首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1H NMR spectroscopy has been used to analyze the product profiles arising from the hydrolysis of cellooligosaccharides by family GH9 cellulases. The product profiles obtained with the wild type and several active site mutants of a bacterial processive endoglucanase, TfCel9A, were compared with those obtained by a randomly acting plant endoglucanase, PttCel9A. PttCel9A is an orthologue of the Arabidopsis endocellulase, Korrigan, which is required for efficient cellulose biosynthesis. As expected, poplar PttCel9A was shown to catalyze the degradation of cellooligosaccharides by inversion of the configuration of the anomeric carbon. The product analyses showed that the number of interactions between the glucose units of the substrate and the aromatic residues in the enzyme active sites determines the point of cleavage in both enzymes.  相似文献   

2.
Isoforms AMY1, AMY2-1 and AMY2-2 of barley alpha-amylase were purified from malt. AMY2-1 and AMY2-2 are both susceptible to barley alpha-amylase/subtilisin inhibitor. The action of these isoforms is compared using substrates ranging from p-nitrophenylmaltoside through p-nitrophenylmaltoheptaoside. The kcat/Km values are calculated from the substrate consumption. The relative cleavage frequency of different substrate bonds is given by the product distribution. AMY2-1 is 3-8-fold more active than AMY1 toward p-nitrophenylmaltotrioside through p-nitrophenylmaltopentaoside. AMY2-2 is 10-50% more active than AMY2-1. The individual subsite affinities are obtained from these data. The resulting subsite maps of the isoforms are quite similar. They comprise four and six glucosyl-binding subsites towards the reducing and the non-reducing end, respectively. Towards the non-reducing end, the sixth and second subsites have a high affinity, the third has very low or even lack of affinity and the first (catalytic subsite) has a large negative affinity. The affinity declines from moderate to low for subsites 1 through 4 toward the reducing end. AMY1 has clearly a more negative affinity at the catalytic subsite, but larger affinities at both the fourth subsites, compared to AMY2. AMY2-1 has lower affinity than AMY2-2 at subsites adjacent to the catalytic site, and otherwise mostly higher affinities than AMY2-2. Theoretical kcat/Km values show excellent agreement with experimental values.  相似文献   

3.
The role in activity of outer regions in the substrate binding cleft in alpha-amylases is illustrated by mutational analysis of Tyr(105) and Thr(212) localized at subsites -6 and +4 (substrate cleavage occurs between subsites -1 and +1) in barley alpha-amylase 1 (AMY1). Tyr(105) is conserved in plant alpha-amylases whereas Thr(212) varies in these and related enzymes. Compared with wild-type AMY1, the subsite -6 mutant Y105A has 140, 15, and <1% activity (k(cat)/K(m)) on starch, amylose DP17, and 2-chloro-4-nitrophenyl beta-d-maltoheptaoside, whereas T212Y at subsite +4 has 32, 370, and 90% activity, respectively. Thus engineering of aromatic stacking interactions at the ends of the 10-subsite long binding cleft affects activity very differently, dependent on the substrate. Y105A dominates in dual subsite -6/+4 [Y105A/T212(Y/W)]AMY1 mutants having almost retained and low activity on starch and oligosaccharides, respectively. Bond cleavage analysis of oligosaccharide degradation by wild-type and mutant AMY1 supports that Tyr(105) is critical for binding at subsite -6. Substrate binding is improved by T212(Y/W) introduced at subsite +4 and the [Y105A/T212(Y/W)]AMY1 double mutants synergistically enhanced productive binding of the substrate aglycone. The enzymatic properties of the series of AMY1 mutants suggest that longer substrates adopt several binding modes. This is in excellent agreement with computed distinct multiple docking solutions observed for maltododecaose at outer binding areas of AMY1 beyond subsites -3 and +3.  相似文献   

