首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SEC12, a gene that is required for secretory, membrane, and vacuolar proteins to be transported from the endoplasmic reticulum to the Golgi apparatus, has been cloned from a genomic library by complementation of a sec12 ts mutation. Genetic analysis has shown that the cloned gene integrates at the SEC12 locus and that a null mutation at the locus is lethal. The DNA sequence predicts a protein of 471 amino acids containing a hydrophobic stretch of 19 amino acids near the COOH terminus. To characterize the gene product (Sec12p) in detail, a lacZ-SEC12 gene fusion has been constructed and a polyclonal antibody raised against the hybrid protein. The antibody recognizes Sec12p as a approximately 70-kD protein that sediments in a mixed membrane fraction that includes endoplasmic reticulum. Sec12p is not removed from the membrane fraction by treatment at high pH and high salt and is not degraded by exogenous protease unless detergent is present. Glycosylation of Sec12p during biogenesis is indicated by an electrophoretic mobility shift of the protein that is influenced by tunicamycin and by imposition of an independent secretory pathway block. We suggest that Sec12p is an integral membrane glycoprotein with a prominent domain that faces the cytoplasm where it functions to promote protein transport to the Golgi apparatus. In the process of transport, Sec12p itself may migrate to the Golgi apparatus and function in subsequent transport events.  相似文献   

2.
Yeast mutants defective in the translocation of soluble secretory proteins into the lumen of the endoplasmic reticulum (sec61, sec62, sec63) are not impaired in the assembly and glycosylation of the type II membrane protein dipeptidylaminopeptidase B (DPAPB) or of a chimeric membrane protein consisting of the multiple membrane-spanning domain of yeast hydroxymethylglutaryl CoA reductase (HMG1) fused to yeast histidinol dehydrogenase (HIS4C). This chimera is assembled in wild-type or mutant cells such that the His4c protein is oriented to the ER lumen and thus is not available for conversion of cytosolic histidinol to histidine. Cells harboring the chimera have been used to select new translocation defective sec mutants. Temperature-sensitive lethal mutations defining two complementation groups have been isolated: a new allele of sec61 and a single isolate of a new gene sec65. The new isolates are defective in the assembly of DPAPB, as well as the secretory protein alpha-factor precursor. Thus, the chimeric membrane protein allows the selection of more restrictive sec mutations rather than defining genes that are required only for membrane protein assembly. The SEC61 gene was cloned, sequenced, and used to raise polyclonal antiserum that detected the Sec61 protein. The gene encodes a 53-kDa protein with five to eight potential membrane-spanning domains, and Sec61p antiserum detects an integral protein localized to the endoplasmic reticulum membrane. Sec61p appears to play a crucial role in the insertion of secretory and membrane polypeptides into the endoplasmic reticulum.  相似文献   

3.
A screen for mutants of Saccharomyces cerevisiae secretory pathway components previously yielded sec34, a mutant that accumulates numerous vesicles and fails to transport proteins from the ER to the Golgi complex at the restrictive temperature (Wuestehube, L.J., R. Duden, A. Eun, S. Hamamoto, P. Korn, R. Ram, and R. Schekman. 1996. Genetics. 142:393-406). We find that SEC34 encodes a novel protein of 93-kD, peripherally associated with membranes. The temperature-sensitive phenotype of sec34-2 is suppressed by the rab GTPase Ypt1p that functions early in the secretory pathway, or by the dominant form of the ER to Golgi complex target-SNARE (soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor)-associated protein Sly1p, Sly1-20p. Weaker suppression is evident upon overexpression of genes encoding the vesicle tethering factor Uso1p or the vesicle-SNAREs Sec22p, Bet1p, or Ykt6p. This genetic suppression profile is similar to that of sec35-1, a mutant allele of a gene encoding an ER to Golgi vesicle tethering factor and, like Sec35p, Sec34p is required in vitro for vesicle tethering. sec34-2 and sec35-1 display a synthetic lethal interaction, a genetic result explained by the finding that Sec34p and Sec35p can interact by two-hybrid analysis. Fractionation of yeast cytosol indicates that Sec34p and Sec35p exist in an approximately 750-kD protein complex. Finally, we describe RUD3, a novel gene identified through a genetic screen for multicopy suppressors of a mutation in USO1, which suppresses the sec34-2 mutation as well.  相似文献   

