首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Efficient selection procedures, using [3H]amino acids as the selecting agent, were developed for isolating temperature-sensitive (TS) mutations in CHO cells affecting protein synthesis. After chemical mutagenesis, leucyl-tRNA synthetase mutants were obtained when [3H]leucine was used as the selecting agent in two independent experiments. These mutations seem to involve the same genetic locus as the TSH1 mutant described previously (1). A selection with [3H]valine, in which all amino acids except leucine were at low concentration in the selective medium, resulted in a new class of mutants with reduced asparagyl-tRNA synthetase activity. These results were consistent with the finding that all mutants were phenotypically dependent on the concentration of amino acid, specific to the altered synthetase, in the medium. Our observations suggest that although leucyl synthetase mutations are a relatively common class of TS mutations in CHO cells, the spectrum of mutants obtained can be at least partially manipulated through concentrations of amino acids in selective media. The asparagyl-synthetase mutation was shown to be recessive and to complement the leucyl-synthetase mutation in cell-cell hybrids.  相似文献   

3.
Several recent reports have claimed that adaptive mutants in bacteria and yeast are induced by selective conditions. The results of these reports suggest that mutants can arise nonrandomly with respect to fitness, contrary to what has been widely accepted. In several cases that have received careful experimental reexamination, however, the detection of seemingly nonrandom mutation has been explained as an experimental artifact. In the remaining cases, there is no evidence to suggest that cells have the capacity to direct or choose which genetic variants will arise. Instead, current models propose processes by which genetic variants persist as mutations only if they enable cell growth and DNA replication. Most of these models are apparently contradicted by experimental data. One model, the hypermutable state model, has recently received limited circumstantial support. However, in this model the origin of adaptive mutants is random; the apparent nonrandomness of mutation is merely a consequence of natural selection. The critical distinction between the origin of genetic variation (mutation) and the possible consequence of that variation (selection) has been neglected by proponents of directed mutation.  相似文献   

4.
Though RpoS, an alternative sigma factor, is required for survival and adaptation of Escherichia coli under stress conditions, many strains have acquired independent mutations in the rpoS gene. The reasons for this apparent selective loss and the nature of the selective agent are not well understood. In this study, we found that some wild type strains grow poorly in succinate minimal media compared with isogenic strains carrying defined RpoS null mutations. Using an rpoS+ strain harboring an operon lacZ fusion to the highly-RpoS dependent osmY promoter as an indicator strain, we tested if this differential growth characteristic could be used to selectively isolate mutants that have lost RpoS function. All isolated (Suc+) mutants exhibited attenuated beta-galactosidase expression on indicator media suggesting a loss in either RpoS or osmY promoter function. Because all Suc+ mutants were also defective in catalase activity, an OsmY-independent, RpoS-regulated function, it was likely that RpoS activity was affected. To confirm this, we sequenced PCR-amplified products containing the rpoS gene from 20 independent mutants using chromosomal DNA as a template. Sequencing and alignment analyses confirmed that all isolated mutants possessed mutated alleles of the rpoS gene. Types of mutations detected included single or multiple base deletions, insertions, and transversions. No transition mutations were identified. All identified point mutations could, under selection for restoration of beta-galactosidase, revert to rpoS+. Revertible mutation of the rpoS gene can thus function as a genetic switch that controls expression of the regulon at the population level. These results may also help to explain why independent laboratory strains have acquired mutations in this important regulatory gene.  相似文献   

5.
Mammalian cells are exposed to a wide variety of genotoxic stresses from both endogenous and exogenous sources. Cells typically exhibit cell cycle delays, or checkpoints, in response to acute genotoxic stress. Other types of cellular responses to DNA damage include apoptosis and probably increases in DNA repair levels. These response pathways are altered in cancer cells, by genetic alterations such as overexpression or mutation of oncogenes, or loss of tumor suppressor gene functions. As cancer chemotherapy relies primarily on the selective killing of cancer cells by DNA-damaging agents, genetic alterations affecting cellular stress response pathways may affect the outcome of cancer treatment.  相似文献   