4.
Lignocellulosic biomass is digested in nature by the synergistic activities of enzymes with complementary properties, and understanding synergistic interactions will improve the efficiency of industrial biomass use for sustainable fuels and chemicals. Cel9A and Cel48A from a model bacterium, Thermobifida fusca (TfCel9A and TfCel48A, respectively), are two cellulases with different properties and have previously been shown to synergize well with each other. TfCel9A is a processive endocellulase with relatively high activity on crystalline cellulose. TfCel48A is a reducing end-directed exocellulase with very low activity on crystalline cellulose. Neither enzyme fits its respective role in the classical synergism model of enzymatic cellulose digestion. Using the results of time course, endpoint, and sequential addition activity assays, we propose a model of synergistic cooperation between the two cellulases. TfCel9A is most effective on fresh bacterial cellulose with a presumably uniform surface at the molecular level. Its processive activity likely erodes the surface and thus reduces its own activity. TfCel48A is able to hydrolyze the TfCel9A-modified substrate efficiently and replenish the uniform surface required by TfCel9A, creating a feedback mechanism. The model of synergistic interactions is comparable to an earlier proposed model for Trichoderma reesei Cel7A and Cel7B, but the roles of endo- and exocellulases are reversed, a finding which suggests that bacteria and fungi may have evolved different approaches to efficient biomass degradation.  相似文献   

5.
人尿激酶粗品经苯甲脒亲和柱纯化和Protein-PahSP柱分离后,得到两种分子量的尿激酶(UK),即高分子量尿激酶(HUK)和低分子量尿激酶(LUK).采用考马斯亮蓝法测定蛋白质浓度,纤维蛋白平板法测定活力,测得HUK比活为2.9×105IU/mg蛋白,LUK为3.5×105IU/mg蛋白,活力回收为70%以上.经SDS-PAGE鉴定,HUK和LUK均是单一条带,分子量分别为54kD和33kD.HUK和LUK水解显色底物S2444的动力学常数,分别测得HUK的Km为64μmol/L,Kcat为15s-1,LUK的Km为49μmol/L,kcat为13s-1,LUK的催化效率(Kcat/Km)稍高于HUK.  相似文献   

6.
Tryptophan hydroxylase (TPH) carries out the 5-hydroxylation of L-Trp, which is the rate-limiting step in the synthesis of serotonin. We have prepared and characterized a stable N-terminally truncated form of human TPH that includes the catalytic domain (Delta90TPH). We have also determined the conformation and distances to the catalytic non-heme iron of both L-Trp and the tetrahydrobiopterin cofactor analogue L-erythro-7,8-dihydrobiopterin (BH2) bound to Delta90TPH by using 1H NMR spectroscopy. The bound conformers of the substrate and the pterin were then docked into the modeled three-dimensional structure of TPH. The resulting ternary TPH-BH2-L-Trp structure is very similar to that previously determined by the same methods for the complex of phenylalanine hydroxylase (PAH) with BH2 and L-Phe [Teigen, K., et al. (1999) J. Mol. Biol. 294, 807-823]. In the model, L-Trp binds to the enzyme through interactions with Arg257, Ser336, His272, Phe318, and Phe313, and the ring of BH2 interacts mainly with Phe241 and Glu273. The distances between the hydroxylation sites at C5 in L-Trp and C4a in the pterin, i.e., 6.1 +/- 0.4 A, and from each of these sites to the iron, i.e., 4.1 +/- 0.3 and 4.4 +/- 0.3 A, respectively, are also in agreement with the formation of a transient iron-4a-peroxytetrahydropterin in the reaction, as proposed for the other hydroxylases. The different conformation of the dihydroxypropyl chain of BH2 in PAH and TPH seems to be related to the presence of nonconserved residues, i.e., Tyr235 and Pro238 in TPH, at the cofactor binding site. Moreover, Phe313, which seems to interact with the substrate through ring stacking, corresponds to a Trp residue in both tyrosine hydroxylase and PAH (Trp326) and appears to be an important residue for influencing the substrate specificity in this family of enzymes. We show that the W326F mutation in PAH increases the relative preference for L-Trp as the substrate, while the F313W mutation in TPH increases the preference for L-Phe, possibly by a conserved active site volume effect.  相似文献   

