首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The levels of Krebs cycle, glyoxylate cycle, and certain other enzymes were measured in a wild-type strain and in seven groups of acetate-nonutilizing (acu) mutants of Neurospora crassa, both after growth on a medium containing sucrose and after a subsequent 6-hr incubation in a similar medium, containing acetate as the sole source of carbon. In the wild strain, incubation in acetate medium caused a rise in the levels of isocitrate lyase, malate synthase, phosphoenolpyruvate carboxykinase, acetyl-coenzyme A synthetase, nicotinamide adenine dinucleotide phosphate-linked isocitrate dehydrogenase, citrate synthase, and fumarate hydratase. Isocitrate lyase activity was absent in acu-3 mutants; acu-5 mutants lacked acetyl-coenzyme A synthetase activity; and no oxoglutarate dehydrogenase activity (or only low levels) could be detected in acu-2 and acu-7 mutants. In acu-6 mutants, phosphoenolpyruvate carboxykinase activity was either very low or absent. No specific biochemical deficiencies could be attributed to the acu-1 and acu-4 mutations. The role of several of these enzymes during growth on acetate is discussed.  相似文献   

2.
The mechanism of the aerobic dark assimilation of acetate in the photoheterotrophically grown purple nonsulfur bacteriumRhodospirillum rubrum was studied. Both in the light and in the dark, acetate assimilation inRsp. rubrum cells, which lack the glyoxylate pathway, was accompanied by the excretion of glyoxylate into the growth medium. The assimilation of propionate was accompanied by the excretion of pyruvate. Acetate assimilation was found to be stimulated by bicarbonate, pyruvate, the C4-dicarboxylic acids of the Krebs cycle, and glyoxylate, but not by propionate. These data implied that the citramalate (CM) cycle inRsp. rubrum cells can function as an anaplerotic pathway under aerobic dark conditions. This supposition was confirmed by respiration measurements. The respiration of cells oxidizing acetate depended on the presence of CO2 in the medium. The fact that the intermediates of the CM cycle (citramalate and mesaconate) markedly inhibited acetate assimilation but had almost no effect on cell respiration indicated that citramalate and mesaconate were intermediates of the acetate assimilation pathway. The inhibition of acetate assimilation and cell respiration by itaconate was due to its inhibitory effect on propionyl-CoA carboxylase, an enzyme of the CM cycle. The addition of 5 mM itaconate to extracts ofRsp. rubrum cells inhibited the activity of this enzyme by 85%. The data obtained suggest that the CM cycle continues to function inRsp. rubrum cells that have been grown anaerobically in the light and then transferred to the dark and incubated aerobically.  相似文献   

3.
Attempts to determine the rate of uptake of β-thujaplicin (TH) and its 1:1 rupric chelate (CuT+) in yeast cells showed in both cases a very rapid equilibration. In the concentration range where respiration is inhibited, most of the TH added was still present in the extracellular fluid, while CuT+ was almost completely removed. The inhibition of glucose respiration by TH was Completely removed when the cells were repeatedly washed, while inhibition of acetate respiration remained. Washing of CuT+ inhibited cells did not release the inhibition of either glucose or acetate respiration. The succinic acid dehydrogenase activity was the same in homogenates of both CuT+ and TH inhibited cells as in homogenates of non-inhibited cells. Prior to homogenization acetate respiration was inhibited by 60 to 70 per cent by both inhibitors. Alcohol dehydrogenase activity was likewise not affected by TH and CuT+. The formation of acetyl coenzyme A was inhibited by both TH and CuT+ to about the same extent as the respiration of acetate. It is concluded that TH inhibits the acetate respiration by inhibiting the formation of acetyl coenzyme A from acetate. The same site of action is plausible also for CuT+ but in that case, additional sites of inhibition may also be located in the reactions in the Krebs cycle.  相似文献   

4.
Oxidation of ethanol, acetaldehyde, and acetate in Rhodococcus erythropolis EK-1, producer of surface-active substances (SAS), is catalyzed by N,N-dimethyl-4-nitrosoaniline (DMNA)-dependent alcohol dehydrogenase, NAD+/NADP+-dependent dehydrogenases (optimum pH 9.5), and acetate kinase/acetyl-CoA-synthetase, respectively. The glyoxylate cycle and complete tricarboxylic acid cycle function in the cells of R. erythropolis EK-1 growing on ethanol; the synthesis of phosphoenolpyruvate (PEP) is provided by the two key enzymes of gluconeogenesis, PEP carboxykinase and PEP synthetase. Introduction of citrate (0.1%) and fumarate (0.2%) into the cultivation medium of R. erythropolis EK-1 containing 2% ethanol resulted in the 1.5-and 3.5-fold increase in the activities of isocitrate lyase and PEP synthetase (the key enzymes of the glyoxylate cycle and gluconeogenesis branch of metabolism, respectively) and of lipid synthesis, as evidenced by the 1.5-fold decrease of isocitrate dehydrogenase activity. In the presence of fumarate and citrate, the indices of SAS synthesis by strain R. erythropolis EK-1 grown on ethanol increased by 40–100%.  相似文献   

