首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
England PR  Whelan RJ  Ayre DJ 《Heredity》2003,91(5):475-480
Dispersal in most plants is mediated by the movement of seeds and pollen, which move genes across the landscape differently. Grevillea macleayana is a rare, fire-dependent Australian shrub with large seeds lacking adaptations for dispersal; yet it produces inflorescences adapted to pollination by highly mobile vertebrates (eg birds). Interpreting fine-scale genetic structure in the light of these two processes is confounded by the recent imposition of anthropogenic disturbances with potentially contrasting genetic consequences: (1) the unusual foraging behaviour of exotic honeybees and 2. widespread disturbance of the soil-stored seedbank by road building and quarrying. To test for evidence of fine-scale genetic structure within G. macleayana populations and to test the prediction that such structure might be masked by disturbance of the seed bank, we sampled two sites in undisturbed habitat and compared their genetic structure with two sites that had been strongly affected by road building using a test for spatial autocorrelation of genotypes. High selfing levels inferred from genotypes at all four sites implies that pollen dispersal is limited. Consistent with this, we observed substantial spatial clustering of genes at 10 m or less in the two undisturbed populations and argue that this reflects the predicted effects of both high selfing levels and limited seed dispersal. In contrast, at the two sites disturbed by road building, spatial autocorrelation was weak. This suggests there has been mixing of the seed bank, counteracting the naturally low dispersal and elevated selfing due to honeybees. Pollination between near neighbours with reduced relatedness potentially has fitness consequences for G. macleayana in disturbed sites.  相似文献   

2.
The populations of goitered gazelle suffered significant decline due to natural and anthropogenic factors over the last century. Investigating the effects of barriers on gene flow among the remaining populations is vital for conservation planning. Here we adopted a landscape genetics approach to evaluate the genetic structure of the goitered gazelle in Central Iran and the effects of landscape features on gene flow using 15 polymorphic microsatellite loci. Spatial autocorrelation, isolation by distance (IBD) and isolation by resistance (IBR) models were used to elucidate the effects of landscape features on the genetic structure. Ecological modeling was used to construct landscape permeability and resistance map using 12 ecogeographical variables. Bayesian algorithms revealed three genetically homogeneous groups and restricted dispersal pattern in the six populations. The IBD and spatial autocorrelation revealed a pattern of decreasing relatedness with increasing distance. The distribution of potential habitats was strongly correlated with bioclimatic factors, vegetation type, and elevation. Resistance distances and graph theory were significantly related with variation in genetic structure, suggesting that gazelles are affected by landscape composition. The IBD showed greater impact on genetic structure than IBR. The Mantel and partial Mantel tests indicated low but non-significant effects of anthropogenic barriers on observed genetic structure. We concluded that a combination of geographic distance, landscape resistance, and anthropogenic factors are affecting the genetic structure and gene flow of populations. Future road construction might impede connectivity and gene exchange of populations. Conservation measures on this vulnerable species should consider some isolated population as separate management units.  相似文献   

3.
Understanding subsequent dispersal of non-native species following introduction is important for predicting the extent and speed of range expansion and is critical for effective management and risk assessment. Post-introduction dispersal may occur naturally or via human transport, but assessing the relative contribution of each is difficult for many organisms. Here, we use data from seven microsatellite markers to study patterns of dispersal and gene flow among 12 pierhead populations of the round goby (Neogobius melanostomus) in Lake Michigan. We find significant population structure among sampling sites within this single Great Lake: (1) numerous populations exhibited significant pairwise F ST and (2) a Bayesian assignment analysis revealed three distinct genetic clusters, corresponding to different pierhead locations, and genetic admixture between these clusters in the remaining populations. Genetic differentiation (F ST) is generally related to geographic distance (i.e., isolation by distance), but is periodically interrupted at the scale of Lake Michigan due to gene flow among geographically distant sites. Moreover, average genetic differentiation among populations exhibit a significant, negative correlation with the amount of shipping cargo at ports. Our results, therefore, provide evidence that genetic structure of the round goby in Lake Michigan results from limited natural dispersal with frequent long-distance dispersal through anthropogenic activities such as commercial shipping. Our study suggests that while round gobies can undoubtedly disperse and found new populations through natural dispersal mechanisms, their spread within and among the Great Lakes is likely aided by transport via ships. We, therefore, recommend that ballast-water treatment and management may limit the spread of non-native species within the Great Lakes after the initial introduction in addition to preventing the introduction of non-native species to the Great Lakes.  相似文献   