6.
Several investigators have recently reported that significant numbers ofappropriately adapted mutants can be induced in bacterial and yeast strains by exposing stationary phase cells to specific environmental challenges. The resulting mutants are said to be both selection-induced and demonstrably non-random in origin; if this interpretation is correct, it is in direct conflict with the conventional neo-Darwinian view, which is that spontaneous mutants are truly random in origin and arise without the intervention of any overtly adaptive forces. We believe that there are alternative ways of accounting for the appearance of many (and probably all) of the additional mutants which proponents of the adaptive mutation theory claim are observed only after they applied the appropriate selective pressure. Having reviewed the available evidence, we consider that most (if not all) of the sorts of mutants which are said to have been induced following exposure of stationary-phase cells to intense selective pressure are equally likely to have been generated during the operation of certain well-known, conventional (and essentially random) cellular DNA repair processes. Evidence in support of our view can be found in the mainstream literature on the origins of spontaneous mutations. We also note that some of the molecular models which have recently been proposed to explain the production of selection-induced mutations preferentially (or even only) in genes of adaptive significance may turn out to be of considerable interest in their own right, even although the mutants whose origins they were intended to explain may turn out to have arisen in a manner which is totally independent of the conditions used for their selection.  相似文献   

7.
Special mechanisms of mutation are induced during growth-limiting stress and can generate adaptive mutations that permit growth. These mechanisms may provide improved models for mutagenesis in antibiotic resistance, evolution of pathogens, cancer progression and chemotherapy resistance. Stress-induced reversion of an Escherichia coli episomal lac frameshift allele specifically requires DNA double-strand-break-repair (DSBR) proteins, the SOS DNA-damage response and its error-prone DNA polymerase, DinB. We distinguished two possible roles for the DSBR proteins. Each might act solely upstream of SOS, to create single-strand DNA that induces SOS. This could upregulate DinB and enhance mutation globally. Or any or all of them might function other than or in addition to SOS promotion, for example, directly in error-prone DSBR. We report that in cells with SOS genes derepressed constitutively, RecA, RuvA, RuvB, RuvC, RecF, and TraI remain required for stress-induced mutation, demonstrating that these proteins act other than via SOS induction. RecA and TraI also act by promoting SOS. These and additional results with hyper-mutating recD and recG mutants support roles for these proteins via error-prone DSBR. Such mechanisms could localize stress-induced mutagenesis to small genomic regions, a potentially important strategy for adaptive evolution, both for reducing additional deleterious mutations in rare adaptive mutants and for concerted evolution of genes.  相似文献   

8.
In bacterial, yeast, and human cells, stress-induced mutation mechanisms are induced in growth-limiting environments and produce non-adaptive and adaptive mutations. These mechanisms may accelerate evolution specifically when cells are maladapted to their environments, i.e., when they are are stressed. One mechanism of stress-induced mutagenesis in Escherichia coli occurs by error-prone DNA double-strand break (DSB) repair. This mechanism was linked previously to a differentiated subpopulation of cells with a transiently elevated mutation rate, a hypermutable cell subpopulation (HMS). The HMS could be important, producing essentially all stress-induced mutants. Alternatively, the HMS was proposed to produce only a minority of stress-induced mutants, i.e., it was proposed to be peripheral. We characterize three aspects of the HMS. First, using improved mutation-detection methods, we estimate the number of mutations per genome of HMS-derived cells and find that it is compatible with fitness after the HMS state. This implies that these mutants are not necessarily an evolutionary dead end, and could contribute to adaptive evolution. Second, we show that stress-induced Lac+ mutants, with and without evidence of descent from the HMS, have similar Lac+ mutation sequences. This provides evidence that HMS-descended and most stress-induced mutants form via a common mechanism. Third, mutation-stimulating DSBs introduced via I-SceI endonuclease in vivo do not promote Lac+ mutation independently of the HMS. This and the previous finding support the hypothesis that the HMS underlies most stress-induced mutants, not just a minority of them, i.e., it is important. We consider a model in which HMS differentiation is controlled by stress responses. Differentiation of an HMS potentially limits the risks of mutagenesis in cell clones.  相似文献   