5.
We investigated oxidative processes in mitochondria of Saccharomyces cerevisiae grown on ethanol in the course of chronological aging. We elaborated a model of chronological aging that avoids the influence of exhaustion of medium, as well as the accumulation of toxic metabolites during aging. A decrease in total respiration of cells and, even more, of the contribution of respiration coupled with ATP-synthesis was observed during aging. Aging is also related with the decrease of the contribution of malonate-insensitive respiration. Activities of citrate-synthase (CS), alpha-ketoglutarate dehydrogenase (KGDH) and malate dehydrogenase (MDH) were threefold decreased. The activity of NADP-dependent isocitrate dehydrogenase (NADP-ICDH) decreased more significantly, while the activity of NAD-dependent isocitrate dehydrogenase (NAD-ICDH) fell even greater, being completely inactivated on the third week of aging. In contrast, succinate dehydrogenase (SDH), enzymes of glyoxylate cycle (GCL) (isocitrate lyase (ICL) and malate synthase (MLS)), and enzymes of ethanol oxidation (alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ACDH)), were activated by 50% or more. The behavior of oxidative enzymes and metabolic pathways are apparently inherent to a more viable, long-lived cells in population, selected in the course of chronological aging. This selection allows cells to reveal the mechanism of their higher viability as caused by shunting of complete Krebs cycle by glyoxylate cycle, with a concomitant increased rate of the most efficient energy source, namely succinate formation and oxidation. Thiobarbituric-reactive species (TAR species) increased during aging. We supposed that to be the immediate cause of damage of a part of yeast population. These data show that a greater succinate contribution to respiration in more active cells is a general property of yeast and animal tissues.  相似文献   

6.
M Yamada  B U Feucht    M H Saier  Jr 《Journal of bacteriology》1987,169(12):5416-5422
The gut operon was subcloned into various plasmid vectors (M. Yamada and M. H. Saier, Jr., J. Bacteriol. 169:2990-2994, 1987). Constitutive expression of the plasmid-encoded operon prevented utilization of alanine and Krebs cycle intermediates when they were provided as sole sources of carbon for growth. Expression of the gutB gene alone (encoding the glucitol enzyme III), subcloned downstream from either the lactose promoter or the tetracycline resistance promoter, inhibited utilization of the same compounds. On the other hand, overexpression of the gutA gene (encoding the glucitol enzyme II) inhibited the utilization of a variety of sugars as well as alanine and Krebs cycle intermediates by an apparently distinct mechanism. Phosphoenolpyruvate carboxykinase activity was greatly reduced in cells expressing high levels of the cloned gutB gene but was nearly normal in cells expressing high levels of the gutA gene. A chromosomal mutation in the gutR gene, which gave rise to constitutive expression of the chromosomal gut operon, also gave rise to growth inhibition on gluconeogenic substrates as well as reduced phosphoenolpyruvate carboxykinase activity. Phosphoenolpyruvate synthase activity in general varied in parallel with that of phosphoenolpyruvate carboxykinase. These results suggest that high-level expression of the glucitol enzyme III of the phosphotransferase system can negatively regulate gluconeogenesis by repression or inhibition of the two key gluconeogenic enzymes, phosphoenolpyruvate carboxykinase and phosphoenolpyruvate synthase.  相似文献   

