首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Actin dynamics play multiple roles in promoting cell movement, changing cell shapes, and establishing intercellular adhesion. Cell contact events are involved in tissue morphogenesis, immune responses, and cancer cell invasion. In epithelial cells, cell-cell contacts mature to form apical junctions with which the actin cytoskeleton physically associates. Living cell imaging shows, however, that the apical junctional complex is less dynamically regulated than the actin cytoskeleton, indicating that their interaction does not remain stable. Given that several cell adhesion modules are clustered at apical junctions, the sum of weak or transient interactions may create linkages that can be strong yet easily remodeled. Here we describe how subcellular protein interactions are coordinated to induce changes in actin organization and dynamics, in response to the status of apical junctions.  相似文献   

2.
Tissues of multicellular organisms are characterised by several types of specialised cell–cell junctions. In vertebrate epithelia and endothelia, tight and adherens junctions (AJ) play critical roles in barrier and adhesion functions, and are connected to the actin and microtubule cytoskeletons. The interaction between junctions and the cytoskeleton is crucial for tissue development and physiology, and is involved in the molecular mechanisms governing cell shape, motility, growth and signalling. The machineries which functionally connect tight and AJ to the cytoskeleton comprise proteins which either bind directly to cytoskeletal filaments, or function as adaptors for regulators of the assembly and function of the cytoskeleton. In the last two decades, specific cytoskeleton‐associated junctional molecules have been implicated in mechanotransduction, revealing the existence of multimolecular complexes that can sense mechanical cues and translate them into adaptation to tensile forces and biochemical signals. Here, we summarise the current knowledge about the machineries that link tight and AJ to actin filaments and microtubules, and the molecular basis for mechanotransduction at epithelial and endothelial AJ.  相似文献   

3.
Gap junctions are believed to be sites of metabolic and electrical coupling between cells. These contacts are present between myometrial cells immediately prior to and during parturition. We report the results of studies to investigate the control and the function of myometrial gap junctions. Injection of estradiol (500 micrograms/day) with or without progesterone into immature and ovariectomized mature rats demonstrated that estradiol stimulated whereas progesterone suppressed gap junction formation. Indomethacin treatment was also shown to potentiate the action of estradiol. Also, pregnant rats treated with oestradiol developed numerous myometrial gap junctions and aborted their fetuses. These results suggest that the steroid hormones and prostaglandins may control myometrial gap junction development. Diffusion studies of 3H-2-deoxyglucose in longitudinal myometrial strips revealed a significant increase in the diffusion coefficient in delivering versus ante-partum rat tissues. This indicates that there is increased metabolic transfer during parturition when gap junctions are present. The results of these studies show that steroid hormones and prostaglandins may regulate myometrial gap junctions and that metabolic, as well as electrical coupling, of uterine smooth muscle cells increase at parturition concomitant with the development of gap junctions.  相似文献   

4.
Electrical uncoupling of crayfish septate lateral giant axons is paralleled by structural changes in the gap junctions. The changes are characterized by a tighter aggregation of the intramembrane particles and a decrease in the overall width of the junction and the thickness of the gap. Preliminary measurements indicate also a decrease in particle diameter. The uncoupling is produced by in vitro treatment of crayfish abdominal cords either with a Ca++, Mg++-free solution containing EDTA, followed by return to normal saline (Van Harreveld's solution), or with VAn Harreveld's solution containing dinitrophenol (DNP). The uncoupling is monitored by the intracellular recording of the electrical resistance at a septum between lateral giant axons. The junctions of the same septum are examined in thin sections; those of other ganglia of the same chain used for the electrical measurements are studied by freeze-fracture. In controls, most junctions contain a more or less regular array of particles repeating at a center to center distance of approximately 200 A. The overall width of the junctions is approximately 200 A and the gap thickness is 40-50 A. Vesicles (400-700 A in diameter) are closely apposed to the junctional membranes. In uncoupled axons, most junctions contain a hexagonal array of particles repeating at a center to center distance of 150-155 A. The overall width of the junctions is approximately 180 A and the gap thickness is 20-30 A. These junctions are usually curved and are rarely associated with vesicles. Isolated, PTA-stained junctions, also believed to be uncoupled, display similar structural features. There are reasons to believe that the changes in structure and permeability are triggered by an increase in the intracellular free Ca++ concentration. Most likely, the changes in permeability are caused by conformational changes in some components of the intramembrane particles at the gap junctions.  相似文献   

5.
Summary Physiological studies led to devise models of epithelial cells in which the membrane does not have its molecules distributed homogeneously, but polarized towards the apical or towards the basolateral regions. For a while, it was assumed that the TJ, acting as a fence between the two regions, would be responsible for this asymmetry. However, today the information available indicates not only that polarization may proceed independently of the TJ, but that this structure itself may attain its precise location due to a polarization process. Nevertheless, TJs may play a role in restricting to the apical or to the basolateral region those molecules that are free to diffuse in the plane of the cell membrane (e.g., lipids and protein that are not attached to cytoplasmic or extracellular structures).  相似文献   

