首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Allozyme data were used to analyse the genetic structure of Sardina pilchardus populations. Fifty samples from 15 locations between the North Sea and Mauritania, including samples from the Azores, Madeira and the Mediterranean Sea, were surveyed. A weak but significant structure was found between all samples ( F ST= 0.057, P < 0·001). This structure results from a change in the most common allele of SOD* between the North African and the Azores populations separated by the greatest distance. This locus seemed to be under selective pressure according to the test of neutrality, and the variations in allele frequencies may be explained due to isolation by distance (IBD) of coastal populations (from Mauritania to the North Sea) ( r = 0·86, P < 0·001). When SOD* was removed from the analyses, IBD was not observed in coastal populations ( r = 0·236, P > 0·05) but was observed over the whole range ( r = 0·321, P = 0·05). The genetic structure of S. pilchardus is driven by both IBD and selective processes.  相似文献   

2.
Regional differentiation of North American Atlantic salmon at allozyme loci   总被引:1,自引:0,他引:1  
Allozyme variation was characterised by starch gel electrophoresis at 23 enzyme coding loci and one regulatory locus in Atlantic salmon from 53 rivers in Eastern Canada, encompassing the majority of the species' North American range. Variation among rivers was highly heterogeneous and eight of the 15 polymorphisms showed regionally restricted distributions. Nearest neighbour joining (NJ) analysis and multi‐dimensional scaling suggest six distinct regional groups; Labrador/Ungava, Gulf of Saint Lawrence, Newfoundland (excluding Gulf rivers), the Atlantic shore/Southern Uplands of Nova Scotia, the inner Bay of Fundy, and the outer Bay of Fundy. Approximately 25% of observed genetic variation was distributed among these regions with a weak though significant overall correlation of genetic and geographic distance (Mantel Test, r  = 0·255, P  = 0·005). Collectively, the rivers showed consistent divergence from European populations with strong bootstrap support for the two clusters across loci in the NJ analysis. Mean heterozygosity was 0·061 for both continental groups, but the European population showed more than twice the variation among populations. F ST values were 0·076 and 0·176 for North America and Europe, respectively, with an overall F ST of 0·330.  相似文献   

3.
Variability at seven microsatellite loci was used to survey the genetic population structure of the shortfinned eel Anguilla australis . Samples were collected from six estuaries along the east coast of Australia and from three estuaries around New Zealand. Hierarchical analysis of molecular variance of the five loci with good fit to Hardy–Weinberg genotypic proportions detected highly significant differences among samples ( F ST= 0·016, P < 0·001). The fixation index between countries ( F CT= 0·012, P < 0·001) was more than double the index among samples within countries ( F SC= 0·005, P < 0·05). An unweighted pair-group method with arithmetic mean (UPGMA) tree also supported the separation of Australian and New Zealand populations, as did assignment tests, which correctly assigned 80 and 84% of the individuals to Australia and New Zealand, respectively. Isolation-by-distance appeared among samples overall ( r = 0·807, P < 0·001), but not among samples within countries ( r = 0·027, P > 0·05 in Australia; r = 0·762, P > 0·05 in New Zealand). These findings indicate that populations of A. australis in East Australia and in New Zealand may be reproductively isolated from one another. Genetic differentiation among populations of A. australis was two- to 10-fold higher than that among populations of other temperate eels in the North Atlantic Ocean, suggesting that two group of A. australis may reflect sub-species. Anguilla australis in the two countries have different genetic structures and thus require separate management. Genetic isolation between Australian and New Zealand populations indicates that juveniles recruit independently into these two regions from geographically or temporally isolated spawning areas.  相似文献   

4.
Differentiation occurred in different areas of the same river system in Pseudobarbus phlegethon and two sister species of the serrated redfin lineage ( Barbus calidus and Barbus erubescens ) of the Western Cape region of South Africa. In an analysis of 27 allozyme loci a deep divergence was found within P. phlegethon between the Olifants and Doring catchments (seven fixed allelic differences; 0·338 <  D  < 0·366; F ST = 0·925). In contrast, speciation in the serrated redfin lineage occurred within the Doring catchment between B. calidus and B. erubescens (one fixed allelic difference; 0·008 <  D  < 0·052; F ST = 0·760). Different niche preferences, behaviour and morphology probably played an important role in the formation of these contrasting patterns of genetic structure and suggest that B. calidus may have been better able to disperse between the Olifants and Doring catchments (no fixed allelic differences; 0 <  D  < 0·040; F ST = 0·281) than P. phlegethon .  相似文献   