7.
The Pseudomonas family 10 xylanase, Xyl10A, hydrolyzes beta1, 4-linked xylans but exhibits very low activity against aryl-beta-cellobiosides. The family 10 enzyme, Cex, from Cellulomonas fimi, hydrolyzes aryl-beta-cellobiosides more efficiently than does Xyl10A, and the movements of two residues in the -1 and -2 subsites are implicated in this relaxed substrate specificity (Notenboom, V., Birsan, C., Warren, R. A. J., Withers, S. G., and Rose, D. R. (1998) Biochemistry 37, 4751-4758). The three-dimensional structure of Xyl10A suggests that Tyr-87 reduces the affinity of the enzyme for glucose-derived substrates by steric hindrance with the C6-OH in the -2 subsite of the enzyme. Furthermore, Leu-314 impedes the movement of Trp-313 that is necessary to accommodate glucose-derived substrates in the -1 subsite. We have evaluated the catalytic activities of the mutants Y87A, Y87F, L314A, L314A/Y87F, and W313A of Xyl10A. Mutations to Tyr-87 increased and decreased the catalytic efficiency against 4-nitrophenyl-beta-cellobioside and 4-nitrophenyl-beta-xylobioside, respectively. The L314A mutation caused a 200-fold decrease in 4-nitrophenyl-beta-xylobioside activity but did not significantly reduce 4-nitrophenyl-beta-cellobioside hydrolysis. The mutation L314A/Y87A gave a 6500-fold improvement in the hydrolysis of glucose-derived substrates compared with xylose-derived equivalents. These data show that substantial improvements in the ability of Xyl10A to accommodate the C6-OH of glucose-derived substrates are achieved when steric hindrance is removed.  相似文献   

8.
Butyrylcholinesterase is a serine esterase, closely related to acetylcholinesterase. Both enzymes employ a catalytic triad mechanism for catalysis, similar to that used by serine proteases such as alpha-chymotrypsin. Enzymes of this type are generally considered to be inactive at pH values below 5, because the histidine member of the catalytic triad becomes protonated. We have found that butyrylcholinesterase retains activity at pH 相似文献   

9.
The structure of the complex between a catalytically compromised family 10 xylanase and a xylopentaose substrate has been determined by X-ray crystallography and refined to 3.2 A resolution. The substrate binds at the C-terminal end of the eightfold betaalpha-barrel of Pseudomonas fluorescens subsp. cellulosa xylanase A and occupies substrate binding subsites -1 to +4. Crystal contacts are shown to prevent the expected mode of binding from subsite -2 to +3, because of steric hindrance to subsite -2. The loss of accessible surface at individual subsites on binding of xylopentaose parallels well previously reported experimental measurements of individual subsites binding energies, decreasing going from subsite +2 to +4. Nine conserved residues contribute to subsite -1, including three tryptophan residues forming an aromatic cage around the xylosyl residue at this subsite. One of these, Trp 313, is the single residue contributing most lost accessible surface to subsite -1, and goes from a highly mobile to a well-defined conformation on binding of the substrate. A comparison of xylanase A with C. fimi CEX around the +1 subsite suggests that a flatter and less polar surface is responsible for the better catalytic properties of CEX on aryl substrates. The view of catalysis that emerges from combining this with previously published work is the following: (1) xylan is recognized and bound by the xylanase as a left-handed threefold helix; (2) the xylosyl residue at subsite -1 is distorted and pulled down toward the catalytic residues, and the glycosidic bond is strained and broken to form the enzyme-substrate covalent intermediate; (3) the intermediate is attacked by an activated water molecule, following the classic retaining glycosyl hydrolase mechanism.  相似文献   

