首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of spindle disturbances in a human–hamster hybrid (AL) cell line by an electromagnetic field (EMF) with field strength of 90 V/m at a frequency of 900 MHz was studied in greater detail. The experimental setup presented allows investigating whether either the electrical (E) and/or the magnetic (H) field component of EMF can be associated with the effectiveness of the spindle‐disturbing potential. Therefore, both field components of a transversal electromagnetic field (TEM) wave have been separated during exposure of the biological system. This procedure should give more insight on understanding the underlying mechanisms of non‐thermal effects of EMF. A statistical comparison of the proportions of the fractions of ana‐ and telophases with spindle disturbances, obtained for five different exposure conditions with respect to unexposed controls (sham condition), showed that only cells exposed to the H‐field component of the EMF were not different from the control. Therefore, the results of the present study indicate that an exposure of cells to EMF at E‐field strengths of 45 and 90 V/m, as well as to the separated E component of the EMF, induces significant spindle disturbances in ana‐ and telophases of the cell cycle. Bioelectromagnetics 32:291–301, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
The production of mitotic spindle disturbances and activation of the apoptosis pathway in V79 Chinese hamster cells by continuous 2.45 GHz microwaves exposure were studied, in order to investigate possible non-thermal cell damage. We demonstrated that microwave (MW) exposure at the water resonance frequency was able to induce alteration of the mitotic apparatus and apoptosis as a function of the applied power densities (5 and 10mW/cm(2)), together with a moderate reduction in the rate of cell division. After an exposure time of 15 min the proportion of aberrant spindles and of apoptotic cells was significantly increased, while the mitotic index decreased as well, as compared to the untreated V79 cells. Additionally, in order to understand if the observed effects were due to RF exposure per se or to a thermal effect, V79 cells were also treated in thermostatic bath mimicking the same temperature increase recorded during microwave emission. The effect of temperature on the correct assembly of mitotic spindles was negligible up to 41°C, while apoptosis was induced only when the medium temperature achieved 40°C, thus exceeding the maximum value registered during MW exposure. We hypothesise that short-time MW exposures at the water resonance frequency cause, in V79 cells, reversible alterations of the mitotic spindle, this representing, in turn, a pro-apoptotic signal for the cell line.  相似文献   

3.
Increased use of radio and microwave frequencies requires investigations of their effects on living organisms. Duckweed (Lemna minor L.) has been commonly used as a model plant for environmental monitoring. In the present study, duckweed growth and peroxidase activity was evaluated after exposure in a Gigahertz Transversal Electromagnetic (GTEM) cell to electric fields of frequencies 400, 900, and 1900 MHz. The growth of plants exposed for 2 h to the 23 V/m electric field of 900 MHz significantly decreased in comparison with the control, while an electric field of the same strength but at 400 MHz did not have such effect. A modulated field at 900 MHz strongly inhibited the growth, while at 400 MHz modulation did not influence the growth significantly. At both frequencies a longer exposure mostly decreased the growth and the highest electric field (390 V/m) strongly inhibited the growth. Exposure of plants to lower field strength (10 V/m) for 14 h caused significant decrease at 400 and 1900 MHz while 900 MHz did not influence the growth. Peroxidase activity in exposed plants varied, depending on the exposure characteristics. Observed changes were mostly small, except in plants exposed for 2 h to 41 V/m at 900 MHz where a significant increase (41%) was found. Our results suggest that investigated electromagnetic fields (EMFs) might influence plant growth and, to some extent, peroxidase activity. However, the effects of EMFs strongly depended on the characteristics of the field exposure.  相似文献   

4.
We have analyzed gene expression in hemopoietic and testicular cell types after their exposure to 50 MHz radiofrequency (RF) non-ionizing radiation modulated (80%) with a 16 Hz frequency. The exposure system generates a 0.2 microT magnetic field parallel to the ground and a 60 V/m electric field orthogonal to the earth's magnetic field. Exposure conditions were selected so as to interfere with the calcium ion flow. Under these electromagnetic field (EMF) conditions, we observed an overexpression of the ets1 mRNA in Jurkat T-lymphoblastoid and Leydig TM3 cell lines. This effect was observed only in the presence of the 16 Hz modulation, corresponding to the resonance frequency for calcium ion with a DC magnetic field of 45.7 microT. We have also identified a putative candidate gene repressed after EMF exposure. The experimental model described in this paper may contribute to the understanding of the biological mechanisms involved in EMF effects.  相似文献   