4.
Guinea baboons are heavily hunted for bushmeat consumption in Guinea-Bissau. We investigated whether hunting-driven mortality has affected population structure in this generalist primate using two genetic markers. Sampling was conducted in protected areas separated by anthropogenic landscape features. We predicted significant genetic differentiation between samples and investigated whether genetic discontinuities in the data were concordant with the location of human infrastructures. Genetic diversity was not significantly reduced when compared with a neighbouring population in Senegal and we inferred historically female-biased dispersal and recent contact between localities. Evidence was found for a contact zone between genetically differentiated populations where gene-flow is unidirectional, admixed individuals are at a higher proportion and individuals differentiated for both genetic markers co-exist within the same social units. Genetic discontinuities were, however, unrelated to anthropogenic dispersal barriers and we could not explain the existence of a contact zone by geographic distance, habitat type or the effect of social structure. We propose that hunting practices have affected the population structure by increasing dispersal distances, facilitating contact between previously separated gene pools within social groups. We suggest that hunting-related density sinks found in areas where the quality of the habitat remains adequate could precipitate the immigration of genetically distinct individuals from distant populations. Alternatively, migrants found in protected areas might be avoiding hunters, in locations they may perceive as less disturbed. This study suggests that hunting practices must be considered when investigating genetic patterns in primates and underlines the utility of molecular approaches to detect population perturbations due to bushmeat hunting.  相似文献   

5.
Understanding the complex influences of landscape and anthropogenic elements that shape the population genetic structure of invasive species provides insight into patterns of colonization and spread. The application of landscape genomics techniques to these questions may offer detailed, previously undocumented insights into factors influencing species invasions. We investigated the spatial pattern of genetic variation and the influences of landscape factors on population similarity in an invasive riparian shrub, saltcedar (Tamarix L.) by analysing 1,997 genomewide SNP markers for 259 individuals from 25 populations collected throughout the southwestern United States. Our results revealed a broad‐scale spatial genetic differentiation of saltcedar populations between the Colorado and Rio Grande river basins and identified potential barriers to population similarity along both river systems. River pathways most strongly contributed to population similarity. In contrast, low temperature and dams likely served as barriers to population similarity. We hypothesize that large‐scale geographic patterns in genetic diversity resulted from a combination of early introductions from distinct populations, the subsequent influence of natural selection, dispersal barriers and founder effects during range expansion.  相似文献   

6.
Understanding the impact of natural and anthropogenic landscape features on population connectivity is a major goal in evolutionary ecology and conservation. Discovery of dispersal barriers is important for predicting population responses to landscape and environmental changes, particularly for populations at geographic range margins. We used a landscape genetics approach to quantify the effects of landscape features on gene flow and connectivity of boreal toad (Bufo boreas) populations from two distinct landscapes in south-east Alaska (Admiralty Island, ANM, and the Chilkat River Valley, CRV). We used two common methodologies for calculating resistance distances in landscape genetics studies (resistance based on least-cost paths and circuit theory). We found a strong effect of saltwater on genetic distance of CRV populations, but no landscape effects were found for the ANM populations. Our discordant results show the importance of examining multiple landscapes that differ in the variability of their features, to maximize detectability of underlying processes and allow results to be broadly applicable across regions. Saltwater serves as a physiological barrier to boreal toad gene flow and affects populations on a small geographic scale, yet there appear to be few other barriers to toad dispersal in this intact northern region.  相似文献   

7.
The Lampropholis delicata complex consists of three closely related species, which have very different habitat requirements and geographic distributions. Percentage polymorphism and average heterozygosity per population are lowest in the species with the narrowest habitat requirements. Genetic differentiation between populations is also lowest in this species, which had a very limited and almost continuous distribution. For one species, which occurs in a very wide range of habitats, both natural and disturbed, genetic variability is compared between samples from disturbed and undisturbed habitats. Average heterozygosity is significantly lower in samples from disturbed than in those from undisturbed sites.  相似文献   