10.
H Gr?n  K Breddam 《Biochemistry》1992,31(37):8967-8971
Subtilisins are endopeptidases with an extended binding cleft comprising at least eight subsites, and kinetic studies have revealed that subsites distant from the scissile bond are important in determining the substrate preference of the enzymes. With the subtilisin enzyme Savinase, the interdependency of the individual Sn-Pn interactions has been investigated. It was found that the contributions from each subsite interaction to kcat/KM are not always additive. Such interdependency was also observed between subsites which are remote from each other. With a series of substrates covering S6 to S'4 of Savinase, it was observed that favorable amino acids in P1 or, more significantly, P4 of the substrate shield adverse effects of less favorable amino acids at other positions. Thus, an upper limit of kcat/KM was observed, suggesting a limit on the amount of substrate interaction energy which can be converted into transition-state stabilization. Furthermore, with substrates in which all positions had been optimized, an upper limit of kcat/KM (approximately 2 x 10(9) min-1 M-1) was seen, both for a substrate with a high kcat and for one with a low KM. These results emphasize that the design of optimal substrates or substrate-derived inhibitors for endopeptidases preferably should be based on subsite mappings where interdependent substrate-subsite interactions have been eliminated.  相似文献   

11.
Substrate specificity of beta-collagenase from Clostridium histolyticum   总被引:2,自引:0,他引:2  
The substrate specificity of beta-collagenase from Clostridium histolyticum has been investigated by measuring the rate of hydrolysis of more than 50 tri-, tetra-, penta-, and hexapeptides covering the P3 to P3' subsites of the substrate. The choice of peptides was patterned after sequences found in the alpha 1 and alpha 2 chains of type I collagen. Each peptide contained either a 2-furanacryloyl (FA) or cinnamoyl (CN) group in subsite P2 or the 4-nitrophenylalanine (Nph) residue in subsite P1. Hydrolysis of the P1-P1' bond produces an absorbance change in these chromophoric peptides that has been used to quantitate the rates of their hydrolysis under first order conditions ([S] much less than KM) from kcat/KM values have been obtained. The identity of the amino acids in all six subsites (P3-P3') markedly influences the hydrolysis rates. In general, the best substrates have Gly in subsites P3 and P1', Pro or Ala in subsite P2', and Hyp, Arg, or Ala in subsite P3'. This corresponds well with the frequency of occurrence of these residues in the Gly-X-Y triplets of collagen. In contrast, the most rapidly hydrolyzed substrates do not have residues from collagen-like sequences in subsites P2 and P1. For example, CN-Nph-Gly-Pro-Ala is the best known substrate for beta-collagenase with a kcat/KM value of 4.4 X 10(7) M-1 min-1, in spite of the fact that there is neither Pro nor Ala in P2 or Hyp nor Ala in P1. These results indicate that the previously established rules for the substrate specificity of the enzyme require modification.  相似文献   

12.
Barley alpha-amylase 1 (AMY1) hydrolyzed amylose with a degree of multiple attack (DMA) of 1.9; that is, on average, 2.9 glycoside bonds are cleaved per productive enzyme-substrate encounter. Six AMY1 mutants, spanning the substrate binding cleft from subsites -6 to +4, and a fusion protein, AMY1-SBD, of AMY1 and the starch binding domain (SBD) of Aspergillus niger glucoamylase were also analyzed. DMA of the subsite -6 mutant Y105A and AMY1-SBD increased to 3.3 and 3.0, respectively. M53E, M298S, and T212W at subsites -2, +1/+2, and +4, respectively, and the double mutant Y105A/T212W had decreased DMA of 1.0-1.4. C95A (subsite -5) had a DMA similar to that of wild type. Maltoheptaose (G7) was always the major initial oligosaccharide product. Wild-type and the subsite mutants released G6 at 27-40%, G8 at 60-70%, G9 at 39-48%, and G10 at 33-44% of the G7 rate, whereas AMY1-SBD more efficiently produced G8, G9, and G10 at rates similar to, 66%, and 60% of G7, respectively. In contrast, the shorter products appeared with large individual differences: G1, 0-15%; G2, 8-43%; G3, 0-22%; and G4, 0-11% of the G7 rate. G5 was always a minor product. Multiple attack thus involves both longer translocation of substrate in the binding cleft upon the initial cleavage to produce G6-G10, essentially independent of subsite mutations, and short-distance moves resulting in individually very different rates of release of G1-G4. Accordingly, the degree of multiple attack as well as the profile of products can be manipulated by structural changes in the active site or by introduction of extra substrate binding sites.  相似文献   