7.
Reperfusion of ischemic myocardial tissue results in an increase in mitochondrial free radical production and declines in respiratory activity. The effects of ischemia and reperfusion on the activities of Krebs cycle enzymes, as well as enzymes involved in electron transport, were evaluated to provide insight into whether free radical events are likely to affect enzymatic and mitochondrial function(s). An in vivo rat model was utilized in which ischemia is induced by ligating the left anterior descending coronary artery. Reperfusion, initiated by release of the ligature, resulted in a significant decline in NADH-linked ADP-dependent mitochondrial respiration as assessed in isolated cardiac mitochondria. Assays of respiratory chain complexes revealed reduction in the activities of complex I and, to a lesser extent, complex IV exclusively during reperfusion, with no alterations in the activities of complexes II and III. Moreover, Krebs cycle enzymes alpha-ketoglutarate dehydrogenase and aconitase were susceptible to reperfusion-induced inactivation with no decline in the activities of other Krebs cycle enzymes. The decline in alpha-ketoglutarate dehydrogenase activity during reperfusion was associated with a loss in native lipoic acid on the E2 subunit, suggesting oxidative inactivation. Inhibition of complex I in vitro promotes free radical generation. alpha-Ketoglutarate dehydrogenase and aconitase are uniquely susceptible to in vitro oxidative inactivation. Thus, our results suggest a scenario in which inhibition of complex I promotes free radical production leading to oxidative inactivation of alpha-ketoglutarate dehydrogenase and aconitase.  相似文献   

8.
Electrophoretically homogenous isoforms of malate dehydrogenase with different quaternary structure were prepared from Rhodopseudomonas palustris strain f8pt cultured photolithoheterotrophically on malate and acetate. By selective inhibition of the tricarboxylic acid cycle or glyoxylate cycle, it was shown that the dimeric isoform of the enzyme is responsible for Krebs cycle functioning and the tetrameric isoform is involved in functioning of the glyoxylate cycle.  相似文献   

9.
A single-gene nuclear mutant has been isolated in Saccharomyces cerevisiae which cannot grow on minimal medium supplemented with ethanol, acetate, pyruvate, aspartate, or oxaloacetate as sole carbon sources. It will grow on complete medium with these carbon sources, and on minimal medium with dextrose as carbon source. The only supplement which will permit growth on minimal medium with ethanol or pyruvate is aspartate, so the mutant is an aspartate auxotroph when grown on these nonfermentable substrates. It exhibits enhanced levels of phosphoenolpyruvate carboxykinase (EC 4.1.1.49) when grown on dextrose. The mutant can survive as an alcohol dehydrogenase-negative, indicating that the defect is not in the Krebs Cycle or in electron transport. When grown on pyruvate, it produces two to three times as much free alanine and half as much aspartate plus asparagine as the wild type. Two different assays show that the mutant phenotype is due to a deficiency of pyruvate carboxylase (EC 6.4.1.1), an important anaplerotic enzyme. Inferences that can be drawn from the characteristics of this mutant include (a) the glyoxylate cycle is probably located entirely outside the mitochondria, (b) the inner mitochondrial membrane appears to be impermeable to oxaloacetate, and (c) a succinate-malate exchange across the inner mitochondrial membrane connects the glyoxylate and Krebs cycles when yeast is grown on minimal medium with ethanol as a sole carbon source.  相似文献   

10.
These studies were undertaken to determine the mechanism by which intravenously administered lead salts inhibit hepatic gluconeogenesis. Within 1 h after the intravenous administration of lead acetate (10 mg), there is 97% inhibition of CO2 fixation in isolated rat liver mitochondria. This effect is concentration-dependent. The induction of phosphoenolpyruvate carboxykinase activity observed with starvation was also inhibited by intravenously administered lead acetate, but the activities of pyruvate kinase, glucose 6-phosphate dehydrogenase and pyruvate carboxylase were unaffected, as was the oxidation of palmitate and palmitoyl-CoA by mitochondria from Pb2+-treated animals. The addition of reduced glutathione to mitochondria from Pb2+-treated animals had no effect on the inhibited CO2 fixation. ATP concentrations in mitochondria from Pb2+-treated animals are decreased and the dose-response relationships for the effect of Pb2+ on CO2 fixation and ATP concentrations correspond. We conclude that the decrease in mitochondrial ATP in Pb2+-treated animals is probably responsible for the marked inhibition ov CO2 fixation, and hence the impairment of gluconeogenesis from alanine, lactate and pyruvate observed by others.  相似文献   