6.
7.
A major form of animal cell-cell adhesion results from the dynamic association of cadherin molecules, cytosolic catenins and actin microfilaments. Cadherins dynamically regulate the cytoskeleton. In turn, the actin cytoskeleton contributes to cadherin molecule oligomerization at cell contacts and to cell reshaping in response to environmental changes. Over the past two years, this evolutionarily conserved adhesion system has been intensively revisited in both its structural and functional aspects; this is illustrated by the remarkable progress in the determination of physical parameters of cadherin bonds (including force measurement) and the new insights into the role of alpha-catenin and the regulation of actin dynamics at cadherin contacts. Other recent studies uncover the important contribution of acto-myosin, microtubules and cell tension to adherens junction formation, cell differentiation and tissue reshaping/remodeling. An open challenge is now to integrate these new data with the diversity of cadherin adhesive complexes.  相似文献   

8.
9.
Summary MDCK cells (epithelioid of renal origin) form monolayers which are structurally and functionally similar to transporting epithelia. One of these similarities is the ability to form occluding junctions and act as permeability barriers. This article studies the junctions of MDCK monolayers formed on a permeable and transparent support (a disk of nylon cloth coated with collagen) by combining two different approaches: (i)Scanning of the electric field: the disk is mounted as a flat sheet between two Lucite chambers and pulses of 20–50 A cm–2 are passed across. The apical surface of the monolayer is then scanned with a microelectrode to detect those points where the current is flowing. This shows that the occluding junctions of this preparation are not homogeneous, but contain long segments of high resistance, intercalated with sites of high conductance. (ii)Freeze fracture electron microscopy: the junctions are composed of regions of eight to ten strands intercalated with others where the strands are reduced to one or two ridges. The sites of high conductance may correspond to those segments where the number of junctional strands is reduced to 1 or 2. It is concluded that the occluding junctions of MDCK monolayers are functionally and morphologically heterogeneous, with tight regions intermixed with leaky ones.  相似文献   

10.

Background  

Epithelial tight junction (TJ) and adherens junction (AJ) form the apical junctional complex (AJC) which regulates cell-cell adhesion, paracellular permeability and cell polarity. The AJC is anchored on cytoskeletal structures including actin microfilaments and microtubules. Such cytoskeletal interactions are thought to be important for the assembly and remodeling of apical junctions. In the present study, we investigated the role of microtubules in disassembly of the AJC in intestinal epithelial cells using a model of extracellular calcium depletion.  相似文献   

11.
Goswami C  Hucho T 《The FEBS journal》2008,275(19):4684-4699
Much work has focused on the electrophysiological properties of transient receptor potential channels. Recently, a novel aspect of importance emerged: the interplay of transient receptor potential channels with the cytoskeleton. Recent data suggest a direct interaction and functional repercussion for both binding partners. The bi-directionality of physical and functional interaction renders therefore, the cytoskeleton a potent integration point of complex biological signalling events, from both the cytoplasm and the extracellular space. In this minireview, we focus mostly on the interaction of the cytoskeleton with transient receptor potential vanilloid channels. Thereby, we point out the functional importance of cytoskeleton components both as modulator and as modulated downstream effector. The resulting implications for patho-biological situations are discussed.  相似文献   

12.
13.
14.
BACKGROUND: A novel flow cytometric assay has been described in an accompanying report (Gombos et al., METHODS: The kinetics of the decrease in immunofluorescence intensity was analyzed after the addition of the raft-preserving Triton X-100 or Nonidet P-40, both of which disrupt the entire membrane. Mild treatments by both detergents leave cells attached to only those proteins that are anchored to the cytoskeleton by rafts or independent of rafts. Agents that affect microfilaments and modulate membrane levels of cholesterol by cyclodextrin were used to distinguish between the raft-mediated and non-raft-related associations of the Pgp. Confocal microscopy and flow cytometric fluorescence energy transfer measurements were used to confirm colocalization of Pgp with raft constituents. RESULTS: The assay was proved to be sensitive enough to resolve differences between the resistance of UIC2-labeled cell-surface Pgps to Triton X-100 versus Nonidet P-40. Approximately 34% of the UIC2 Fab-labeled Pgp molecules were associated with the cytoskeleton through detergent-resistant, cholesterol-sensitive microdomains or directly, whereas approximately 15% were found to be directly linked to the cytoskeleton. Accordingly, confocal microscopy showed that Pgps colocalize with raft markers, mainly in microvilli. Fluorescence resonance energy transfer efficiency data indicating molecular proximity between Pgp and the raft markers CD44, CD59, and G(M1)-gangliosides also suggested that a significant fraction of Pgps resides in raft microdomains. Raft association of Pgp appears to be of functional significance because its modulation markedly affected drug pumping. CONCLUSIONS: By using the flow cytometric detergent resistance assay in kinetic mode, we were able to assess the extent of raft association and actin cytoskeleton anchorage of Pgp expressed at physiologically relevant levels. We demonstrated that a significant fraction of Pgp is raft associated on LS-174-T human colon carcinoma cells and that this localization may influence its transporter function. The kinetic flow cytometric detergent resistance assay presented in this report is considered to be generally applicable for the analysis of molecular interactions of membrane proteins expressed at low levels.  相似文献   