4.
SEC62 is required for the import of secretory protein precursors into the endoplasmic reticulum (ER) of Saccharomyces cerevisiae. The DNA sequence of SEC62 predicts a 32-kDa polypeptide with two potential membrane-spanning segments. Two antisera directed against different portions of the SEC62 coding region specifically detected a 30-kDa polypeptide in cell extracts. A combination of subcellular fractionation, detergent and alkali extraction, and indirect immunofluorescence studies indicated that Sec62p is intimately associated with the ER membrane. Protease digestion of intact microsomes and analysis of the oligosaccharide content of a set of Sec62p-invertase hybrid proteins suggested that Sec62p spans the ER membrane twice, displaying hydrophilic amino- and carboxy-terminal domains towards the cytosol. Sec62p-invertase hybrid proteins that lack the Sec62p C terminus failed to complement the sec62-l mutation and dramatically inhibited the growth of sec62-l cells at a normally permissive temperature. The inhibitory action of toxic Sec62p-invertase hybrids was partially counteracted by the overexpression of Sec63p. Taken together, these data suggest that the C-terminal domain of Sec62p performs an essential function and that the N-terminal domain associates with other components of the translocation machinery, including Sec63p.  相似文献   

5.
6.
SEC11 is required for signal peptide processing and yeast cell growth   总被引:26,自引:9,他引:17       下载免费PDF全文
Among the collection of temperature-sensitive secretion mutants of Saccharomyces cerevisiae, sec11 mutant cells are uniquely defective in signal peptide processing of at least two different secretory proteins. At 37 degrees C, the restrictive growth temperature, sec11 cells accumulate core-glycosylated forms of invertase and acid phosphatase, each retaining an intact signal peptide. In contrast, other sec mutant strains in which transport of core-glycosylated molecules from the endoplasmic reticulum is blocked show no defect in signal peptide cleavage. A DNA fragment that complements the sec11-7 mutation has been cloned. Genetic analysis indicates that the complementing clone contains the authentic SEC11 gene, and that a null mutation at the SEC11 locus is lethal. The DNA sequence of SEC11 predicts a basic protein (estimated pI of 9.5) of 167 amino acids including an NH2-terminal hydrophobic region that may function as a signal and/or membrane anchor domain. One potential N-glycosylation site is found in the 18.8-kD (Sec 11p) predicted protein. The mass of the SEC11 protein is very close to that found for two of the subunits of the canine and hen oviduct signal peptidases. Furthermore, the chromatographic behavior of the hen oviduct enzyme indicates an overall basic charge comparable to the predicted pI of the Sec11p.  相似文献   

7.
A temperature-sensitive mutant, sec34-2, is defective in the late stages of endoplasmic reticulum (ER)-to-Golgi transport. A high-copy suppressor screen that uses the sec34-2 mutant has resulted in the identification of the SEC34 structural gene and a novel gene called GRP1. GRP1 encodes a previously unidentified hydrophilic yeast protein related to the mammalian Golgi protein golgin-160. Although GRP1 is not essential for growth, the grp1Delta mutation displays synthetic lethal interactions with several mutations that result in ER accumulation and a block in the late stages of ER-to-Golgi transport, but not with those that block the budding of vesicles from the ER. Our findings suggest that Grp1p may facilitate membrane traffic indirectly, possibly by maintaining Golgi function. In an effort to identify genes whose products physically interact with Sec34p, we also tested the ability of overexpressed SEC34 to suppress known secretory mutations that block vesicular traffic between the ER and the Golgi. This screen revealed that SEC34 specifically suppresses sec35-1. SEC34 encodes a hydrophilic protein of approximately 100 kDa. Like Sec35p, which has been implicated in the tethering of ER-derived vesicles to the Golgi, Sec34p is predominantly soluble. Sec34p and Sec35p stably associate with each other to form a multiprotein complex of approximately 480 kDa. These data indicate that Sec34p acts in conjunction with Sec35p to mediate a common step in vesicular traffic.  相似文献   

8.
The SEC20 gene product (Sec20p) is required for endoplasmic reticulum (ER) to Golgi transport in the yeast secretory pathway. We have cloned the SEC20 gene by complementation of the temperature sensitive phenotype of a sec20-1 strain. The DNA sequence predicts a 44 kDa protein with a single membrane-spanning region; Sec20p has an apparent molecular weight of 50 kDa and behaves as an integral membrane protein with carbohydrate modifications that appear to be O-linked. A striking feature of this protein is its C-terminal sequence, which consists of the tetrapeptide HDEL. This signal is known to be required for the retrieval of soluble ER proteins from early Golgi compartments, but has not previously been observed on a membrane protein. The HDEL sequence of Sec20p is not essential for viability but helps to maintain intracellular levels of the protein. Depletion of Sec20p from cells results in the accumulation of an extensive network of ER and clusters of small vesicles. We suggest a possible role for the SEC20 product in the targeting of transport vesicles to the Golgi apparatus.  相似文献   