13.
The specificity and reactivity of complement serine proteases D, B, Bb, C2, and C2a were determined using a series of peptide thioester substrates. The rates of thioester hydrolysis were measured using assay mixtures containing the thiol reagent 4,4'-dithiodipyridine at pH 7.5. Each substrate contained a P1 arginine residue, and the effect of various groups and amino acids in the P2, P3, P4, and P5 positions was determined using kcat/Km values to compare reactivities. Among peptide thioesters corresponding to the activation site sequence in B, dipeptide thioesters containing a P2 lysine residue were the best substrates for D. Extending the chain to include a P3 or P4 amino acid resulted in loss of activity, and neither the tripeptide nor the tetrapeptide containing the cleavage sequence of B was hydrolyzed. Overall, D cleaved fewer substrates and was 2-3 orders of magnitude less reactive than C1s against some thioester substrates. C2 and fragment C2a had comparable reactivities and hydrolyzed peptides containing Leu-Ala-Arg and Leu-Gly-Arg, which have the same sequence as the cleavage sites of C3 and C5, respectively. The best substrates for C2 and C2a were Z-Gly-Leu-Ala-Arg-SBzl and Z-Leu-Gly-Leu-Ala-Arg-SBzl, respectively, where Bzl is benzyl. B was the least reactive among these complement enzymes. The best substrate for B was Z-Lys-Arg-SBzl with a kcat/Km value of 1370 M-1 s-1. The catalytic fragment of B, Bb, had higher activity toward these peptide thioester substrates. The best substrate for Bb was Z-Gly-Leu-Ala-Arg-SBzl with a kcat/Km similar to C2a and 10 times higher than the value for B. Both C2a and Bb were considerably more reactive against C3-like than C5-like substrates. Bovine trypsin hydrolyzed thioester substrates with kcat/Km approximately 10(3) higher than the complement enzymes. These thioester substrates for D, B, and C2 should be quite useful in kinetic and active site studies of the purified enzymes.  相似文献   

14.
A series of 2-aroylthiophenes derived from tienilic acid by replacement of its OCH2COOH substituent with groups bearing various functions have been synthesized and studied as possible substrates of recombinant human liver cytochrome P450s 2C9 and 2C18 expressed in yeast. Whereas only compounds bearing a negative charge acted as substrates of CYP 2C9 and were hydroxylated at position 5 of their thiophene ring at a significant rate, many neutral 2-aroylthiophenes were 5-hydroxylated by CYP 2C18 with kcat values of >2 min-1. Among the various compounds that were studied, those bearing an alcohol function were the best CYP 2C18 substrates. One of them, compound 3, which bears a terminal O(CH2)3OH function, appeared to be a particularly good substrate of CYP 2C18. It was regioselectively hydroxylated by CYP 2C18 at position 5 of its thiophene ring with a KM value of 9 +/- 1 microM and a kcat value of 125 +/- 25 min-1, which are the highest described so far for a CYP 2C. A comparison of the oxidations of 3, by yeast-expressed CYP 1A1, 1A2, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, and 3A5, showed that only CYP 2C8, 2C18, and 2C19 were able to catalyze the 5-hydroxylation of 3. However, the catalytic efficiency of CYP 2C18 for that reaction was considerably higher (kcat/KM value being 3-4 orders of magnitude larger than those found for CYP 2C8 and 2C19). Several human P450s exhibited small activities for the oxidative O-dealkylation of 3. The four recombinant CYP 2Cs were the best catalysts for that reaction (kcat between 1 and 5 min-1) when compared to all the P450s that were tested, even though it is a minor reaction in the case of CYP 2C18. All these results show that compound 3 is a new, selective, and highly efficient substrate for CYP 2C18 that should be useful for the study of this P450 in various organs and tissues. They also suggest some key differences between the active sites of CYP 2C9 and CYP 2C18 for substrate recognition.  相似文献   

