrophage and neuronal cell lines. In vitro, XPLN stimulates guanine nucleotide exchange on RhoA and RhoB, but not RhoC, RhoG, Rac1, or Cdc42. Consistent with these data, XPLN preferentially associates with RhoA and RhoB. The specificity of XPLN for RhoA and RhoB, but not RhoC, is surprising given that they share over 85% sequence identity. We determined that the inability of XPLN to exchange RhoC is mediated by isoleucine 43 in RhoC, a position occupied by valine in RhoA and RhoB. When expressed in cells, XPLN activates RhoA and RhoB, but not RhoC, and stimulates the assembly of stress fibers and focal adhesions in a Rho kinase-dependent manner. We also found that XPLN possesses transforming activity, as determined by focus formation assays. In conclusion, here we describe a Rho family GEF that can discriminate between the closely related RhoA, RhoB, and RhoC, possibly giving insight to the divergent functions of these three proteins.  相似文献   

14.
Beck SC  Meyer TF 《FEBS letters》2000,480(2-3):287-292
The target Rho GTPases of many guanine nucleotide exchange factors (GEFs) of the Dbl family remain to be identified. Here we report a new method: the yeast exchange assay (YEA), a rapid qualitative test to perform a wide range screen for GEF specificity. In this assay based on the two-hybrid system, a wild type GTPase binds to its effector only after activation by a specific GEF. We validated the YEA by activating GTPases by previously reported GEFs. We further established that a novel GEF, GEF337, activates RhoA in the YEA. GEF337 promoted nucleotide exchange on RhoA in vitro and promoted F-actin stress fiber assembly in fibroblasts, characteristic of RhoA activation.  相似文献   

15.
We have recently shown that a fraction of the total cellular pool of the small GTPase RhoA resides in the nucleus, and that the nuclear guanine nucleotide exchange factor (GEF) Net1 has a role in the regulation of its activity. In this protocol, we describe a method to measure both the activities of the nuclear pools of RhoA and Rho GEFs. This process required the development of a nuclear isolation protocol that is both fast and virtually free of cytosolic and membrane contaminants, as well as a redesign of existing RhoA and Rho GEF activity assays so that they work in nuclear samples. This protocol can be also used for other Rho GTPases and Rho GEFs, which have also been found in the nucleus. Completion of the procedure, including nuclear isolation and RhoA or Rho GEF activity assay, takes 1 h 40 min. We also include details of how to perform a basic assay of whole-cell extracts.  相似文献   

16.
Serine phosphorylation negatively regulates RhoA in vivo   总被引:10,自引:0,他引:10  
Previous work indicates that RhoA phosphorylation on Ser188 by cAMP or cGMP-dependent kinases inhibits its activity. However, these studies lacked the possibility to directly study phosphorylated RhoA activity in vivo. Therefore, we created RhoA proteins containing phosphomimetic residues in place of the cAMP/cGMP-dependent kinase phosphorylation site. RhoA phosphorylation or phosphomimetic substitution did not affect Rho guanine nucleotide exchange factor, GTPase activating protein, or geranylgeranyl transferase activity in vitro but promoted binding to the Rho guanine-dissociation inhibitor as measured by exchange factor competition assays. The in vitro similarities between RhoA phosphomimetic proteins and phosphorylated RhoA allowed us to study function of phosphorylated RhoA in vivo. RhoA phosphomimetic proteins display depressed GTP loading when transiently expressed in NIH 3T3 cells. Stable-expressing RhoA and RhoA(S188A) clones spread significantly slower than mock-transfected or RhoA(S188E) clones. RhoA(S188A) clones were protected from the morphological effects of a cAMP agonist, whereas phosphomimetic clones exhibit stress fiber disassembly similar to control cells. Together, these data provide in vivo evidence that addition of a charged group to Ser188 upon phosphorylation negatively regulates RhoA activity and indicates that this occurs through enhanced Rho guanine-dissociation inhibitor interaction rather than direct perturbation of guanine nucleotide exchange factor, GTPase activating protein, or geranylgeranyl transferase activity.  相似文献   