9.
The exocyst is a conserved protein complex proposed to mediate vesicle tethering at the plasma membrane. Previously, we identified SEB1/SBH1, encoding the beta subunit of the Sec61p ER translocation complex, as a multicopy suppressor of the sec15-1 mutant, defective for one subunit of the exocyst complex. Here we show the functional and physical interaction between components of endoplasmic reticulum translocon and the exocytosis machinery. We show that overexpression of SEB1 suppresses the growth defect in all exocyst sec mutants. In addition, overexpression of SEC61 or SSS1 encoding the other two components of the Sec61p complex suppressed the growth defects of several exocyst mutants. Seb1p was coimmunoprecipitated from yeast cell lysates with Sec15p and Sec8p, components of the exocyst complex, and with Sec4p, a secretory vesicle associated Rab GTPase that binds to Sec15p and is essential for exocytosis. The interaction between Seb1p and Sec15p was abolished in sec15-1 mutant and was restored upon SEB1 overexpression. Furthermore, in wild type cells overexpression of SEB1 as well as SEC4 resulted in increased production of secreted proteins. These findings propose a novel functional and physical link between the endoplasmic reticulum translocation complex and the exocyst.  相似文献   

10.
Temperature-sensitive mutations in the SEC16 gene of Saccharomyces cerevisiae block budding of transport vesicles from the ER. SEC16 was cloned by complementation of the sec16-1 mutation and encodes a 240-kD protein located in the insoluble, particulate component of cell lysates. Sec16p is released from this particulate fraction by high salt, but not by nonionic detergents or urea. Some Sec16p is localized to the ER by immunofluorescence microscopy. Membrane-associated Sec16p is incorporated into transport vesicles derived from the ER that are formed in an in vitro vesicle budding reaction. Sec16p binds to Sec23p, a COPII vesicle coat protein, as shown by the two-hybrid interaction assay and affinity studies in cell extracts. These findings indicate that Sec16p associates with Sec23p as part of the transport vesicle coat structure. Genetic analysis of SEC16 identifies three functionally distinguishable domains. One domain is defined by the five temperature- sensitive mutations clustered in the middle of SEC16. Each of these mutations can be complemented by the central domain of SEC16 expressed alone. The stoichiometry of Sec16p is critical for secretory function since overexpression of Sec16p causes a lethal secretion defect. This lethal function maps to the NH2-terminus of the protein, defining a second functional domain. A separate function for the COOH-terminal domain of Sec16p is shown by its ability to bind Sec23p. Together, these results suggest that Sec16p engages in multiple protein-protein interactions both on the ER membrane and as part of the coat of a completed vesicle.  相似文献   

11.
The SEC13 gene of Saccharomyces cerevisiae is required in vesicle biogenesis at a step before or concurrent with the release of transport vesicles from the ER membrane. SEC13 encodes a 33-kD protein with sequence homology to a series of conserved internal repeat motifs found in beta subunits of heterotrimeric G proteins. The product of this gene, Sec13p, is a cytosolic protein peripherally associated with membranes. We developed a cell-free Sec13p-dependent vesicle formation reaction. Sec13p-depleted membranes and cytosol fractions were generated by urea treatment of membranes and affinity depletion of a Sec13p-dihydrofolate reductase fusion protein, respectively. These fractions were unable to support vesicle formation from the ER unless cytosol containing Sec13p was added. Cytosolic Sec13p fractionated by gel filtration as a large complex of about 700 kD. Fractions containing the Sec13p complex restored activity to the Sec13p- dependent vesicle formation reaction. Expression of SEC13 on a multicopy plasmid resulted in overproduction of a monomeric form of Sec13p, suggesting that another member of the complex becomes limiting when Sec13p is overproduced. Overproduced, monomeric Sec13p was inactive in the Sec13p- dependent vesicle formation assay.  相似文献   