15.
Haloalkane dehalogenases: steady-state kinetics and halide inhibition   总被引:2,自引:0,他引:2  
The substrate specificities and product inhibition patterns of haloalkane dehalogenases from Xanthobacter autotrophicus GJ10 (XaDHL) and Rhodococcus rhodochrous (RrDHL) have been compared using a pH-indicator dye assay. In contrast to XaDHL, RrDHL is efficient toward secondary alkyl halides. Using steady-state kinetics, we have shown that halides are uncompetitive inhibitors of XaDHL with 1, 2-dichloroethane as the varied substrate at pH 8.2 (Cl-, Kii = 19 +/- 0.91; Br-, Kii = 2.5 +/- 0.19 mM; I-, Kii = 4.1 +/- 0.43 mM). Because they are uncompetitive with the substrate, halide ions do not bind to the free form of the enzyme; therefore, halide ions cannot be the last product released from the enzyme. The Kii for chloride was pH dependent and decreased more than 20-fold from 61 mM at pH 8.9 to 2.9 mM at pH 6.5. The pH dependence of 1/Kii showed simple titration behavior that fit to a pKa of approximately 7.5. The kcat was maximal at pH 8.2 and decreased at lower pH. A titration of kcat versus pH also fits to a pKa of approximately 7.5. Taken together, these data suggest that chloride binding and kcat are affected by the same ionizable group, likely the imidazole of a histidyl residue. In contrast, halides do not inhibit RrDHL. The Rhodococcus enzyme does not contain a tryptophan corresponding to W175 of XaDHL, which has been implicated in halide ion binding. The site-directed mutants W175F and W175Y of XaDHL were prepared and tested for halide ion inhibition. Halides do not inhibit either W175F or W175Y XaDHL.  相似文献   

16.
A simple method useful for the joint evaluation of substrate partitioning and kinetic parameters for reactions catalyzed by enzymes entrapped in reverse micelles is proposed. The method is applied to the hydrolysis of 2-naphthyl acetate (2-NA) catalyzed by lipase in sodium 1,4-bis(2-ethylhexyl) sulfosuccinate (AOT)/buffer/heptane reverse micellar solutions. In the presence of micelles, the relationship between the initial reaction rate and the analytical concentration of 2-NA was dependent on AOT concentration at a constant W ([water]/[AOT]) value. The dependence of the initial reaction rate profiles with [AOT] was analyzed according with the method proposed to obtain the partition constant of 2-NA between the micelles and the external solvent, Kp. A value of Kp = 2.7 L mol(-1) was obtained irrespective of the water content of the micelles (W from 5 to 20). The catalytic rate constant kcat in the micellar solutions was independent of [AOT] but slightly decreased with an increase in W from 2 x 10(-6) mol g(-1) s(-1) at W = 5 to 1.2 x 10(-6) mol g(-1) s(-1) at W = 20. The apparent Michaelis constant determined in terms of the analytical concentration of 2-NA increased with [AOT] at a given W and moderately decreased with W at a fixed [AOT]. The increase with [AOT] is accounted for by considering the partitioning of the substrate. After correction for the partitioning of 2-NA values of (Km)corr were obtained as 3.9 x 10(-3) mol L(-1) (W = 5), 4.6 x 10(-3) mol L(-1) (W = 10), 2.3 x 10(-3) mol L(-1) (W = 15), and 1.7 x 10(-3) mol L(-1) (W = 20). The rate parameters in the aqueous phase in the absence of micelles, were obtained as (kcat)aq = 7.9 x 10(-6) mol g(-1) s(-1) and (Km)aq = 2.5 x 10(-3) mol L(-1). In order to compare the efficiency of the enzyme in the micellar solution with that in aqueous phase, the values of (Km)corr were in turn corrected to take into account differences in the substrate activity, obtaining so a set of (Km)*corr values. The efficiency of the enzyme in the micellar solution, defined as the ratio, kcat/(Km)*corr, was found to be higher than in the aqueous phase, even at high water contents (W = 20). This higher efficiency is due to a significant decrease in (Km)*corr values.  相似文献   

