首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The membrane-bound sialyltransferase obtained from Escherichia coli K-235 grown in a chemically defined medium (ideal for colominic acid production) was studied. The in vivo half-life calculated for this enzyme was 20 h. Kinetic tests revealed (at 33 degrees C and pH 8.3) hyperbolic behaviour with respect to CMP-Neu5Ac (Km250 microM) and a transition temperature at 31.3 degrees C. The enzyme was inhibited by NH4+, some divalent cations and by several agents that react with thiol groups. Detergents and fatty acids also inhibited the sialyltransferase activity. In vitro synthesis of colominic acid is strongly inhibited by CMP by blocking the incorporation of [14C]Neu5Ac into a protein-complex intermediate and therefore into free polymer. CDP and CTP also inhibited (91% and 84%) this enzyme activity whereas cytosine and cytidine had no effect. CMP inhibition corresponded to a competitive model the calculated Ki was 30 microM. Incubations of protein[14C]Neu5Ac with CMP, CDP and CTP led to de novo synthesis of CMP-[14C]Neu5Ac. The presence of colominic acid, which usually displaces the reaction equilibrium towards polymer synthesis, did not affect this de novo CMP-[14C]Neu5Ac formation. CMP also inhibited in vivo colominic acid biosynthesis.  相似文献   

2.
Using nuclear magnetic resonance (NMR) based methods, including residual dipolar coupling restraints, we have determined the solution structure of the hypothetical Deinococcus radiodurans Nudix protein DR0079 (171 residues, MW = 19.3 kDa). The protein contains eight beta-strands and three alpha-helices organized into three subdomains: an N-terminal beta-sheet (1-34), a central Nudix core (35-140), and a C-terminal helix-turn-helix (141-171). The Nudix core and the C-terminal helix-turn-helix form the fundamental fold common to the Nudix family, a large mixed beta-sheet sandwiched between alpha-helices. The residues that compose the signature Nudix sequence, GX5EX7REUXEEXGU (where U = I, L, or V and X = any amino acid), are contained in a turn-helix-turn motif on the face of the mixed beta-sheet. Chemical shift mapping experiments suggest that DR0079 binds Mg2+. Experiments designed to determine the biological function of the protein indicate that it is not a type I isopentenyl-diphosphate delta-isomerase and that it does not bind alpha,beta-methyleneadenosine 5'-triphosphate (AMPCPP) or guanosine 5'-[beta,gamma-imido]triphosphate (GMPPNP). In this article, the structure of DR0079 is compared to other known Nudix protein structures, a potential substrate-binding surface is proposed, and its possible biological function is discussed.  相似文献   

3.
GDP-mannose glycosyl hydrolase (GDPMH) catalyzes the hydrolysis of GDP-mannose and GDP-glucose to GDP and sugar by substitution with inversion at C1 of the sugar. The enzyme has a modified Nudix motif and requires one divalent cation for activity. The 1.3 A X-ray structure of the GDPMH-Mg(2+)-GDP complex, together with kinetic, mutational, and NMR data, suggests a mechanism for the GDPMH reaction. Several residues and the divalent cation strongly promote the departure of the GDP leaving group, supporting a dissociative mechanism. Comparison of the GDPMH structure with that of a typical Nudix hydrolase suggests how sequence changes result in the switch of catalytic activity from P-O bond cleavage to C-O bond cleavage. Changes in the Nudix motif result in loss of binding of at least one Mg(2+) ion, and shortening of a loop by 6 residues shifts the catalytic base by approximately 10 A.  相似文献   

4.
Crude microsomal preparations from hen oviduct catalyze the transfer of [32P]phosphate from [gamma-32P]CTP or [gamma-32P]dCTP to endogenous dolichol, forming dolichyl [32P]monophosphate. The oviduct kinase activity assayed with [gamma-32P]CTP is stimulated by divalent cations and exogenous dolichol. The enzymatic formation of dolichyl [32P]monophosphate is inhibited by dCDP and CDP, but not CMP, ADP, GDP, or UDP. The hen oviduct kinase is inhibited 50% by the addition of 38 microM CDP, but 101 microM dCDP is required for 50% inhibition. The amount of dolichol kinase activity in chick oviduct microsomes increases 3.7-fold within 10 days of estrogen administration. The hormone-induced increase in kinase activity is also observed when membranes from untreated and estrogen-treated chicks are assayed in the presence of saturating levels of exogenous dolichol. The microsomal preparations from oviducts of untreated chicks and fully induced birds both exhibit an apparent Km value of 7.1 microM for CTP. An apparent Km of 14 microM has been determined for dCTP. Thus, the developmental change in dolichol kinase activity does not appear to be the result of a difference in the amount of available endogenous dolichol or an alteration in the reactive site for the nucleoside triphosphate substrate, but is probably due to an increased level of the enzyme.  相似文献   