5.
Sequence analysis of a fragment of the cytochrome b gene in Decapterus russelli sampled from the Indo-Malay archipelago revealed two distinct mitochondrial clades (mean nucleotide divergence=2·2%) whose geographic distribution was heterogeneous (Nei's G ST=0·416). This pointed to a complex pattern of genetic differentiation and demonstrated limited genetic exchange between populations in this highly mobile species.  相似文献   

6.
Small but significant differences were found in allele frequencies among five populations (overall F ST estimate (θ)=0·004, P=0·006; overall R ST estimate (RHO)=0·019, P <0·00001) of the demersal cichlid Copadichromis sp.'virginalis kajose', collected from five locations in Lake Malawi. Pairwise F ST estimates revealed significant differences between the most southerly population (Cape Maclear), and the three most northerly populations (Mbamba Bay, Metangula and Chilola). Pairwise R ST estimates also revealed significant differences between some populations, but no geographical pattern was discernible. There was no evidence of isolation by distance using either the shortest straight-line distance between samples, or the distance around the shoreline following a 50 m depth contour. F ST estimates were considerably lower than found in previous studies on the mbuna (rock-dwelling species), but higher than those found in a study of three pelagic cichlid species from Lake Malawi. Substructuring in C. sp.'virginalis kajose' appears to be on a similar scale to the Atlantic cod.  相似文献   

7.
A total of 150 individuals from Aphanius fasciatus from coastal brackish-water habitats was analysed by allozyme electrophoresis to collect data on its genetic variation. From 22 enzymes, 43 putative enzyme-coding loci were resolved, 12 of which were polymorphic at P0·99 level. Only one of the 31 probability tests showed a significant departure from the Hardy-Weinberg equilibrium. Aphanius fasciatus showed low levels of genetic polymorphism, with expected heterozygosity values ranging from 0·027 (S.E.=0·013) to 0·064 ( s.e. =0·023). Nei's genetic distances between populations ranged from 0·002 to 0·042. Weir & Cockerham F -statistics showed high levels of genetic heterogeneity among populations (jackknifed θ=0·302, s.e. =0·045) and estimates of N m were < 1, indicating restricted gene flow. Significant positive correlation between genetic distance and geographical distance matrices, detected by Mantel's test ( g =1·941; P 0·001), is consistent with the prediction that the species is genetically structured by isolation-by-distance.  相似文献   

8.
The interplay between structural connectivity ( i.e. habitat continuity) and functional connectivity ( i.e. dispersal probability) in marine fishes was examined in a coastal fjord (Holyrood Pond, Newfoundland, Canada) that is completely isolated from the North Atlantic Ocean for most of the year. Genetic differentiation was described in three species (rainbow smelt Osmerus mordax , white hake Urophycis tenuis and Atlantic cod Gadus morhua ) with contrasting life histories using seven to 10 microsatellite loci and a protein-coding locus, Pan I ( G. morhua ). Analysis of microsatellite differentiation indicated clear genetic differences between the fjord and coastal regions; however, the magnitude of difference was no more elevated than adjacent bays and was not enhanced by the fjord's isolation. Osmerus mordax was characterized by the highest structure overall with moderate differentiation between the fjord and St Mary's Bay ( F ST c. 0·047). In contrast, U. tenuis and G. morhua displayed weak differentiation ( F ST < 0·01). Nonetheless, these populations did demonstrate high rates (< 75%) of Bayesian self-assignment. Furthermore, elevated differentiation was observed at the Pan I locus in G. morhua between the fjord and other coastal locations. Interestingly, locus-specific genetic differentiation and expected heterozygosity were negatively associated in O. mordax , in contrast to the positive associations observed in U. tenuis and G. morhua . Gene flow in these species is apparently unencumbered by limited structural connectivity, yet the observed differentiation suggests that population structuring exists over small scales despite high dispersal potential.  相似文献   

9.
Previous genetic studies using neutral markers such as allozymes, mtDNA and minisatellite loci have demonstrated varying amounts of population structure in cod Gadus morhua throughout the Atlantic. Microsatellite loci, which are potentially the most informative of presently available neutral genetic markers, have been applied extensively within western and eastern Atlantic areas but not on a range-wide basis. In the present study, six microsatellite DNA loci were used to screen cod samples from nine locations throughout the geographic range from the Scotian Shelf in the West Atlantic to the Barents and Baltic Seas in the east. Overall F ST value was 0·03 ( P = < 0·001) across all samples. Statistically significant population differences over all loci combined were evident between more geographically distant samples, using either heterogeneity tests or F ST analysis, with at least one locus showing significant differences between all samples (prior to Bonferroni correction). A significant correlation was observed between genetic and geographical distance, suggesting a higher level of historical and contemporary gene flow between adjacent populations than more distant populations. Samples from either end of the geographic range (Scotian Shelf and Baltic Sea) were particularly distinct when analysed using the STRUCTURE programme and also showed a high level of self-assignment when individuals of either the Scotian Shelf or Baltic Sea were tested against the entire data set. The present microsatellite study demonstrates a high level of geographic population structure between the western Atlantic, middle and eastern Atlantic and Baltic Sea, and thus, the findings should be useful in devising overall management and conservation strategies for the species.  相似文献   