11.
12.
The cytosolic factors that influence mitochondrial oxidative phosphorylation rates are relatively unknown. In this report, we examine the effects of phosphoenolpyruvate (PEP), a glycolytic intermediate, on mitochondrial function. It is reported here that in rat heart mitochondria, PEP delays the onset of state 3 respiration in mitochondria supplied with either NADH-linked substrates or succinate. However, the maximal rate of state 3 respiration is only inhibited when oxidative phosphorylation is supported by NADH-linked substrates. The capacity of PEP to delay and/or inhibit state 3 respiration is dependent upon the presence or absence of ATP. Inhibition of state 3 is exacerbated in uncoupled mitochondria, with a 40% decrease in respiration seen with 0.1mM PEP. In contrast, ATP added exogenously or produced by oxidative phosphorylation completely prevents PEP-mediated inhibition. Mechanistically, the results support the conclusion that the main effects of PEP are to impede ADP uptake and inhibit NADH oxidation. By altering the NADH/NAD(+) status of mitochondria, it is demonstrated that PEP enhances succinate dehydrogenase activity and increase free radical production. The results of this study indicate PEP may be an important modulator of mitochondrial function under conditions of decreased ATP.  相似文献   

13.
14.
Metabolism of [3-13C]pyruvate in TCA cycle mutants of yeast.   总被引:1,自引:0,他引:1  
The utilization of pyruvate and acetate by Saccharomyces cerevisiae was examined using 13C and 1H NMR methodology in intact wild-type yeast cells and mutant yeast cells lacking Krebs tricarboxylic acid (TCA) cycle enzymes. These mutant cells lacked either mitochondrial (NAD) isocitrate dehydrogenase (NAD-ICDH1),alpha-ketoglutarate dehydrogenase complex (alpha KGDC), or mitochondrial malate dehydrogenase (MDH1). These mutant strains have the common phenotype of being unable to grow on acetate. [3-13C]-Pyruvate was utilized efficiently by wild-type yeast with the major intermediates being [13C]glutamate, [13C]acetate, and [13C]alanine. Deletion of any one of these Krebs TCA cycle enzymes changed the metabolic pattern such that the major synthetic product was [13C]galactose instead of [13C]glutamate, with some formation of [13C]acetate and [13C]alanine. The fact that glutamate formation did not occur readily in these mutants despite the metabolic capacity to synthesize glutamate from pyruvate is difficult to explain. We discuss the possibility that these data support the metabolon hypothesis of Krebs TCA cycle enzyme organization.  相似文献   

15.
[2-13C]Succinate has been used to examine the metabolic carbon flux from the Krebs cycle in rat renal proximal convoluted tubular (PCT) cells under physiological and pathophysiological conditions. Therefore, we developed a mathematical model that enabled us to determine the metabolic fluxes of the Krebs cycle. A mathematical model for the calculation of flux from [2-13C]succinate was used to determine fluxes in rat PCT cells during chronic acidosis in the presence and absence of 0.1 mM angiotensin II. The relative carbon efflux via glutamate dehydrogenase in rat renal PCT cells increases during chronic acidosis from 0.27 to 0.39, whereas this carbon flux is not affected by the presence of peptide hormone angiotensin II in the incubation medium. The fraction of intermediate 13C-labelled oxaloacetate transformed into the phosphoenolpyruvate and aspartate pools increases significantly from 0.41 to 0.57 in the case of chronic acidosis. The carbon efflux is not affected by angiotensin II. The 13C-NMR data also show that the carbon efflux through phosphoenolpyruvate carboxykinase increases from 0.35 to 0.56 in rat renal PCT cells derived from chronic acidotic animals, as well as in the presence of angiotensin II. The present results indicate that angiotensin II affects only the flux through phosphoenolcarboxykinase, whereas chronic acidosis increases the flux through phosphoenolpyruvate carboxykinase as well as the gluconeogenic flux.  相似文献   

16.
We have studied the growth on acetate, the metabolism of acetate enzymes, and respiration of a series of citrate synthase mutants of Saccharomyces cerevisiae. The results confirmed and extended our previous observation that cytosolic citrate synthase is not necessary for growth on acetate. Deletion of mitochondrial citrate synthase (CS1) protein resulted in changes in metabolites, decrease in the amounts of pyruvate and alpha-ketoglutarate dehydrogenase complexes, reduced mitochondrial respiration of citrate and isocitrate, and an inability to grow on acetate. Using site-directed mutagensis, we constructed two separate CS1 proteins with mutations in the enzyme's active site. The mitochondria of cells carrying either site-directed mutagenized CS1 contained the inactive citrate synthase protein. With one mutant in which His313 was replaced with a glycine (CS1/H313G), growth on acetate was restored, and mitochondrial respiration of citrate and isocitrate increased toward parental levels as did the levels of several enzymes. With the other mutant CS1 in which Asp414 was replaced with a glycine (CS1/D414G), no growth on acetate or changes in other parameters was observed. We propose that the characteristics of the strain carrying the CS1 with a H313G mutation result from the formation of an intact Krebs cycle complex by the inactive but structurally unchanged H313G protein.  相似文献   