5.
Orf135 from Escherichia coli is a new member of the Nudix (nucleoside diphosphate linked to some other moiety, x) hydrolase family of enzymes with substrate specificity for CTP, dCTP, and 5-methyl-dCTP. The gene has been cloned for overexpression, and the protein has been overproduced, purified, and characterized. Orf135 is most active on 5-methyl-dCTP (k(cat)/K(m) = 301,000 M(-1) s(-1)), followed by CTP (k(cat)/K(m) = 47,000 M(-1) s(-1)) and dCTP (k(cat)/K(m) = 18,000 M(-1) s(-1)). Unlike other nucleoside triphosphate pyrophophohydrolases of the Nudix hydrolase family discovered thus far, Orf135 is highly specific for pyrimidine (deoxy)nucleoside triphosphates. Like other Nudix hydrolases, the enzyme cleaves its substrates to produce a nucleoside monophosphate and inorganic pyrophosphate, has an alkaline pH optimum, and requires a divalent metal cation for catalysis, with magnesium yielding optimal activity. Because of the nature of its substrate specificity, Orf135 may play a role in pyrimidine biosynthesis, lipid biosynthesis, and in controlling levels of 5-methyl-dCTP in the cell.  相似文献   

6.
The activity of phosphoribosylpyrophosphate (PRPP) synthetase (ATP: D-ribose-5-phosphate pyrophosphotransferase, EC 2.7.6.1) is decreased in the erythrocyte in hereditary pyrimidine 5'-nucleotidase (P5N) deficiency. Given the increased pyrimidine nucleotide content of the P5N-deficient erythrocyte, we evaluated the effects of prototypic pyrimidine nucleotides on the activity of PRPP synthetase. In normal hemolysate a 1.0 mM combination of cytidine tri-, di- and monophosphate (CTP/CDP/CMP) inhibited PRPP synthetase activity and changed the ribose 5-phosphate (R5P) saturation curve from a hyperbola to a biphasic shape. Untreated crude hemolysate from P5N-deficient erythrocytes showed a biphasic R5P kinetic curve. Since the activity of PRPP synthetase is dependent on its state of subunit aggregation, we examined PRPP synthetase subunit aggregation using gel permeation chromatography. P5N-deficient erythrocytes had a decreased absolute amount of aggregated PRPP synthetase and almost a total loss of disaggregated PRPP synthetase. Using normal hemolysate, 1 mM CTP/CDP/CMP interfered with the ability of 1.0 mM ATP and 2.0 mM MgCl2 to promote PRPP synthetase subunit aggregation. Increasing the MgCl2 to 6.0 mM overcame the inhibitory effect of CTP/CDP/CMP. Thus, the decreased PRPP synthetase activity of the P5N-deficient erythrocyte is due, at least in part, to the ability of the accumulated pyrimidine nucleotides to sequester magnesium and to interfere with the subunit aggregation of PRPP synthetase.  相似文献   