8.
Compared with other terrestrial environments,the stream environment generally presents a linear spatial structure and relatively simple environment. In a stream landscape, the dispersal direction of stream-type organisms usually presents a linear structure along the stream,which results in the limited dispersal and the genetic differentiation of stream-type organisms across different stream sections. The Shangcheng Stout Salamander(Pachyhynobius shangchengensis) is a narrowly distributed stream salamander in Dabie Mountains of East China.In the present study, we tested for the impact of stream landscape(i.e. waterfalls and underground river) on genetic structure and dispersal pattern in P. shangchengensis based on 12 nuclear microsatellite loci from 195 individuals in 3 populations(A, B and C) from three closely connected sections within one stream. Genetic diversity results suggested that Population B contains relatively high genetic diversity for P. shangchengensis when compared to the other populations(A and C). Detectable genetic differentiation was found(FST = 0.008, P = 0.007) among three populations, which was also supported by the Structure, FCA analysis and relatedness estimates of each pair of individuals among populations. The assignment test suggested that P. shangchengensis has philopatric males and female-biased dispersal(mean female Alc =.0.031, SE= 0.225; mean male Alc = 0.026, SE = 0.198). Female-biased dispersal was also supported by analyses for each sex (i.e. Spatial autocorrelation, Genetic distance, Relatedness analysis). Our study indicated that small and isolated populations(A and C) had relatively low genetic diversity due to the limited population size. For stream salamanders,landscape features(i.e. waterfalls and underground river)can influence the ability of an individual to disperse through the landscape, and consequently influence the formation of strong genetic differentiation of P. shangchengensis.  相似文献   

9.
We examined the impact of recent anthropogenic habitat fragmentation on the genetic structure of wood frog (Rana sylvatica) breeding sites in Wellington County of Ontario, Canada. In addition to geographic distance (average pairwise distance ~22 km, greatest distance ~50.22 km), four landscape features hypothesized to contribute to genetic differentiation between breeding sites were considered: road density, a major highway (highway 401), canopy cover, and watershed discontinuity. Analysis of data from 396 samples across nine breeding sites using eight microsatellite DNA loci, revealed a small degree of significant genetic structure between breeding sites. The presence of highway 401 and road density were correlated with small but statistically significant structure observed between several groups of sites. One outlier breeding site outside of Wellington County located within the city of Toronto, had significantly lower allelic richness and much larger population differentiation with the Wellington sites. Our data suggest that recent fragmentation has had an effect on wood frog population structure and also demonstrate the importance of dispersal for this species in maintaining levels of genetic diversity.  相似文献   

10.
The European ground squirrel (Spermophilus citellus) is endangered and in decline. Populations are increasingly fragmented, and only a coordinated conservation effort at the European level may guarantee its long-term survival. To obtain a general population genetic picture on a larger geographic scale, we screened 117 individuals from seven local populations in Hungary, Romania, and Austria for allelic variation at eleven microsatellite loci. We found a high (23.4%) proportion of private alleles, and a moderate to somewhat elevated level (15.27%) of partitioning of genetic diversity among populations, compared to that found in many other terrestrial mammals. Genetic variability was significantly higher than in earlier studied Czech populations that are considered genetically depleted, but significantly lower than in undisturbed populations of S. suslicus and S. brunneus, that are similar to the European ground squirrel in their ecological requirements, reproductive biology, and social organization. Genetic diversity was also lower than in most presumably “undisturbed” populations of other Sciurid species. This, together with the observed level and pattern of genetic differentiation among populations, such as no significant increase of genetic differentiation with geographic distance and similar variance of genetic differentiation between populations independent of geographic distance, indicated the prevalence of relatively strong drift effects for all populations. A Bayesian STRUCTURE analysis and a factorial correspondence analysis concordantly revealed a fairly complex genetic composition of local populations, but no major geographic trend in the pattern of the genetic composition. Overall, the results suggest disintegration of local colonies that might earlier have been more connected genetically. The STRUCTURE analysis also suggested anthropogenic translocations among single Hungarian populations. Our data on genetic diversity and its distribution do not object to such conservation measures. Translocation of individuals particularly from nearby populations may increase the chances of survival of small and isolated populations and counteract inbreeding at low densities.  相似文献   