9.
朱林江  李崎 《遗传》2014,36(4):327-335
细胞具有普遍的突变和进化能力, 如病原菌的抗药性、工业菌株的适应性和人体细胞的癌变等, 但是细胞的适应性突变是如何产生的呢?通过非致死性突变分析模型的建立与应用, 产生了新的适应性进化观点, 即环境胁迫诱导细胞适应性突变。这种环境诱导的细胞突变过程涉及多方面的生理调控, 包括细胞内毒性物质(如氧活性物质)积累并造成DNA损伤、DNA错配修复的活性受到抑制、胞内RpoS反应和SOS反应被激活等。这些反应使胞内高保真的DNA复制状态转变为低保真的DNA修复状态, 提高胞内突变率和重组活性。此外, 基因转录影响基因组的不稳定, 容易产生DNA损伤, 并造成局部的高突变率, 即形成了转录偶联的DNA修复与突变为基础的适应性突变观点。文章围绕环境胁迫诱导细胞突变率增加和转录偶联的DNA修复与突变这两种适应性突变分子机制, 阐述其相关的研究进展, 以期更好地理解环境条件诱导细胞发生适应性突变的过程。  相似文献   

10.
Two-Step Resistance by ESCHERICHIA COLI B to Bacteriophage T2   总被引:4,自引:0,他引:4       下载免费PDF全文
Numerous authors have noted the difficulty in obtaining mutants of E. coli B that are resistant to bacteriophage T2 using standard procedures of plating large numbers of cells in the presence of excess phage. Yet, T2-resistant mutants appear in continuous culture at rates in consistent with this difficulty. This paradoxical result derives from the fact that resistance to T2 usually arises as a consequence of two nonindependent mutations. Mutant bacteria resistant to phage T4 are very common and increase rapidly in continuous culture with phage T2 owing to an approximate halving of the rate at which T2 adsorbs to and kills these partially resistant mutants. The rate at which these partially resistant mutants then give rise to fully resistant mutants is approximately two orders of magnitude higher than the rate obtained by direct selection. These results are consistent with biochemical evidence that T2 adsorption to E. coli B involves both the bacterial lipopolysaccharide (to which phage T4 adsorbs) and a bacterial surface protein. However, this genetic evidence suggests that T2 can adsorb to either receptor type alone, whereas the biochemical evidence suggests that T2 requires a complex of the two receptors for adsorption to E. coli B. These results also indicate that the effects of genetic background can influence not only the selective advantage associated with particular mutations but also the rate at which certain selectively defined characteristics arise via mutation.  相似文献   

11.
In response to drought, plants synthesise the hormone abscisic acid (ABA), which triggers closure of the stomatal pores. This process is vital for plants to conserve water by reducing transpirational water loss. Moreover, recent studies have demonstrated the advantages of the Arabidopsis stomatal guard cell for combining genetic, molecular and biophysical approaches to characterise ABA action. However, genetic dissection of stomatal regulation has been limited by the difficulty of identifying a reliable phenotype for mutant screening. Leaf temperature can be used as an indicator to detect mutants with altered stomatal control, since transpiration causes leaf cooling. In this study, we optimised experimental conditions under which individual Arabidopsis plants with altered stomatal responses to drought can be identified by infrared thermography. These conditions were then used to perform a pilot screen for mutants that displayed a reduced ability to close their stomata and hence appeared colder than the wild type. Some of the mutants recovered were deficient in ABA accumulation, and corresponded to alleles of the ABA biosynthesis loci ABA1, ABA2 and ABA3. Interestingly, two of these novel aba2 alleles were able to intragenically complement the aba2-1 mutation. The remaining mutants showed reduced ABA responsiveness in guard cells. In addition to the previously known abi1-1 mutation, we isolated mutations at two novel loci designated as OST1 (OPEN STOMATA 1) and OST2. Remarkably, ost1 and ost2 represent, to our knowledge, the first Arabidopsis mutations altering ABA responsiveness in stomata and not in seeds.  相似文献   