10.
To investigate the relative importance of homogenizing factors, such as gene flow, and diversifying factors, such as drift, genetic variation in pikeperch ( Sander lucioperca ) in two Fennoscandian regions (North and South) was analysed with microsatellites. Allelic richness and the degree of differentiation were significantly higher in the North ( F ST= 0·20) than in the South ( F ST= 0·064). In northern areas, assignments of genotypes were almost exclusively to the population of origin, but in southern areas, the proportion of correct assignments was significantly lower. Most samples exhibited significant heterozygote deficits, and the level of relatedness was higher than expected from randomness. These combined results suggest that there has been more gene flow between populations in southern areas than in northern areas, where the importance of genetic drift has been greater. Effective population sizes were small ( c. 100) and did not differ between areas. The effect of a common history appears minor, and thus processes such as genetic drift and gene flow have been more influential in shaping the patterns of genetic diversity in this species.  相似文献   

11.
Allozyme Diversity in Populations of Cymbidium goeringii (Orchidaceae)   总被引:1,自引:0,他引:1  
Abstract: Using 14 allozyme loci, we investigated levels of genetic diversity within populations, and degree of genetic divergence among 24 populations of Cymbidium goeringii (Orchidaceae) in Korea and Japan. Cymbidium goeringii maintains high levels of genetic diversity both at population (mean expected heterozygosity, H e = 0.238) and species levels (0.260). Means of H e found in 24 populations were not significantly different from each other. About 90 % of the total variation in the species is common to all populations (mean G ST = 0.108). No unique allele was found in any population. The indirect estimate of gene flow based on the mean G ST was high ( Nm = 2.06). Nei's genetic identities for pairs of populations had high values (mean = 0.974 [SD = 0.013]). The Mantel-Z test showed a significant correlation between genetic distance and geographic distance. However, the mean G ST value between 17 populations in Korea and seven Japanese populations was relatively low (0.029), even though the land connection between the southern Korean peninsula and southern Japanese archipelagos has not existed since the middle Pleistocene. Large numbers of small seeds of C. goeringii might travel long distances by wind from populations to populations both in Korea and Japan, increasing genetic diversity within populations and maintaining low genetic differentiation among populations.  相似文献   

12.
Aphyocypris kikuchii is a cyprinid species endemic to northern and eastern Taiwan and is the only primary freshwater fish native east of the Coastal Mountain Range. In total, 92 individuals of A. kikuchii from seven populations in three regions of the island were surveyed for mitochondrial DNA (mtDNA) variation. High haplotype diversity ( h = 0·989) and low nucleotide diversity ( π = 0·009) of mtDNA were detected. Negative values of Tajima's D and unimodal mismatch distributions probably reflect a history of recent demographic expansions from small populations. Three major haplotype clusters displayed geographically non-overlapping distributions, indicating a long-term isolation between regions. Hierarchical analysis of molecular variance showed significant genetic structuring among populations ( Φ ST= 0·66). Significant haplotype heterogeneity was also detected among populations within regions ( Φ SC= 0·41, P < 0·001) and among regions ( Φ CT= 0·43, P < 0·05). Molecular clock estimates of coalescence in the three major mtDNA lineages indicated coalescence in the most recent common ancestor c. 0·11–0·39 million years ago. Haplotypes of cluster B nested as interior nodes in the haplotype network, indicating that migrations from Shueilian (SL) populations to the northern region (cluster A) and to the eastern region (cluster C) may have occurred independently. Lineages A and B + C should be managed as two distinct evolutionarily significant units, while the northern, SL and southern groups should be managed as separate management units.  相似文献   