5.
Two human colon cancer cell lines, Colo 205 and Colo 320 DM, have been studied for their responses to 60 Hz-generated electromagnetic fields (EMF) using soft agar cloning and monoclonal antibody binding assays to assess exposure-induced changes. Cellular responses have been studied after 24 h continuous exposure of cells concurrently to four experimental conditions; i.e. no EMF (E-M-), magnetic field only (M+, 1.0 G rms), electric field only (E+, 300 mA/m2 rms), and combined electric plus magnetic fields at these intensities (E+M+). Under these conditions, both cell lines demonstrated significantly increased colony formation in soft agar and increased expression of tumor associated antigens after exposure to E+M+ and to M+ as compared to unexposed controls.  相似文献   

6.
We exposed normal human epidermal keratinocytes to short duration, high frequency, and low amplitude electromagnetic fields, similar to that used by mobile phone technologies. We paid particular attention to the control of the characteristics of the electromagnetic environment generated within a mode stirred reverberation chamber (statistical homogeneity and isotropy of the field and SAR distribution). Two non‐thermal exposure conditions were tested on the epidermal cells: 10‐min exposure with a field amplitude of 8 V/m, and 30 min with 41 V/m. Corresponding specific absorption rates ranged from 2.6 to 73 mW/kg (continuous wave, 900 MHz carrier frequency). We collected RNA from cells subjected to these conditions and used it for a large‐scale microarray screening of over 47000 human genes. Under these conditions, exposure of keratinocytes to the electromagnetic field had little effect; only 20 genes displayed significant modulation. The expression ratios were very small (close to 1.5‐fold change), and none of them were shared by the two tested conditions. Furthermore, those assayed using polymerase chain reaction did not display significant expression modulation (overall mean of the exposed samples: 1.20 ± 0.18). In conclusion, the data presented here show that cultured keratinocytes are not significantly affected by EMF exposure. Bioelectromagnetics 32:302–311, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
For the first time, in situ electromagnetic field exposure of the general public to fields from long term evolution (LTE) cellular base stations is assessed. Exposure contributions due to different radiofrequency (RF) sources are compared with LTE exposure at 30 locations in Stockholm, Sweden. Total exposures (0.2–2.6 V/m) satisfy the International Commission on Non‐Ionizing Radiation Protection (ICNIRP) reference levels (from 28 V/m for frequency modulation (FM), up to 61 V/m for LTE) at all locations. LTE exposure levels up to 0.8 V/m were measured, and the average contribution of the LTE signal to the total RF exposure equals 4%. Bioelectromagnetics 31:576–579, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Growth, mitotic index, and growth rate recovery were determined for Vicia faba L. roots exposed to 60-Hz electric fields of 200, 290, and 360 V/m in an aqueous inorganic nutrient medium (conductivity 0.07-0.09 S/m). Root growth rate decreased in proportion to the increasing strength; the electric field threshold for a growth rate effect was about 230 V/m. The induced transmembrane potential at the threshold exposure was about 4-7 mV. The mitotic index was not affected by an electric field exposure sufficient to reduce root growth rate to about 35% of control. Root growth rate recovery from 31-96% of control occurred in 4 days after cessation of the 360 V/m exposure. The results support the postulate that the site of action of the applied electric fields is the cell membrane.  相似文献   

9.
Five groups of pregnant Sprague-Dawley rats were either sham exposed or were irradiated in a 27.12-MHz radiofrequency (RF) field at 55 A/m and 300 V/m on gestation day 9. The absorbed power (approximately 11 W/kg) caused a relatively rapid increase in the rat's colonic temperature. Rats in group I were sham irradiated for 2.5 h at 0 A/m, 0 V/m. In group II RF irradiation was terminated after the rat's colonic temperature reached 41.0 degrees C. In group III the 41.0- degrees C temperature was maintained an additional 2 h by manually varying the incident field strength. In group IV irradiation was terminated after the rat's colonic temperature reached 42.0 degrees C. In group V the 42.0- degrees C temperature was maintained an additional 15 min by varying the field strength. At both temperatures the teratogenic and embryotoxic effects of the RF-induced hyperthermia increased as the exposure duration increased, but the increase was especially noticeable at 42.0 degrees C. The results indicate that the teratogenic and embryotoxic effects of RF-induced hyperthermia are related to both the temperature of the dam during exposure and the length of time the dam's temperature remains elevated.  相似文献   