12.
DNA repair mechanisms fulfil a dual role, as they are essential for cell survival and genome maintenance. Here, we studied how cells regulate the interplay between DNA repair and mutation. We focused on the adaptive response that increases the resistance of Escherichia coli cells to DNA alkylation damage. Combination of single-molecule imaging and microfluidic-based single-cell microscopy showed that noise in the gene activation timing of the master regulator Ada is accurately propagated to generate a distinct subpopulation of cells in which all proteins of the adaptive response are essentially absent. Whereas genetic deletion of these proteins causes extreme sensitivity to alkylation stress, a temporary lack of expression is tolerated and increases genetic plasticity of the whole population. We demonstrated this by monitoring the dynamics of nascent DNA mismatches during alkylation stress as well as the frequency of fixed mutations that are generated by the distinct subpopulations of the adaptive response. We propose that stochastic modulation of DNA repair capacity by the adaptive response creates a viable hypermutable subpopulation of cells that acts as a source of genetic diversity in a clonal population.  相似文献   

13.
Using P element-mediated mutagenesis we have isolated 20 X-linked lethal mutations, representing at least 14 complementation groups, which exhibit melanotic tumor phenotypes. We present the systematic analysis of this interesting group of lethal mutations that were selected for their visible melanotic or immune response. The lethal and melanotic tumor phenotypes of each lethal(1) aberrant immune response (air) mutation are pleiotropic effects of single genetic lesions. Lethality occurs throughout the larval and early pupal periods of development and larval development is extended in some air mutants. The air mutant lethal syndromes include abnormalities associated with the brain, haematopoietic organs, gut, salivary glands, ring glands, and imaginal discs. Additional characterization of the melanotic tumor mutations Tuml and tu(1)Szts have indicated that the melanotic tumor phenotype is similar to that observed in the air mutants. These studies have led to the proposal that two distinct classes of melanotic tumor mutations exist. Class 1 includes mutants in which melanotic tumors result from "autoimmune responses" or the response of an apparently normal immune system to the presence of abnormal target tissues. The Class 2 mutants display obvious defects in the haematopoietic organs or haemocytes, manifested as overgrowth, and the resulting aberrant immune system behavior may contribute to melanotic tumor formation.  相似文献   

14.
Populations adapt physiologically using regulatory mechanisms and genetically by means of mutations that improve growth. During growth under selection, genetic adaptation can be rapid. In several genetic systems, the speed of adaptation has been attributed to cellular mechanisms that increase mutation rates in response to growth limitation. An alternative possibility is that growth limitation serves only as a selective agent but acts on small-effect mutations that are common under all growth conditions. The genetic systems that initially suggested stress-induced mutagenesis have been analyzed without regard for multistep adaptation and some include features that make such analysis difficult. To test the selection-only model, a simpler system is examined, whose behavior was originally attributed to stress-induced mutagenesis (Yang et al. 2001, 2006). A population with a silent chromosomal lac operon gives rise to Lac+ revertant colonies that accumulate over 6 days under selection. Each colony contains a mixture of singly and doubly mutant cells. Evidence is provided that the colonies are initiated by pre-existing single mutants with a weak Lac+ phenotype. Under selection, these cells initiate slow-growing clones, in which a second mutation arises and improves growth of the resulting double mutant. The system shows no evidence of general mutagenesis during selection. Selection alone may explain rapid adaptation in this and other systems that give the appearance of mutagenesis.  相似文献   