17.
Enzymatic features that determine transglycosylating activity have been investigated through site-directed mutagenesis studies on two family 18 chitinases, ChiA and ChiB from Serratia marcescens, with inherently little transglycosylation activity. The activity was monitored for the natural substrate (GlcNAc)(4) using mass spectrometry and HPLC. Mutation of the middle Asp in the diagnostic DxDxE motif, which interacts with the catalytic Glu during the catalytic cycle, yielded the strongly transglycosylating mutants ChiA-D313N and ChiB-D142N, respectively. Mutation of the same Asp(313/142) to Ala or the mutation of Asp(311/140) to either Asn or Ala had no or much smaller effects on transglycosylating activity. Mutation of Phe(396) in the +2 subsite of ChiA-D313N to Trp led to a severalfold increase in transglycosylation rate while replacement of aromatic residues with Ala in the aglycon (sugar acceptor-binding) subsites of ChiA-D313N and ChiB-D142N led to a clear reduction in transglycosylating activity. Taken together, these results show that the transglycosylation properties of family 18 chitinases may be manipulated by mutations that affect the configuration of the catalytic machinery and the affinity for sugar acceptors. The hypertransglycosylating mutant ChiA-D313N-F396W may find applications for synthetic purposes.  相似文献   

18.
Granzyme B has been purified to homogeneity from the granules of a human cytolytic lymphocyte line, Q31, in an enzymatically active form by a three-step procedure. Q31 granzyme B hydrolyzed Na-t-butyloxycarbonyl-L-alanyl-L-alanyl-L-aspartyl (Boc-Ala-Ala-Asp) thiobenzyl ester with a kcat of 11 +/- 5 mol/s/mol enzyme and catalytic efficiency kcat/Km of 76,000 +/- 44,000 M-1 s-1. The hydrolysis of Boc-Ala-Ala-Asp thiobenzyl ester by crude Q31 Percoll fractions paralleled the tryptase activity for granule-containing fractions, which showed that granzyme B was associated with granules. When chromatographed on Sephacryl S-300, Q31 granzyme B eluted in two broad bands corresponding to dimer and monomer, both of which electrophoresed at 35 kDa in reducing NaDodSo4 polyacrylamide, and both of which showed a lag phase in assays. The lag phase in assays could be extended with 0.03 mM pepstatin. Upon elution from ion-exchange chromatography Q31 granzyme B electrophoresed at 32 kDa in reducing NaDodSO4 polyacrylamide and did not have a lag phase in assays. The amino-terminal sequence of the 32-kDa Q31 granzyme B was identical to four other human cytotoxic T-lymphocyte granzymes B in 18 of 18 positions sequenced. Purified Q31 granzyme B had a preference for substrates with Glu or Asp as the residue amino-terminal to the scissile bond; little or no activity was noted with oligopeptide substrates for trypsin-like, chymotrypsin-like, and elastase-like proteases. Human plasma alpha 1-protease inhibitor, human plasma alpha 2-protease macroglobulin, soybean and lima-bean trypsin inhibitors, bovine aprotinin, phosphoramidon, and chymostatin inhibited Q31 granzyme B. The inhibition by alpha 1-protease inhibitor was rapid enough to be of physiological significance.  相似文献   