10.
In the present study, we first investigated the effects of various types of low-energy, low-frequency electromagnetic fields (EMFs) on DNA synthesis in UMR-106 osteoblast-like cells. The experimental groups were exposed to EMFs for 2 days (twice/day, 30 min/time), and DNA synthesis was measured. The results showed that the cells responded most sensitively to EMFs of some specific combinations of the parameters by an increase in DNA synthesis, implying that EMFs with a specific waveform rather than a complex one can be used in clinical electrotherapy. The parameters were as follows: pulsed electric field (PEF) with pulse width 0.2 ms, field strength 10 V/cm, frequency 125 Hz; sinusoidal electric field (SEF) with field strength 1 V/cm, frequency 10 Hz; and alternating magnetic field (AMF) with field density 0.5 mT, frequency 5 Hz. In addition to frequency, the field strength or field density within a suitable intensity scale played a dominant role in causing the DNA synthesis response. We then compared the effects of two kinds of fields, PEF and AMF, with the optimum parameters identified by the experiments, on alkaline phosphatase (ALP) activity, protein and collagen synthesis, and intracellular levels of cyclic adenosine monophosphate (cAMP). The results indicated that both fields could not only affect UMR-106 cells proliferation but could particularly affect a series of characteristic bioactivities of UMR-106 such as ALP activity and collagen synthesis. The intracellular cAMP levels were increased rapidly and greatly with exposure to both PEF and AMF, implying that the action of low-frequency EMFs proceeds via second messenger-dependent processes originating from signals at the cell membrane. The difference in action between PEF and AMF suggests that they may couple to the cell membrane in a partially different way.  相似文献   

11.
Considering often contradictory data on biological effects of mobile phones frequencies on established cell culture lines, our study aimed at evaluating the influence of 864 MHz electromagnetic field on proliferation, colony forming ability and viability of Chinese hamster lung cells continuous line V79. Prior to exposure for 1, 2 and 3 hours in transversal electromagnetic mode cell (TEM-cell) equipped by Philips PM 5508 signal generator cell samples were sub-cultivated for one day. Cell samples were exposed to 864 MHz continuous wave at an average specific absorption rate (SAR) of 0.08 W/kg. To determine cell growth, V79 cells were plated in concentration of 1 × 104 cells per milliliter of nutrient medium RPMI 1640, and raised in a humified atmosphere at 37°C in 5% CO2. Cell proliferation was determined by cell counts for each hour of exposure on post-exposure day 1, 2, 3, 4 and 5. To identify colony-forming ability, cells were cultivated in concentration of 40 cells/mL of RPMI 1640 and incubated according to the deliberated experimental protocol. Colony forming ability for each hour of exposure was defined by colony counts on experimental day 7. Trypan blue exclusion test was used to determine viability of cells. In comparison to sham-exposed cells, growth curve of irradiated cell samples showed significant decrease (p < 0.05) after 2 and 3 hours of exposure on experimental day 3, respectively. Both, the colony forming ability and viability of irradiated cells did not significantly differ from exposed “mock” condition. Under strictly controlled laboratory conditions, applied radiofrequency microwaves (RF/MW) irradiation significantly affected cell proliferation kinetics but not viability or ability of V79 cells to form colonies. Sophisticated mechanism of action is intending to be elucidated in the further research which will include insight into the RF/MW related event at the subcellular level.  相似文献   

12.
The aim of this study was to investigate and quantify the production of spindle disturbances in A(L) cells, a human-hamster hybrid cell line, by 0.106 THz radiation (continuous wave). Monolayer cultures in petri dishes were exposed for 0.5 h to 0.106 THz radiation with power densities ranging from 0.043 mW/cm(2) to 4.3 mW/cm(2) or were kept under sham conditions (negative control) for the same period. As a positive control, 100 μg/ml of the insecticide trichlorfon, which is an aneuploidy-inducing agent, was used for an exposure period of 6 h. During exposure, the sample containers were kept at defined environmental conditions in a modified incubator as required by the cells. Based on a total of 6,365 analyzed mitotic cells, the results of two replicate experiments suggest that 0.106 THz radiation is a spindle-acting agent as predominately indicated by the appearance of spindle disturbances at the anaphase and telophase (especially lagging and non-disjunction of single chromosomes) of cell divisions. The findings in the present study do not necessarily imply disease or injury but may be important for evaluating possible underlying mechanisms.  相似文献   