15.
A milk-fat globule membrane antigen, designated MAM-6 and detected immunocytochemically by the monoclonal antibody 115D8, is expressed apically in confluent MCF-7 monolayer cultures. Immediately after preparation of a single-cell suspension, MAM-6 appears on the entire cell surface. However, polarized apical expression of MAM-6 is restored as early as 2-6 hr after plating of unpolarized cells, before functional tight junctions are established, as judged by freeze-fracture and ruthenium red permeability. Quantitative immunogold cytochemistry reveals that the apical:basal ratio of MAM-6 expression was about 17:1 after 6 hr. Tight junctions developed as late as 12-24 hr after plating. At this time the apical:basal MAM-6 ratio was about 30:1 (as compared to about 50:1 in control monolayers).  相似文献   

16.
E-cadherin-p120 catenin complexes are essential for adherens junction (AJ) formation and for the maintenance of the normal epithelial phenotype. PLEKHA7 was originally identified as a member of this complex that tethers microtubules to the AJs and supports their overall integrity. Recently, we revealed that PLEKHA7 regulates cellular behavior via miRNAs by associating with the microprocessor complex at the apical zonula adherens (ZA). We have also identified a new set of PLEKHA7 interacting partners at the apical ZA, via proteomics. Our analysis shows that the main groups of proteins associating with PLEKHA7 are cytoskeletal-related and RNA-binding proteins. Here, we provide extended evidence for association of PLEKHA7 with several of these proteins. We also show that PLEKHA7 loss activates the actin regulator cofilin in a p120-dependent manner, providing an explanation for the effects of PLEKHA7 on the cortical actin ring. Interestingly, PLEKHA7 regulates the levels and associates with PP1α, a phosphatase responsible for cofilin activation. Finally, we clarify the mode of regulation of the oncogenic miR-19a by PLEKHA7. Overall, our findings support a multi-layered role of PLEKHA7 in converging cytoskeletal dynamics and miRNA-mediated growth regulation at the ZA, with potentially critical implications in cancer that warrant further investigation.  相似文献   

17.
18.
Tight junctions are the most apical organelle of the apical junctional complex and are primarily involved in the regulation of paracellular permeability and membrane polarity. Extensive research in the past two decades has identified not only the individual molecules of the tight junctions but also their mutual interactions, which are the focus of the present review article. While a complete map of the interactions among the tight junction molecules is probably far from being complete, the available evidence already allows outlining the general molecular architecture of the tight junctions. Here, with the aim of gaining deeper mechanistic understanding of tight junction assembly, regulation and function, we have subdivided the known molecular interactions into four major clusters that are centered on cell surface, polarity, cytoskeletal and signaling molecules.  相似文献   

19.
The four-way DNA (Holliday) junction is the central intermediate of genetic recombination, but the dynamic aspects of this important structure are presently unclear. Although transitions between alternative stacking conformers have been predicted, conventional kinetic studies are precluded by the inability to synchronize the junction in a single conformer in bulk solution. Using single-molecule fluorescence methodology we have been able to detect these transitions. The sequence dependence, the influence of counterions and measured energetic barriers indicate that the conformer transition and branch migration processes share the unstacked, open structure as the common intermediate but have different rate-limiting steps. Relative rates indicate that multiple conformer transitions occur at each intermediate step of branch migration, allowing the junction to reach conformational equilibrium. This provides a mechanism whereby the sequence-dependent conformational bias could determine the extent of genetic exchange upon junction resolution.  相似文献   

20.
Structural integrity of hepatocyte tight junctions   总被引:9,自引:4,他引:5       下载免费PDF全文
The significance of discontinuities frequently found in freeze-fracture replicas of the tight junction was evaluated using complementary replicas of hepatocyte junctions from control and bile duct-ligated rats. An extensive analysis of complementary replicas using rotary platinum shadowing indicates that discontinuities in the protoplasmic (P) fracture face do not represent structural breaks in the tight- junctional network. In no case did P-face discontinuities correspond with interruptions in the groove network on the complementary extracellular (E) face. Quantitative analysis of replicas shows that P- face discontinuities result in part from "transfer" of material to the complementary E face (approximately 7% of the junctional length). However, many P-face discontinuities (7-30% of the junctional length) are matched only by a groove on the complementary E face. This finding demonstrates that a significant amount of material can be lost during freeze-fracture. An analysis of junctions from bile duct-ligated rats, which are known to have an increased paracellular permeability, shows comparable transfer and loss of material. However, the number of junctional elements and the tight-junction network density was significantly reduced by bile duct ligation. These observations indicate that discontinuities in tight-junctional elements result during the preparation of freeze-fracture replicas and are not physiologically important features of the junctional barrier. Variation in the number of elements provides the best explanation for observed differences in tight-junction permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号