7.
The activity of phosphoribosylpyrophosphate (PRPP) synthetase (ATP:d-ribose-5-phosphate pyrophosphotransferase, EC 2.7.6.1) is decreased in the erythrocyte in hereditary pyrimidine 5′-nucleotidase (P5N) deficiency. Given the increased pyrimidine nucleotide content of the P5N-deficient erythrocyte, we evaluated the effects of prototypic pyrimidine nucleotides on the activity of PRPP synthetase. In normal hemolysate a 1.0 mM combination of cytidine tri-, di-, and monophosphate (CTP/CDP/CMP) inhibited PRPP synthetase activity and changed the ribose 5-phosphate (R5P) saturation curve from a hyperbola to a biphasic shape. Untreated crude hemolysate from P5N-deficient erythrocytes showed a biphasic R5P kinetic curve. Since the activity of PRPP synthetase is dependent on its state of subunit aggregation, we examined PRPP synthetase subunit aggregation using gel permeation chromatography. P5N-deficient erythrocytes had a decreased absolute amount of aggregated PRPP synthetase and almost a total loss of disaggregated PRPP synthetase. Using normal hemolysate, 1 mM CTP/CDP/CMP interfered with the ability of 1.0 mM ATP and 2.0 mM MgCl2 to promote PRPP synthetase subunit aggregation. Increasing the MgCl2 to 6.0 mM overcame the inhibitory effect of CTP/CDP/CMP. Thus, the decreased PRPP synthetase activity of the P5N-deficient erythrocyte is due, at least in part, to the ability of the accumulated pyrimidine nucleotides to sequester magnesium and to interfere with the subunit aggregation of PRPP synthetase.  相似文献   

8.
Substrate converting enzymes interfering with the measurement of ribonucleotide reductase were assessed in cell-free extracts prepared from L1210 cells. Data show the presence of a myokinase-type enzyme activity (CTP:CMP phosphotransferase) which catalyzes the reaction: 2CDP in equilibrium CMP + CTP. This enzyme is not removed by passage of cell extracts over ATP-agarose columns. Monitoring of nucleoside diphosphate substrate level is, therefore, mandatory for obtaining accurate measurements of CDP reductase activity in crude cell extracts.  相似文献   

9.
Pyrimidine-requiring cdd mutants of Escherichia coli deficient in cytidine deaminase utilize cytidine as a pyrimidine source by an alternative pathway. This has been presumed to involve phosphorylation of cytidine to CMP by cytidine/uridine kinase and subsequent hydrolysis of CMP to cytosine and ribose 5-phosphate by a putative CMP hydrolase. Here we show that cytidine, in cdd strains, is converted directly to cytosine and ribose by a ribonucleoside hydrolase encoded by the previously uncharacterized gene ybeK, which we have renamed rihA. The RihA enzyme is homologous to the products of two unlinked genes, yeiK and yaaF, which have been renamed rihB and rihC, respectively. The RihB enzyme was shown to be a pyrimidine-specific ribonucleoside hydrolase like RihA, whereas RihC hydrolyzed both pyrimidine and purine ribonucleosides. The physiological function of the ribonucleoside hydrolases in wild-type E. coli strains is enigmatic, as their activities are paralleled by the phosphorolytic activities of the nucleoside phosphorylases, and a triple mutant lacking all three hydrolytic activities grew normally. Furthermore, enzyme assays and lacZ gene fusion analysis indicated that rihB was essentially silent unless activated by mutation, whereas rihA and rihC were poorly expressed in glucose medium due to catabolite repression.  相似文献   

10.
Nudix hydrolases catalyze the hydrolysis of nucleoside diphosphates linked to other moieties, X, and contain the sequence motif or Nudix box, GX(5)EX(7)REUXEEXGU. The mechanisms of Nudix hydrolases are highly diverse in the position on the substrate at which nucleophilic substitution occurs, and in the number of required divalent cations. While most proceed by associative nucleophilic substitutions by water at specific internal phosphorus atoms of a diphosphate or polyphosphate chain, members of the GDP-mannose hydrolase sub-family catalyze dissociative nucleophilic substitutions, by water, at carbon. The site of substitution is likely determined by the positions of the general base and the entering water. The rate accelerations or catalytic powers of Nudix hydrolases range from 10(9)- to 10(12)-fold. The reactions are accelerated 10(3)-10(5)-fold by general base catalysis by a glutamate residue within, or beyond the Nudix box, or by a histidine beyond the Nudix box. Lewis acid catalysis, which contributes 10(3)-10(5)-fold to the rate acceleration, is provided by one, two, or three divalent cations. One divalent cation is coordinated by two or three conserved residues of the Nudix box, the initial glycine and one or two glutamate residues, together with a remote glutamate or glutamine ligand from beyond the Nudix box. Some Nudix enzymes require one (MutT) or two additional divalent cations (Ap(4)AP), to neutralize the charge of the polyphosphate chain, to help orient the attacking hydroxide or oxide nucleophile, and/or to facilitate the departure of the anionic leaving group. Additional catalysis (10-10(3)-fold) is provided by the cationic side chains of lysine and arginine residues and by H-bond donation by tyrosine residues, to orient the general base, or to promote the departure of the leaving group. The overall rate accelerations can be explained by both independent and cooperative effects of these catalytic components.  相似文献   