15.
16.
Suppressors of recF (srfA) were found by selection for resistance to mitomycin C and UV irradiation in a recB21 recC22 sbcB15 recF143 strain. srfA mutations map in recA and are dominant to srfA+. They suppress both the DNA repair and the recombination deficiencies due to recF mutations. Therefore, RecA protein which is altered by the srfA mutation can allow genetic recombination to proceed in the absence of recB, recC, and recF functions. recF is also required for induction of the SOS response after UV damage. We propose that recF+ normally functions to allow the expression of two recA activities, one that is required for the RecF pathway of recombination and another that is required for SOS induction. The two RecA activities are different and are separable by mutation since srfA mutations permit recombination to proceed but have not caused a dramatic increase in SOS induction in recF mutants. According to this hypothesis, one role for recF in DNA repair and recombination is to modulate RecA activities to allow RecA to participate in these recF-dependent processes.  相似文献   

17.
The ability to integrate biochemical, cell biological, and genetic approaches makes Chlamydomonas reinhardtii the premier model organism for studies of the eukaryotic flagellum and its associated molecular motors. Hundreds of motility mutations have been identified in Chlamydomonas, including many that affect dyneins and kinesins. These mutations have yielded much information on the structure and function of the motors as well as the roles of individual subunits within the motors. The development of insertional mutagenesis has opened the door to powerful new approaches for genetic analysis in Chlamydomonas. Insertional mutants are created by transforming cells with DNA-containing selectable markers. The DNA is randomly integrated throughout the genome and usually deletes part of the chromosome at the site of insertion, thereby creating mutations that are marked by the integrated DNA. These mutations can be used for forward genetic approaches where one characterizes a mutant phenotype and then clones the relevant gene using the integrated DNA as a tag. The insertional mutants also may be used in a reverse genetic approach in which mutants lacking a gene of interest are identified by DNA hybridization. We describe methods to generate and characterize insertional mutants, using mutations that affect the outer dynein arm as examples.  相似文献   

18.
Roth JR  Kofoid E  Roth FP  Berg OG  Seger J  Andersson DI 《Genetics》2003,163(4):1483-1496
In the lac adaptive mutation system of Cairns, selected mutant colonies but not unselected mutant types appear to arise from a nongrowing population of Escherichia coli. The general mutagenesis suffered by the selected mutants has been interpreted as support for the idea that E. coli possesses an evolved (and therefore beneficial) mechanism that increases the mutation rate in response to stress (the hypermutable state model, HSM). This mechanism is proposed to allow faster genetic adaptation to stressful conditions and to explain why mutations appear directed to useful sites. Analysis of the HSM reveals that it requires implausibly intense mutagenesis (10(5) times the unselected rate) and even then cannot account for the behavior of the Cairns system. The assumptions of the HSM predict that selected revertants will carry an average of eight deleterious null mutations and thus seem unlikely to be successful in long-term evolution. The experimentally observed 35-fold increase in the level of general mutagenesis cannot account for even one Lac(+) revertant from a mutagenized subpopulation of 10(5) cells (the number proposed to enter the hypermutable state). We conclude that temporary general mutagenesis during stress is unlikely to provide a long-term selective advantage in this or any similar genetic system.  相似文献   

19.
20.
Microorganisms are exposed to constantly changing environmental conditions. In a growth-restricting environment (e.g. during starvation), mutants arise that are able to take over the population by a process known as stationary phase mutation. Genetic adaptation of a microbial population under environmental stress involves mechanisms that lead to an elevated mutation rate. Under stressful conditions, DNA synthesis may become more erroneous because of the induction of error-prone DNA polymerases, resulting in a situation in which DNA repair systems are unable to cope with increasing amounts of DNA lesions. Transposition may also increase genetic variation. One may ask whether the rate of mutation under stressful conditions is elevated as a result of malfunctioning of systems responsible for accuracy or are there specific mechanisms that regulate the rate of mutations under stress. Evidence for the presence of mutagenic pathways that have probably been evolved to control the mutation rate in a cell will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号