17.
18.
Mitochondria prepared from the livers of guinea pig, chicken, and pigeon all actively synthesize phosphoenolpyruvate from oxalacetate and GTP, utilizing phosphoenolpyruvate carboxykinase. It was previously shown (Wilson, D. F., Erecińska, M., and Schramm, V. L. (1983). J. Biol. Chem. 258, 10464-10473) that phosphoenolpyruvate carboxykinase is freely reversible and that, in conjunction with nucleoside diphosphate kinase and malate dehydrogenase, which are also present in the mitochondria, it can be used to measure the intramitochondrial [ATPfree]/[ADPfree]. In this study, synthesis of phosphoenolpyruvate by guinea pig liver mitochondria was studied under conditions for which the only source of GTP was extramitochondrial ATP via adenine nucleotide translocase and nucleoside diphosphate kinase (the mitochondria were treated with rotenone, oligomycin, uncoupler, and fluorocitrate). When the extramitochondrial [ATP]/[ADP] was greater than the intramitochondrial [ATPfree]/[ADPfree] calculated from the phosphoenolpyruvate carboxykinase reaction, there was net synthesis of phosphoenolpyruvate, but when it was less, there was net disappearance of phosphoenolpyruvate. Thus, the intramitochondrial [ATPfree]/[ADPfree] was equal to the extramitochondrial value at the point of reversal of the phosphoenolpyruvate carboxykinase reaction. This equality of the intra- and extramitochondrial adenine nucleotide ratios occurred with a measured mitochondrial membrane potential of approximately -36 mV, whereas in the previous experiments, equality was observed for conditions in which the measured membrane potential was -111 to -125 mV. Thus, adenine nucleotide translocation was not dependent on the transmembrane electrical potential and must, therefore, have occurred by electroneutral exchange.  相似文献   

19.
To determine enzymatic activities in the thermotolerant strain K1 (formerly "Sulfobacillus thermosulfidooxidans subsp. thermotolerans"), it was grown in a mineral medium with (1) thiosulfate and Fe2+ or pyrite (autotrophic conditions), (2) Fe2+, thiosulfate, and yeast extract or glucose (mixotrophic conditions), and (3) yeast extract (heterotrophic conditions). Cells grown mixo-, hetero-, and autotrophically were found to contain enzymes of the tricarboxylic acid (TCA) cycle, as well as malate synthase, an enzyme of the glyoxylate cycle. Cells grown organotrophically in a medium with yeast extract exhibited the activity of the key enzymes of the Embden-Meyerhof-Parnas and Entner-Doudoroff pathways. An increased content of carbon dioxide (up to 5 vol%) in the auto- and mixotrophic media enhanced the activity of the enzymes involved in the terminal reactions of the TCA cycle and the enzymes of the pentose phosphate pathway. Carbon dioxide was fixed in the Calvin cycle. The highest activity of ribulose bisphosphate carboxylase was detected in cells grown autotrophically at the atmospheric content of CO2 in the air used for aeration of the growth medium. The activities of pyruvate carboxylase, phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase, and phosphoenolpyruvate carboxytransphosphorylase decreased with the increasing content of CO2 in the medium.  相似文献   

20.
Day respiration of illuminated C(3) leaves is not well understood and particularly, the metabolic origin of the day respiratory CO(2) production is poorly known. This issue was addressed in leaves of French bean (Phaseolus vulgaris) using (12)C/(13)C stable isotope techniques on illuminated leaves fed with (13)C-enriched glucose or pyruvate. The (13)CO(2) production in light was measured using the deviation of the photosynthetic carbon isotope discrimination induced by the decarboxylation of the (13)C-enriched compounds. Using different positional (13)C-enrichments, it is shown that the Krebs cycle is reduced by 95% in the light and that the pyruvate dehydrogenase reaction is much less reduced, by 27% or less. Glucose molecules are scarcely metabolized to liberate CO(2) in the light, simply suggesting that they can rarely enter glycolysis. Nuclear magnetic resonance analysis confirmed this view; when leaves are fed with (13)C-glucose, leaf sucrose and glucose represent nearly 90% of the leaf (13)C content, demonstrating that glucose is mainly directed to sucrose synthesis. Taken together, these data indicate that several metabolic down-regulations (glycolysis, Krebs cycle) accompany the light/dark transition and emphasize the decrease of the Krebs cycle decarboxylations as a metabolic basis of the light-dependent inhibition of mitochondrial respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号