17.
We reported previously that fMLP stimulates NF-kappaB activation, and this function of fMLP requires small GTPase RhoA in human peripheral blood monocytes (Huang, S., Chen, L.-Y., Zuraw, B. L., Ye, R. D., and Pan, Z. K. (2001) J. Biol. Chem. 276, 40977-40981). Here we present evidence that RhoA associates specifically with the guanine nucleotide exchange factor Lbc in human peripheral blood monocytes stimulated with fMLP and that Lbc specifically catalyzes the guanine nucleotide exchange activity of RhoA in human peripheral blood monocytes. Cotransfection of the monocytic THP1 cells with lbc with a kappaB promoter reporter plasmid results in a marked increase in NF-kappaB-mediated reporter gene expression. Finally, Lbc-enhanced NF-kappaB activation is inhibited by a RhoA inhibitor, C3 transferase from Clostridium botulinum. A dominant-negative form of RhoA (T19N) also inhibited Lbc-enhanced reporter gene expression in a kappaB-dependent manner. These results indicate that guanine nucleotide exchange factor Lbc is a novel signal transducer for RhoA-mediated NF-kappaB activation in human peripheral blood monocytes stimulated with bacterial products.  相似文献   

18.
GTPases of the Rho family are molecular switches that play an important role in a wide range of membrane-trafficking processes including neurotransmission and hormone release. We have previously demonstrated that RhoA and Cdc42 regulate calcium-dependent exocytosis in chromaffin cells by controlling actin dynamics, whereas Rac1 regulates lipid organisation. These findings raised the question of the upstream mechanism activating these GTPases during exocytosis. The guanine nucleotide exchange factors (GEFs) that catalyse the exchange of GDP for GTP are crucial elements regulating Rho signalling. Using an RNA interference approach, we have recently demonstrated that the GEFs Intersectin-1L and β-Pix, play essential roles in neuroendocrine exocytosis by controlling the activity of Cdc42 and Rac1, respectively. This review summarizes these results and discusses the functional importance of Rho GEFs in the exocytotic machinery in neuroendocrine cells.  相似文献   

19.
Rho GTPases are molecular “switches” that cycle between “on” (GTP-bound) and “off” (GDP-bound) states and regulate numerous cellular activities such as gene expression, protein synthesis, cytoskeletal rearrangements, and metabolic responses. Dysregulation of GTPases is a key feature of many diseases, especially cancers. Guanine nucleotide exchange factors (GEFs) of the Dbl family are activated by mitogenic cell surface receptors and activate the Rho family GTPases Cdc42, Rac1, and RhoA. The molecular mechanisms that regulate GEFs from the Dbl family are poorly understood. Our studies reveal that Dbl is phosphorylated on tyrosine residues upon stimulation by growth factors and that this event is critical for the regulated activation of the GEF. These findings uncover a novel layer of complexity in the physiological regulation of this protein.  相似文献   

20.
Spatio-temporal control of RhoA GTPase is critical for regulation of cell migration, attachment to extracellular matrix, and cell–cell adhesions. Activation of RhoA is mediated by guanine nucleotide exchange factors (GEFs), a diverse family of enzymes that are controlled by multiple signaling pathways regulating actin cytoskeleton and cell migration. GEFs can be regulated by different mechanisms. Growing evidence demonstrates that phosphorylation serves as one of the predominant signals controlling activity, interactions, and localization of RhoGEFs. It acts as a positive and a negative regulator, and allows for regulation of RhoGEFs by multiple signaling cascades. Although there are common trends in phosphorylation-mediated regulation of some RhoGEF homologs, the majority of GEFs utilize distinct mechanisms that are dictated by their unique structure and interaction networks. This diversity enables multiple signaling pathways to use different RhoGEFs for regulation of a single central—RhoA. Here, we review current examples of phosphorylation-mediated regulation of GEFs for RhoA and its role in cell migration, discuss mechanisms, and provide insights into potential future directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号