11.
The genomic sequence of Rickettsia prowazekii, the obligate intracellular bacterium responsible for epidemic typhus, reveals an uncharacterized invasion gene homolog (invA). The deduced protein of 18,752 Da contains a Nudix signature, the specific motif found in the Nudix hydrolase family. To characterize the function of InvA, the gene was cloned and overexpressed in Escherichia coli. The expressed protein was purified to near homogeneity and subsequently tested for its enzymatic activity against a series of nucleoside diphosphate derivatives. The purified InvA exhibits hydrolytic activity toward dinucleoside oligophosphates (Np(n)N; n > or = 5), a group of cellular signaling molecules. At optimal pH 8.5, the enzyme actively degrades adenosine (5')-pentaphospho-(5')-adenosine into ATP and ADP with a K(m) of 0.1 mM and k(cat) of 1.9 s(-1). Guanosine (5')-pentaphospho-(5')-guanosine and adenosine-(5')-hexaphospho (5')-adenosine are also substrates. Similar to other Nudix hydrolases, InvA requires a divalent metal cation, Mg(2+) or Zn(2+), for optimal activity. These data suggest that the rickettsial invasion protein likely plays a role in controlling the concentration of stress-induced dinucleoside oligophosphates following bacterial invasion.  相似文献   

12.
Nudix (for nucleoside diphosphates linked to some moiety X) hydrolases act to hydrolyze ribonucleoside and deoxyribonucleoside triphosphates, nucleotide sugars, coenzymes, or dinucleoside polyphosphates. Arabidopsis (Arabidopsis thaliana) contains 27 genes encoding Nudix hydrolase homologues (AtNUDX1 to -27) with a predicted distribution in the cytosol, mitochondria, and chloroplasts. Previously, cytosolic Nudix hydrolases (AtNUDX1 to -11 and -25) were characterized. Here, we conducted a characterization of organelle-type AtNUDX proteins (AtNUDX12 to -24, -26, and -27). AtNUDX14 showed pyrophosphohydrolase activity toward both ADP-ribose and ADP-glucose, although its K(m) value was approximately 100-fold lower for ADP-ribose (13.0+/-0.7 microm) than for ADP-glucose (1,235+/-65 microm). AtNUDX15 hydrolyzed not only reduced coenzyme A (118.7+/-3.4 microm) but also a wide range of its derivatives. AtNUDX19 showed pyrophosphohydrolase activity toward both NADH (335.3+/-5.4 microm) and NADPH (36.9+/-3.5 microm). AtNUDX23 had flavin adenine dinucleotide pyrophosphohydrolase activity (9.1+/-0.9 microm). Both AtNUDX26 and AtNUDX27 hydrolyzed diadenosine polyphosphates (n=4-5). A confocal microscopic analysis using a green fluorescent protein fusion protein showed that AtNUDX15 is distributed in mitochondria and AtNUDX14 -19, -23, -26, and -27 are distributed in chloroplasts. These AtNUDX mRNAs were detected ubiquitously in various Arabidopsis tissues. The T-DNA insertion mutants of AtNUDX13, -14, -15, -19, -20, -21, -25, -26, and -27 did not exhibit any phenotypical differences under normal growth conditions. These results suggest that Nudix hydrolases in Arabidopsis control a variety of metabolites and are pertinent to a wide range of physiological processes.  相似文献   