13.
Comparative analyses of the genetic differentiation in microsatellite markers ( F ST) and leaf morphology characters ( Q ST) of Amphicarpaea edgeworthii Benth. were conducted to gain insight into the roles of random processes and natural selection in the population divergence. Simple sequence repeat analyses on 498 individuals of 19 natural populations demonstrate that a significant genetic differentiation occurs among populations (mean F ST = 0.578), and A. edgeworthii is a highly self-fertilized species (mean selfing rate s  = 0.989). The distribution pattern of genetic diversity in this species shows that central populations possess high genetic diversity (e.g. population WL with H E = 0.673 and population JG with H E = 0.663), whereas peripheral ones have a low H E as in population JD (0.011). The morphological divergence of leaf shape was estimated by the elliptical Fourier analysis on the data from 11 natural and four common garden populations. Leaf morphology analyses indicate the morphological divergence does not show strong correlation with the genetic differentiation ( R  = 0.260, P  = 0.069). By comparing the 95% confidence interval of Q ST with that of F ST, Q ST values for five out of 12 quantitative traits are significantly higher than the average F ST value over eight microsatellite loci. The comparison of F ST and Q ST suggests that two kinds of traits can be driven by different evolutionary forces, and the population divergence in leaf morphology is shaped by local selections.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 505–516.  相似文献   

14.
Morphometric and genetic data were used to compare two sympatric and morphologically similar species, Acanthopagrus berda and Acanthopagrus taiwanensis , in Dapeng Bay, South-western Taiwan. A principle component analysis of morphological data indicated a distinction between the two species, with pectoral fin length and eye diameter accounting for 32·27% of the variation. Interspecific sequence divergence, based on mtDNA cytochrome b (0·118 ± 0·01), was larger than intraspecific divergences between haplotypes (0·007 for A. taiwanensis and 0·003 for A. berda ). Individuals of the two species clustered into different groups in three phylogenetic trees with 100% bootstrap support. The mean observed heterozygosity for eight microsatellite loci was 0·471 ± 0·202 for A. taiwanensis and 0·637 ± 0·145 for A. berda . Nei's unbiased measure of interspecific genetic distance ( D S) was 1·334. F ST (0·134) and R ST (0·404) values indicated significant differentiation between species. An unrooted neighbour-joining tree was constructed by allele-sharing distances and the factorial correspondence analysis split all specimens into two distinct clusters. The results of morphometric, mtDNA and microsatellite analyses indicated the presence of two species, A. taiwanensis and A. berda .  相似文献   

15.
Variation at five microsatellite DNA loci scored in ≈ 1300 individuals provided evidence of genetic structure among 14 cod ( Gadus morhua ) populations spanning the range of the species in the northwest (NW) Atlantic. Using D A and D SW measures of genetic distance, as well as F ST and R ST measures of population structure, differences are revealed among populations at continental shelf scales (NE Newfoundland Shelf, Grand Banks, Flemish Cap, Scotian Shelf, Georges Bank) where regions are separated by submarine saddles, channels and trenches. However, we also provide evidence of genetic structure at spawning-bank scales consistent with variation in oceanographic features and in the spatiotemporal distribution of spawning, each of which may represent barriers to gene flow among geographically contiguous populations inhabiting a highly advective environment. The differences described are consistent with postdispersal spawning fidelity to natal areas, a behaviour that may be facilitated by topographically induced gyre-like circulations that can act as retention mechanisms. Significant degrees of substructure among neighbouring and contiguous cod populations may be most easily explained by the associated oceanographic features and processes that conceivably form the template for the evolution of the structure. We suggest that bathymetric and hydrodynamic structure represents a rational starting point for developing hypotheses to examine the processes that lead to the genetic structuring of marine fish species.  相似文献   

16.
Over 25 years rod catches of Atlantic salmon Salmo salar increased proportionately as stock size increased ( r 2=0·581, P <0·001), with no overall trend between exploitation rate and stock size ( r 2=0·016, P >0·5). On a 15 year sub-set of these data annual effort ( P =0·804) and flow ( P =0·339) had little significance relative to stock size ( P <0·01) on variation in rod catches. Stock size, time, effort and flows had no influence on inter-annual variation of rod exploitation rate ( r 2=0·094, P =0·880). Pairwise correlation between variables confirmed these results. In 1998, weekly effort contributed significantly to overall catch variation ( P <0·001), while weekly flow did not ( P =0·438). These results are discussed in relation to the utility of rod catch data for deriving estimates of stock for spawning target compliance purposes.  相似文献   