19.
Two homologous Delta5-3-ketosteroid isomerases from Comamonas testosteroni (TI-WT) and Pseudomonas putida biotype B (PI-WT) exhibit different pH activity profiles. TI-WT loses activity below pH 5.0 due to the protonation of the conserved catalytic base, Asp-38, while PI-WT does not. Based on the structural analysis of PI-WT, the critical catalytic base, Asp-38, was found to form a hydrogen bond with the indole ring NH of Trp-116, which is homologously replaced with Phe-116 in TI-WT. To investigate the role of Trp-116, we prepared the F116W mutant of TI-WT (TI-F116W) and the W116F mutant of PI-WT (PI-W116F) and compared kinetic parameters of those mutants at different pH levels. PI-W116F exhibited significantly decreased catalytic activity at acidic pH like TI-WT, whereas TI-F116W maintained catalytic activity at acidic pH like PI-WT and increased the kcat/Km value by 2.5- to 4.7-fold compared with TI-WT at pH 3.8. The crystal structure of TI-F116W clearly showed that the indole ring NH of Trp-116 could form a hydrogen bond with the carboxyl oxygen of Asp-38 like that of PI-WT. The present results demonstrate that the activities of both PI-WT and TI-F116W at low pH were maintained by a tryptophan, which was able not only to lower the pKa value of the catalytic base but also to increase the substrate affinity. This is one example of the strategy nature can adopt to evolve the diversity of the catalytic function in the enzymes. Our results provide insight into deciphering the molecular evolution of the enzyme and creating novel enzymes by protein engineering.  相似文献   

20.
St Maurice M  Bearne SL 《Biochemistry》2002,41(12):4048-4058
Mandelate racemase (EC 5.1.2.2) from Pseudomonas putida catalyzes the interconversion of the two enantiomers of mandelic acid with remarkable proficiency, producing a rate enhancement exceeding 15 orders of magnitude. The rates of the forward and reverse reactions catalyzed by the wild-type enzyme and by a sluggish mutant (N197A) have been studied in the absence and presence of several viscosogenic agents. A partial dependence on relative solvent viscosity was observed for values of kcat and kcat/Km for the wild-type enzyme in sucrose-containing solutions. The value of kcat for the sluggish mutant was unaffected by varying solvent viscosity. However, sucrose did have a slight activating effect on mutant enzyme efficiency. In the presence of the polymeric viscosogens poly(ethylene glycol) and Ficoll, no effect on kcat or kcat/Km for the wild-type enzyme was observed. These results are consistent with both substrate binding and product dissociation being partially rate-determining in both directions. The viscosity variation method was used to estimate the rate constants comprising the steady-state expressions for kcat and kcat/Km. The rate constant for the conversion of bound (R)-mandelate to bound (S)-mandelate (k2) was found to be 889 +/- 40 s(-1) compared with a value of 654 +/- 58 s(-1) for kcat in the same direction. From the temperature dependence of Km (shown to equal K(S)), k2, and the rate constant for the uncatalyzed reaction [Bearne, S. L., and Wolfenden, R. (1997) Biochemistry 36, 1646-1656], we estimated the enthalpic and entropic changes associated with substrate binding (DeltaH = -8.9 +/- 0.8 kcal/mol, TDeltaS = -4.8 +/- 0.8 kcal/mol), the activation barrier for conversion of bound substrate to bound product (DeltaH# = +15.4 +/- 0.4 kcal/mol, TDeltaS# = +2.0 +/- 0.1 kcal/mol), and transition state stabilization (DeltaH(tx) = -22.9 +/- 0.8 kcal/mol, TDeltaS(tx) = +1.8 +/- 0.8 kcal/mol) during mandelate racemase-catalyzed racemization of (R)-mandelate at 25 degrees C. Although the high proficiency of mandelate racemase is achieved principally by enthalpic reduction, there is also a favorable and significant entropic contribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号