13.
Dolichol kinase activity is effectively solubilized by extracting calf brain microsomes with 2% 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS), a zwitterionic detergent. The solubilized kinase catalyzes the enzymatic phosphorylation of dolichols with either CTP or dCTP serving as phosphoryl donor in the presence of Ca2+. Similar Km values were calculated for CTP (7.7 microM) and dCTP (9.1 microM). Dolichol phosphorylation was inhibited by CDP and dCDP, but not CMP, ADP, GDP, or UDP. A kinetic analysis of the inhibitory effect of CDP revealed a pattern characteristic of competitive inhibition. Dolichol kinase activity was markedly stimulated by the addition of R-dolichol (C95) or S-dolichol(C95). The apparent Km value for R-dolichol(C95) and S-dolichol(C95) was 9 microM, but the Vmax for the phosphorylation reaction was 40% higher with S-dolichol(C95). Incubation of the CHAPS extract with [gamma-32P]CTP and exogenous undecaprenol(C55) resulted in the enzymatic synthesis of a radiolabeled product that was mild acid-labile and chromatographically identical to undecaprenyl monophosphate. An enzymatic comparison with a variety of polyprenol substrates indicates that the solubilized kinase prefers long-chain (C90-95) polyprenols with saturated alpha-isoprene units. The effect of exogenous phosphoglycerides on the kinase activity in the dialyzed CHAPS extracts has also been evaluated. These studies describe the properties and polyprenol specificity of stable, solubilized preparations of dolichol kinase that should be useful for further purification of the enzyme.  相似文献   

14.
A particulate enzyme preparation from Bacillus stearothermophilus synthesized 1,3-poly(glycerol phosphage) from CDPglycerol at an optimum pH of 8.0 and the reaction was stimulated by divalent cations. Km for CDPglycerol was 0.18 mM. The synthesis was inhibited by CMP, CDP, and CTP and by concentrations of CDP-glycerol above 0.49 mM. The reaction was irreversible, The product had an average chain length of 8 glycerol units. About two thirds of the polymers were synthesized in entirety while the ramainder were attached to some acceptor by their phosphate end. The enzome was able to synthesize only a limited amount of polymer.  相似文献   

15.
Escherichia coli 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase (YgbP or IspD) catalyzes the conversion of 2-C-methyl-D-erythritol 4-phosphate (MEP) and cytidine triphosphate (CTP) to 4-diphosphocytidyl-2-C-methylerythritol (CDPME). Pulse chase experiments established that the reaction involves an ordered sequential mechanism with mandatory initial binding of CTP. On the basis of analysis of the previously reported crystal structures of apo-YgbP as well as YgbP complexed with both CTP.Mg(2+) and CDPME.Mg(2+) [Richard, S. B., Bowman, M. E., Kwiatkowski, W., Kang, I., Chow, C., Lillo, A. M., Cane, D. E., and Noel, J. P. (2001) Nat. Struct. Biol. 8, 641-648], a group of active site residues were selected for site-directed mutagenesis and steady-state kinetic analysis. Both Lys27 and Lys213 were shown to be essential to catalytic activity, consistent with their proposed role in stabilization of a pentacoordinate phosphate transition state resulting from in-line attack of the MEP phosphate on the alpha-phosphate of CTP. In addition, Thr140, Arg109, Asp106, and Thr165 were all shown to play critical roles in the binding and proper orientation of the MEP substrate.  相似文献   

16.
Escherichia coli Orf135 hydrolyzes oxidatively damaged nucleotides such as 2-hydroxy-dATP, 8-oxo-dGTP and 5-hydroxy-CTP, in addition to 5-methyl-dCTP, dCTP and CTP. Nucleotide pool sanitization by Orf135 is important since nucleotides are continually subjected to potential damage by reactive oxygen species produced during respiration. Orf135 is a member of the Nudix family of proteins which hydrolyze nucleoside diphosphate derivatives. Nudix hydrolases are characterized by the presence of a conserved motif, even though they recognize various substrates and possess a variety of substrate binding pockets. We investigated the tertiary structure of Orf135 and its interaction with a 2-hydroxy-dATP analog using NMR. We report on the solution structure of Orf135, which should contribute towards a structural understanding of Orf135 and its interaction with substrates.  相似文献   