11.
The stability and long-term survival of animal populations in fragmented landscapes largely depends on the colonisation of habitat patches and the exchange of individuals between patches. The degree of inter-patch dispersal, in turn, depends on the dispersal abilities of species and the landscape structure (i.e. the nature of the landscape matrix and habitat distribution). Here, we investigated the genetic structure of populations of Metrioptera bicolor, a wing-dimorphic bush cricket, in a spatially structured landscape with patches of suitable habitat distributed within a diverse matrix of different habitat types. Using six microsatellite markers, we assessed the effects of geographic distance and different matrix types on the extent of genetic differentiation among 24 sampling sites. We found that forest and a river running through the study area both impede inter-patch dispersal. The presence of these two matrix types was positively correlated with the extent of genetic differentiation between sites. In addition, we found a significant positive correlation between pairwise genetic and geographic distances for a subsample of sites which were separated only by arable land or settlements. For the complete data set, this correlation could not be found. This is most probably because the adverse effect of forest and river on gene flow dominates the effect of geographic distance in our limited set of patches. Our analyses clearly emphasize the differential resistance of different habitat types on dispersal and the importance of a more detailed view on matrix “quality” in metapopulation studies.  相似文献   

12.
We examined the genetic structure of natural populations of the European wood mouse Apodemus sylvaticus at the microgeographic (<3 km) and macrogeographic (>30 km) scales. Ecological and behavioural studies indicate that this species exhibits considerable dispersal relative to its home-range size. Thus, there is potential for high gene flow over larger geographic areas. As levels of population genetic structure are related to gene flow, we hypothesized that population genetic structuring at the microgeographic level should be negligible, increasing only with geographic distance. To test this, four sites were sampled within a microgeographic scale with two additional samples at the macrogeographic level. Individuals ( n =415) were screened and analysed for seven polymorphic microsatellite loci. Contrary to our hypothesis, significant levels of population structuring were detected at both scales. Comparing genetic differentiation with geographic distance suggests increasing genetic isolation with distance. However, this distance effect was non-significant being confounded by surprisingly high levels of differentiation among microgeographic samples. We attribute this pattern of genetic differentiation to the effect of habitat fragmentation, splitting large populations into components with small effective population sizes resulting in enhanced genetic drift. Our results indicate that it is incorrect to assume genetic homogeneity among populations even where there is no evidence of physical barriers and dispersal can occur freely. In the case of A. sylvaticus , it is not clear whether dispersal does not occur across habitat barriers or behavioural dispersal occurs without consequent gene flow.  相似文献   

13.
Bellamya aeruginosa is a widely distributed Chinese freshwater snail that is heavily harvested, and its natural habitats are under severe threat due to fragmentation and loss. We were interested whether the large geographic distances between populations and habitat fragmentation have led to population differentiation and reduced genetic diversity in the species. To estimate the genetic diversity and population structure of B. aeruginosa, 277 individuals from 12 populations throughout its distribution range across China were sampled: two populations were sampled from the Yellow River system, eight populations from the Yangtze River system, and two populations from isolated plateau lakes. We used seven microsatellite loci and mitochondrial cytochrome oxidase I sequences to estimate population genetic parameters and test for demographic fluctuations. Our results showed that (1) the genetic diversity of B. aeruginosa was high for both markers in most of the studied populations and effective population sizes appear to be large, (2) only very low and mostly nonsignificant levels of genetic differentiation existed among the 12 populations, gene flow was generally high, and (3) relatively weak geographic structure was detected despite large geographic distances between populations. Further, no isolation by linear or stream distance was found among populations within the Yangtze River system and no signs of population bottlenecks were detected. Gene flow occurred even between far distant populations, possibly as a result of passive dispersal during flooding events, zoochoric dispersal, and/or anthropogenic translocations explaining the lack of stronger differentiation across large geographic distances. The high genetic diversity of B. aeruginosa and the weak population differentiation are likely the results of strong gene flow facilitated by passive dispersal and large population sizes suggesting that the species currently is not of conservation concern.  相似文献   