13.
Electrofusion of evacuolated and vacuolated oat leaf protoplasts is difficult because of the different size and density of these cells which results in separation of the two fusion partners during dielectrophoresis. The fusion yield of this cell system was considerably enhanced by electrofusion in hypo-osmolar media containing 0.4 M mannitol, 0.1 mM calcium acetate and 0.1% bovine serum albumin. This increase in yield was only achieved if the dielectrophoretically induced membrane contact between the two fusion partners was enhanced by an initial short 'burst' of higher field strength (500 V/cm, peak to peak, for 5 s followed by a reduction of to 90 V/cm, peak to peak, for 20 s, frequency 1 MHz). Due to the high field strength of the alternating field at the beginning of cell chain formation separation of fusion partners of different size and density was mainly avoided. Simultaneously, the short duration of this high field 'burst' avoided the generation of lethal effects in the cell membranes. The subsequent low field strength of the alternating field was sufficient to keep the aligned cells in position. Optimum fusion was induced by a single square pulse of 750 V/cm and 30 musec duration. The time required for rounding up of the heterologous fusion products decreased with decreasing osmolarity. Fusion resulted in a 5.7 +/- 1.2% yield of heterologous fusion products (compared to 0.7% using the conventional electrofusion protocol) as determined by flow cytometric assay. About 50% of the vacuolated oat protoplasts and 20-50% of the heterologous fusion products regenerated their cell walls within 5 days after hypo-osmolar treatment, but no cell divisions could be observed. Evacuolated oat protoplasts died after 2-3 days in culture without any detectable cell wall regeneration.  相似文献   

14.
In situ electromagnetic field exposure of workers and the general public due to non-directional beacons (NDB) for air traffic control is assessed and characterized. For occupational exposure, the maximal measured electric field value is 881.6 V/m and the maximal magnetic field value is 9.1 A/m. The maximum electric fields exceed the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels at all seven NDB sites, and the magnetic fields at two of the seven NDB sites (occupational exposure). Recommendations and compliance distances for workers and the general public are provided.  相似文献   

15.
Experimental evidence is presented that continuous exposure of hoary plantain (Plantago media L.) seedlings to the electromagnetic field (EMF) of power-line frequency may disturb physiological, biochemical, and cytological characteristics of these plants. The increase in EMF strength in the range from 230 to 1800 V/m (350–2000 nT) was found to reduce the percentage of seed germination, the rate of cell division, and the rates of DNA and protein biosyntheses in tissues of 8-day-old seedlings. The action of EMF with the strength of 500–1000 V/m (800–1150 nT) stimulated root growth, elevated the content of malondialdehyde and low-molecular antioxidants, and enhanced the activity of superoxide dismutase. Direct correlation was revealed between lipid peroxidation rates and the activity of cellular antioxidant defense system. The wavelike changes in the content of photosynthetic pigments were observed in plantain seedlings exposed to EMF of various strengths.  相似文献   

16.
Five groups of pregnant Sprague-Dawley rats were irradiated for 10-40 min on gestation day 9 in a 27.12-MHz radiofrequency field at a magnetic field strength of 55 A/m and an electric field strength of 300 V/m. The specific absorption rate was 10.8 +/- 0.3 W/kg. Exposures were terminated after the rat's colonic temperature reached 41.0 degrees C, 41.5 degrees C, 42.0 degrees C, 42.5 degrees C, or 43.0 degrees C. A control group was sham irradiated at 0 A/m and 0 V/m on gestation day 9, whereas a second control group was untreated. The incidence of both birth defects and prenatal death was directly related to maternal body temperature once a temperature threshold was exceeded. The temperature threshold for both types of effects was approximately 41.5 degrees C. A few pregnant rats died after exposure to 43.0 degrees C, and higher temperatures were nearly always lethal.  相似文献   

17.
To examine the biological effects of radio frequency (RF) electromagnetic fields in vitro, we have examined the fundamental cellular responses, such as cell growth, survival, and cell cycle distribution, following exposure to a wide range of specific absorption rates (SAR). Furthermore, we compared the effects of continuous and intermittent exposure at high SARs. An RF electromagnetic field exposure unit operating at a frequency of 2.45 GHz was used to expose cells to SARs from 0.05 to 1500 W/kg. When cells were exposed to a continuous RF field at SARs from 0.05 to 100 W/kg for 2 h, cellular growth rate, survival, and cell cycle distribution were not affected. At 200 W/kg, the cell growth rate was suppressed and cell survival decreased. When the cells were exposed to an intermittent RF field at 300 W/kg(pk), 900 W/kg(pk) and 1500 W/kg(pk) (100 W/kg(mean)), no significant differences were observed between these conditions and intermittent wave exposure at 100 W/kg. When cells were exposed to a SAR of 50 W/kg for 2 h, the temperature of the medium around cells rose to 39.1 degrees C, 100 W/kg exposure increased the temperature to 41.0 degrees C, and 200 W/kg exposure increased the temperature to 44.1 degrees C. Exposure to RF radiation results in heating of the medium, and the thermal effect depends on the mean SAR. Hence, these results suggest that the proliferation disorder is caused by the thermal effect.  相似文献   