17.
An Escherichia coli strain expressing three recombinant enzymes, i.e., cytidine 5'-monophosphate (CMP) kinase, sialic acid aldolase and cytidine 5'-monophosphate N-acetylneuraminic acid (CMP-NeuAc) synthetase, was utilized as a biocatalyst for the production of CMP-NeuAc. Both recombinant E. coli extract and whole cells catalyzed the production of CMP-NeuAc from CMP (20 mM), N-acetylmannosamine (40 mM), pyruvate (60 mM), ATP (1 mM), and acetylphosphate (60 mM), resulting in 90% conversion yield based on initial CMP concentration used. It was confirmed that endogenous acetate kinase can catalyze not only the ATP regeneration in the conversion of CMP to CDP but also the conversion of CDP to CTP. On the other hand, endogenous pyruvate kinase and polyphosphate kinase could not regenerate ATP efficiently. The addition of exogenous acetate kinase to the reaction mixture containing the cell extract increased the conversion rate of CMP to CMP-NeuAc by about 1.5-fold, but the addition of exogenous inorganic pyrophosphatase had no influence on the reaction. This E. coli strain could also be employed as an enzyme source for in situ regeneration of CMP-NeuAc in a sialyltransferase catalyzed reaction. About 90% conversion yield of alpha2,3-sialyl-N-acetyllactosamine was obtained from N-acetyllactosamine (20 mM), CMP (2 mM), N-acetylmannosamine (40 mM), pyruvate (60 mM), ATP (1 mM), and acetyl phosphate (80 mM) using the recombinant E. coli extract and alpha2,3-sialyltransferase.  相似文献   

18.
Two genes from Caenorhabditis elegans and Saccharomyces cerevisiae, coding for enzymes homologous to the Nudix hydrolase family of nucleotide pyrophosphatases, have been cloned and expressed in Escherichia coli. The purified enzymes are homodimers of 39.1 and 43. 5 kDa, respectively, are activated by Mg(2+) and Mn(2+), and are 30 to 50 times more active on NADH than on NAD(+). They both have a conserved array of amino acids downstream of the Nudix box first seen in the orthologous enzyme from E. coli which designates them as members of an NADH pyrophosphatase subfamily of the Nudix hydrolases.  相似文献   

19.
Lipid phosphorylation takes place within the chloroplast envelope. In addition to phosphatidic acid, phosphatidylinositol phosphate, and their corresponding lyso-derivatives, we found that two novel lipids underwent phosphorylation in envelopes, particularly in the presence of carrier-free [gamma-(32)P]ATP. These two lipids incorporated radioactive phosphate in chloroplasts in the presence of [gamma-(32)P]ATP or [(32)P]P(i) and light. Interestingly, these two lipids were preferentially phosphorylated in envelope membranes in the presence [gamma-(32)P]CTP, as the phosphoryl donor, or [gamma-(32)P]ATP, when supplemented with CDP and nucleoside diphosphate kinase II. The lipid kinase activity involved in this reaction was specifically inhibited in the presence of cytosine 5'-O-(thiotriphosphate) (CTPgammaS) and sensitive to CTP chase, thereby showing that both lipids are phosphorylated by an envelope CTP-dependent lipid kinase. The lipids were identified as phosphorylated galactolipids by using an acid hydrolysis procedure that generated galactose 6-phosphate. CTPgammaS did not affect the import of the small ribulose-bisphosphate carboxylase/oxygenase subunit into chloroplasts, the possible physiological role of this novel CTP-dependent galactolipid kinase activity in the chloroplast envelope is discussed.  相似文献   

20.
Uridine-cytidine kinase (UCK) catalyzes the phosphorylation of uridine and cytidine and activates pharmacological ribonucleoside analogs. Here we present the crystal structures of human UCK alone and in complexes with a substrate, cytidine, a feedback inhibitor, CTP or UTP, and with phosphorylation products, CMP and ADP, respectively. Free UCK takes an alpha/beta mononucleotide binding fold and exists as a homotetramer with 222 symmetry. Upon inhibitor binding, one loop region was loosened, causing the UCK tetramer to be distorted. Upon cytidine binding, a large induced fit was observed at the uridine/cytidine binding site, which endows UCK with a strict specificity for pyrimidine ribonucleosides. The first UCK structure provided the structural basis for the specificity, catalysis, and regulation of human uridine-cytidine kinase, which give clues for the design of novel antitumor and antiviral ribonucleoside analogs that inhibit RNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号