14.
The genetic structure of three metapopulations of the southern African anostracan Branchipodopsis wolfi was compared by analysing allozyme variation at four loci (PGM, GPI, APK, AAT). In total, 17 local populations from three sites (metapopulations) were analysed from rock pools in south-eastern Botswana ranging from 0.2 to 21 m2 in surface area. In three populations we found significant deviations from Hardy-Weinberg (H-W) equilibrium at one or more loci due to heterozygote deficiencies. Genetic variability at one site was significantly lower than at the other sites, which may be linked to a greater incidence of extinction and recolonisation, as the basins at this site are shallower and have shorter hydrocycles. Across all local populations, a significant level of population differentiation was revealed. More than 90% of this variation was explained by differentiation among sites (metapopulations), although this differentiation did not correlate with geographic distance, or with environmental variables. Genetic differentiation among populations within metapopulations was low, but significant at all sites. At only one of the sites was a significantly positive association measured between genetic and geographic distance among local populations. Our data suggest that persistent stochastic events and limited effective long-range dispersal appear to dominate genetic differentiation among populations of B. wolfi inhabiting desert rock pools. The lack of association between geographic distance and genetic or ecological differences between rock pool sites is indicative of historical stochastic events. Low heterozygosity, the significant deviations from H-W equilibrium, and the large inter- but low intra-site differentiation are suggestive of the importance of short-range dispersal. Gene flow between metapopulations of B. wolfi appears to be seriously constrained by distances of 2 km or even less. Received: 28 June 1999 / Accepted: 10 January 2000  相似文献   

15.
Dispersal and gene flow within animal populations are influenced by the composition and configuration of the landscape. In this study, we evaluated hypotheses about the impact of natural and anthropogenic factors on genetic differentiation in two amphibian species, the spotted salamander (Ambystoma maculatum) and the wood frog (Lithobates sylvaticus) in a commercial forest in central Maine. We conducted this analysis at two scales: a local level, focused on factors measured at each breeding pond, and a landscape level, focused on factors measured between ponds. We investigated the effects of a number of environmental factors in six categories including Productivity, Physical, Land Composition, Land Configuration, Isolation and Location. Embryos were sampled from 56 spotted salamander breeding ponds and 39 wood frog breeding ponds. We used a hierarchical Bayesian approach in the program GESTE at each breeding pond and a random forest algorithm in conjunction with a network analysis between the ponds. We found overall high genetic connectivity across distances up to 17 km for both species and a limited effect of natural and anthropogenic factors on gene flow. We found the null models best explained patterns of genetic differentiation at a local level and found several factors at the landscape level that weakly influenced gene flow. This research indicates multiscale investigations that incorporate local and landscape factors are valuable for understanding patterns of gene flow. Our findings suggest that dispersal rates in this system are high enough to minimize genetic structuring and that current forestry practices do not significantly impede dispersal.  相似文献   

16.
We studied five populations of a rainforest understory insectivorous bird (Myrmeciza exsul, chestnut-backed antbird) in a fragmented landscape in northeastern Costa Rica in order to test hypotheses about the influence of forest fragmentation on population genetic structure using 16 microsatellite loci. Bayesian assignment approaches—perhaps the most conservative analyses we performed—consistently grouped the sites into two distinct groups, with all individuals from the smallest and most isolated population clustering separately from the other four sites. Additional analyses revealed (1) overall significant genetic structure; (2) a pattern of population differentiation consistent with a hypothesis of isolation by resistance (landscape connectivity), but not distance; and (3) relatively short dispersal distances indicated by elevated mean pairwise relatedness in several of the sites. Our results are somewhat surprising given the small geographic distances between sites (11–34?km) and the short time (~60?years) since wide-spread deforestation in this landscape. We suspect fine-scale genetic structure may occur in many resident tropical bird species, and in the case of the chestnut-backed antbird it appears that anthropogenic habitat fragmentation has important population genetic implications. It appears that chestnut-backed antbirds may persist in fragmented landscapes in the absence of significant migration among patches, but mechanisms that allow this species to persist when many other similar species do not are not well understood.  相似文献   