18.
A sub‐acute electromagnetic field (EMF) biological effect study was carried out on rats exposed in the Transverse ElectroMagnetic exposure chamber at 171 MHz Continuous Wave (CW). The experiments involved three exposure levels (15, 25, and 35 V/m) for 15 days with triplicate parallel sham‐exposed controls in each series. All exposure conditions were simulated for the evaluation of the electromagnetic energy distribution and specific absorption rate (SAR) in the rat phantoms. Studies have shown a biphasic biological response depending on time and absorbed electromagnetic energy. Under low SAR, approximately 0.006 W/kg, EMF exposure leads to the stimulation of adrenal gland activity. This process is accompanied by an initial increase of daily excretion of corticosterone and Na+, which is seen as a higher Na+/K+ ratio, followed by a decrease of these parameters over time. It is possible that EMF exposure causes a stress response in animals, which is seen as an increased adrenal activity. Bioelectromagnetics. 2019;40:578–587. © 2019 Bioelectromagnetics Society.  相似文献   

19.
Large numbers of bats are killed by collisions with wind turbines, and there is at present no direct method of reducing or preventing this mortality. We therefore determine whether the electromagnetic radiation associated with radar installations can elicit an aversive behavioural response in foraging bats. Four civil air traffic control (ATC) radar stations, three military ATC radars and three weather radars were selected, each surrounded by heterogeneous habitat. Three sampling points matched for habitat type and structure, dominant vegetation species, altitude and surrounding land class were located at increasing distances from each station. A portable electromagnetic field meter measured the field strength of the radar at three distances from the source: in close proximity (<200 m) with a high electromagnetic field (EMF) strength >2 volts/metre, an intermediate point within line of sight of the radar (200-400 m) and with an EMF strength <2 v/m, and a control site out of sight of the radar (>400 m) and registering an EMF of zero v/m. At each radar station bat activity was recorded three times with three independent sampling points monitored on each occasion, resulting in a total of 90 samples, 30 of which were obtained within each field strength category. At these sampling points, bat activity was recorded using an automatic bat recording station, operated from sunset to sunrise. Bat activity was significantly reduced in habitats exposed to an EMF strength of greater than 2 v/m when compared to matched sites registering EMF levels of zero. The reduction in bat activity was not significantly different at lower levels of EMF strength within 400 m of the radar. We predict that the reduction in bat activity within habitats exposed to electromagnetic radiation may be a result of thermal induction and an increased risk of hyperthermia.  相似文献   

20.
In this article, personal electromagnetic field measurements are converted into whole‐body specific absorption rates for exposure of the general public. Whole‐body SAR values calculated from personal exposure meter data are compared for different human spheroid phantoms: the highest SAR values (at 950 MHz) are obtained for the 1‐year‐old child (99th percentile of 17.9 µW/kg for electric field strength of 0.36 V/m), followed by the 5‐year‐old child, 10‐year‐old child, average woman, and average man. For the 1‐year‐old child, whole‐body SAR values due to 9 different radiofrequency sources (FM, DAB, TETRA, TV, GSM900 DL, GSM1800 DL, DECT, UMTS DL, WiFi) are determined for 15 different scenarios. An SAR matrix for 15 different exposure scenarios and 9 sources is provided with the personal field exposure matrix. Highest 95th percentiles of the whole‐body SAR are equal to 7.9 µW/kg (0.36 V/m, GSM900 DL), 5.8 µW/kg (0.26 V/m, DAB/TV), and 7.1 µW/kg (0.41 V/m, DECT) for the 1‐year‐old child, with a maximal total whole‐body SAR of 11.5 µW/kg (0.48 V/m) due to all 9 sources. All values are below the basic restriction of 0.08 W/kg for the general public. 95th percentiles of whole‐body SAR per V/m are equal to 60.1, 87.9, and 42.7 µW/kg for GSM900, DAB/TV, and DECT sources, respectively. Functions of the SAR versus measured electric fields are provided for the different phantoms and frequencies, enabling epidemiological and dosimetric studies to make an analysis in combination with both electric field and actual whole‐body SAR. Bioelectromagnetics 31:286–295, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号