17.
Whole mitochondrial DNA cytochrome b sequences in 62 fish from 13 locations in Southeast China identified two major clades corresponding to two allopatric taxa, Glyptothorax fokiensis fokiensis and Glyptothorax fokiensis hainanensis . Reciprocal monophyly and a molecular clock separation between these two taxa of 2·3 million years indicate these taxa should be elevated to species. Mismatch distributions and Fu's F S statistic suggest that both G. fokiensis and G. hainanensis have experienced recent population expansions. Analysis of molecular variance indicates that most of the genetic variation resides among populations within both species, with Φ ST= 0·645 for G. fokiensis and 0·801 for G. hainanensis , suggesting restricted gene flow among populations. Significant correlations between the geographic and the genetic distances provide support for the importance of geographic isolations between populations. Nested clade analysis also confirms low levels of genetic exchanges between the two major groups and between populations within each group. The phylogeographical pattern among populations of Glyptothorax in East Asia can be attributed to historical fragmentations, demographic expansions and occasional long-distance dispersals stimulated by tectonic activity and Ice Age climate changes.  相似文献   

18.
Knowledge of geographic and temporal scales of adaptive genetic variation is crucial to species conservation, yet understanding of these phenomena, particularly in marine systems, is scant. Until recently, the belief has been that because most marine species have highly dispersive or mobile life stages, local adaptation could occur only on broad geographic scales. This view is supported by comparatively low levels of genetic variation among populations as detected by neutral markers. Similarly, the time scale of adaptive divergence has also been assumed to be very long, requiring thousands of generations. Recent studies of a variety of species have challenged these beliefs. First, there is strong evidence of geographically structured local adaptation in physiological and morphological traits. Second, the proportion of quantitative trait variation at the among-population level ( Q ST) is much higher than it is for neutral markers ( F ST) and these two metrics of genetic variation are poorly correlated. Third, evidence that selection is a potent evolutionary force capable of sustaining adaptive divergence on contemporary time scales is summarized. The differing spatial and temporal scales of adaptive v. neutral genetic divergence call for a new paradigm in thinking about the relationship between phenogeography (the geography of phenotypic variation) and phylogeography (the geography of lineages) in marine species. The idea that contemporary selective processes can cause fine-scale spatial and temporal divergence underscores the need for a new emphasis on Darwinian fishery science.  相似文献   

19.
Study of adaptive evolutionary changes in populations of invasive species can be advanced through the joint application of quantitative and population genetic methods. Using purple loosestrife as a model system, we investigated the relative roles of natural selection, genetic drift and gene flow in the invasive process by contrasting phenotypical and neutral genetic differentiation among native European and invasive North American populations ( Q ST −  F ST analysis). Our results indicate that invasive and native populations harbour comparable levels of amplified fragment length polymorphism variation, a pattern consistent with multiple independent introductions from a diverse European gene pool. However, it was observed that the genetic variation reduced during subsequent invasion, perhaps by founder effects and genetic drift. Comparison of genetically based quantitative trait differentiation ( Q ST) with its expectation under neutrality ( F ST) revealed no evidence of disruptive selection ( Q ST >  F ST) or stabilizing selection ( Q ST <  F ST). One exception was found for only one trait (the number of stems) showing significant sign of stabilizing selection across all populations. This suggests that there are difficulties in distinguishing the effects of nonadaptive population processes and natural selection. Multiple introductions of purple loosestrife may have created a genetic mixture from diverse source populations and increased population genetic diversity, but its link to the adaptive differentiation of invasive North American populations needs further research.  相似文献   

20.
Aim  To explore the genetic and phylogeographic structure of a temperate forest species, Pinus strobiformis Englem., in a subtropical region in the context of climate change during the Pleistocene. It is expected that the colder conditions during glacial stages favoured range expansions of P. strobiformis , thus promoting gene flow.
Location  Mexico and the United States.
Methods  Estimates of genetic diversity and structure were obtained using chloroplast microsatellite loci of 23 populations of P. strobiformis across its entire range, seven neighbouring populations of Pinus ayacahuite Ehrenb. ex. Schtdl, and one population of Pinus flexilis James.
Results  The genetic diversity of P. strobiformis ( H e = 0.856) was found to be high, especially in western populations, whereas eastern populations were less variable and more genetically similar to P. ayacahuite of central Mexico. We found evidence of significant phylogeographic structure ( N ST = 0.444; P  =   0.026), high genetic structure ( R ST = 0.270), and isolation by distance. Pairwise R ST and samova (spatial analysis of molecular variance) results indicated an east–west partition of genetic variation, with populations within each group showing little differentiation and no isolation by distance.
Main conclusions  The phylogeographic structure of P. strobiformis across the entire range was pronounced, with two main genetic and geographic groups separated by the Chihuahuan Desert. However, within each of the two groups there was little population differentiation and no isolation by distance, suggesting genetic connectivity as a result of population expansions within these areas during glacial stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号