17.
Sea ice loss may have dramatic consequences for population connectivity, extinction–colonization dynamics, and even the persistence of Arctic species subject to climate change. This is of particular concern in face of additional anthropogenic stressors, such as overexploitation. In this study, we assess the population‐genetic implications of diminishing sea ice cover in the endemic, high Arctic Svalbard reindeer (Rangifer tarandus platyrhynchus) by analyzing the interactive effects of landscape barriers and reintroductions (following harvest‐induced extirpations) on their metapopulation genetic structure. We genotyped 411 wild reindeer from 25 sampling sites throughout the entire subspecies' range at 19 microsatellite loci. Bayesian clustering analysis showed a genetic structure composed of eight populations, of which two were admixed. Overall population genetic differentiation was high (mean FST = 0.21). Genetic diversity was low (allelic richness [AR] = 2.07–2.58; observed heterozygosity = 0.23–0.43) and declined toward the outer distribution range, where populations showed significant levels of inbreeding. Coalescent estimates of effective population sizes and migration rates revealed strong evolutionary source–sink dynamics with the central population as the main source. The population genetic structure was best explained by a landscape genetics model combining strong isolation by glaciers and open water, and high connectivity by dispersal across winter sea ice. However, the observed patterns of natural isolation were strongly modified by the signature of past harvest‐induced extirpations, subsequent reintroductions, and recent lack of sea ice. These results suggest that past and current anthropogenic drivers of metapopulation dynamics may have interactive effects on large‐scale ecological and evolutionary processes. Continued loss of sea ice as a dispersal corridor within and between island systems is expected to increase the genetic isolation of populations, and thus threaten the evolutionary potential and persistence of Arctic wildlife.  相似文献   

18.
Penstemon albomarginatus is a psammophytic endemic of the Mojave Desert, found only in deep sand and dune habitats of San Bernardino County, California, Mohave County, Arizona, and Clark and Nye Counties in Nevada. We used six microsatellite loci to assess genetic differentiation and diversity for 228 individuals across the 12 known populations of this rare species. A slight heterozygote deficiency was found in two populations, but most populations show no signs of inbreeding. Results show a geographic pattern of northern populations being more closely related to one another compared to all other geographic regions. Genetic diversity was greatest in the southern populations, with decreasing amounts of diversity observed with latitude. In general, the geographic pattern of genetic diversity among all populations suggests a post-glacial dispersal from south-to-north. Our results are discussed in the framework of anthropogenic pressures on deep sand habitats of the Mojave Desert.  相似文献   

19.
We studied population size, genetic diversity and differentiation of common frog (Rana temporaria) populations at urban golf courses and reference natural ponds in the greater Helsinki region, southern Finland. A total of 248 tadpoles from 12 locations (six golf courses, six reference sites) were genotyped with 13 polymorphic microsatellite markers. The most urban populations, situated in northern Helsinki, were the largest breeding sites having >120 (golf courses) and >200 (reference sites) spawn clumps at the time of sampling. On average, there was no difference in the number of spawns between the anthropogenic ponds at golf courses and the natural water bodies. Genetic variation within populations was substantial (H O = 0.68) while genetic differentiation between populations was low (F ST = 0.016; average distance = 17.6 km). The golf course populations did not differ from natural populations in terms of genetic variability or differentiation. Hence, our results suggest that golf courses contribute positively to urban amphibian populations by providing suitable water bodies for reproduction and green corridors for dispersal, thus preventing isolation and loss of genetic variability within populations.  相似文献   

20.
Gene flow between populations of two invertebrates in springs   总被引:2,自引:0,他引:2  
1. Using allozymes, we analysed genetic structure of the freshwater gastropod Bythinella dunkeri and the freshwater flatworm Crenobia alpina. The two species are habitat specialists, living almost exclusively in springs. The sampled area in Hesse (Germany) covers a spatial scale of 20 km and includes two river drainages. From the biology of the two species we expected little dispersal along rivers. However, the possibility exists that groundwater provide suitable pathways for dispersal. 2. In B. dunkeri heterozygosity decreased from west to east. For some alleles we found clines in this geographic direction. These clines generated a positive correlation between geographic distance and genetic differentiation. Furthermore patterns of genetic variation within populations suggested that populations may have been faced with bottlenecks and founder effects. If populations are not in population genetic equilibrium, such founder effects would also explain the rather high amount of genetic differentiation between populations (10%). 3. For C. alpina the mean number of alleles decreased with increasing isolation of populations. Genetic differentiation between populations contributed 19% to the total genetic variation. Genetic differentiation was not correlated to geographic distance, but compared with B. dunkeri variability of pairwise differentiation between pairs of populations was higher in C. alpina. 4. Overall B. dunkeri appears to be a fairly good disperser, which may use groundwater as dispersal pathway. Furthermore populations seem to be not in equilibrium. In contrast C. alpina forms rather isolated populations with little dispersal between springs and groundwater seems to play no important role for dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号