12.
N R Salama  T Yeung    R W Schekman 《The EMBO journal》1993,12(11):4073-4082
SEC13 encodes a 33 kDa protein that participates in vesicle budding from the endoplasmic reticulum (ER). In order to purify a functional form of Sec13p, a SEC13-dihydrofolate reductase (mouse) fusion gene (SEC13:DHFR) was constructed that complements both sec13 temperature sensitive and null mutations. Methotrexate-agarose affinity chromatography facilitated the purification of two forms of the Sec13-dhfrp fusion protein: a monomeric form and a high molecular weight complex. The complex form consists of two subunits: Sec13-dhfrp and a 150 kDa protein (p150). Native immunoprecipitation experiments confirm that Sec13p exists in a complex with p150 in wild type cells. Functional analysis supports a role for both subunits in protein transport. Vesicle budding from the ER in a cell-free reaction is inhibited by Fab antibody fragments directed against either Sec13p or p150. The purified Sec13-dhfrp/p150 complex, but not the Sec13-dhfrp monomer, in combination with two other pure protein fractions (Sar1p and a Sec23/Sec24 protein complex) satisfies the requirement for cytosol in a cell-free vesicle budding reaction. The vesicles formed with the purified protein fractions are competent to fuse with the Golgi and are biochemically distinct from the ER membrane fraction from which they derive.  相似文献   

13.
The COPII vesicle coat protein promotes the formation of endoplasmic reticulum- (ER) derived transport vesicles that carry secretory proteins to the Golgi complex in Saccharomyces cerevisiae. This coat protein consists of Sar1p, the Sec23p protein complex containing Sec23p and Sec24p, and the Sec13p protein complex containing Sec13p and a novel 150-kDa protein, p150. Here, we report the cloning and characterization of the p150 gene. p150 is encoded by an essential gene. Depletion of this protein in vivo blocks the exit of secretory proteins from the ER and causes an elaboration of ER membranes, indicating that p150 is encoded by a SEC gene. Additionally, overproduction of the p150 gene product compromises the growth of two ER to Golgi sec mutants: sec16-2 and sec23-1. p150 is encoded by SEC31, a gene isolated in a genetic screen for mutations that accumulate unprocessed forms of the secretory protein alpha-factor. The sec31-1 mutation was mapped by gap repair, and sequence analysis revealed an alanine to valine change at position 1239, near the carboxyl terminus. Sec31p is a phosphoprotein and treatment of the Sec31p-containing fraction with alkaline phosphatase results in a 50-75% inhibition of transport vesicle formation activity in an ER membrane budding assay.  相似文献   

14.
The sec71-1 and sec72-1 mutations were identified by a genetic assay that monitored membrane protein integration into the endoplasmic reticulum (ER) membrane of the yeast Saccharomyces cerevisiae. The mutations inhibited integration of various chimeric membrane proteins and translocation of a subset of water soluble proteins. In this paper we show that SEC71 encodes the 31.5-kDa transmembrane glycoprotein (p31.5) and SEC72 encodes the 23-kDa protein (p23) of the Sec63p-BiP complex. SEC71 is therefore identical to SEC66 (HSS1), which was previously shown to encode p31.5. DNA sequence analyses reveal that sec71-1 cells contain a nonsense mutation that removes approximately two-thirds of the cytoplasmic C-terminal domain of p31.5. The sec72-1 mutation shifts the reading frame of the gene encoding p23. Unexpectedly, the sec71-1 mutant lacks p31.5 and p23. Neither mutation is lethal, although sec71-1 cells exhibit a growth defect at 37 degrees C. These results show that p31.5 and p23 are important for the trafficking of a subset of proteins to the ER membrane.  相似文献   

15.
The yeast SEC53 gene encodes phosphomannomutase   总被引:25,自引:0,他引:25  
Yeast sec53 cells incubated at a restrictive temperature (37 degrees C) accumulate inactive and incompletely glycosylated forms of secretory proteins within the lumen of the endoplasmic reticulum. A defect in glycosylation of alpha-factor precursor has been reproduced in vitro using membranes and cytosol isolated from sec53 mutant cells. Normal glycosylation is restored in reactions supplemented with a cytosolic fraction from wild type cells, with GDP-mannose, or with mannose 1-phosphate and GTP, but not with mannose 6-phosphate and GTP. This pattern of stimulation suggests that extracts of sec53 cells are deficient in phosphomannomutase activity or in the production of a precursor of mannose 1-phosphate. Several lines of evidence demonstrate that SEC53 encodes the yeast phosphomannomutase. Direct assay of soluble fractions from independent alleles of sec53 shows low to negligible phosphomannomutase, but nearly normal levels of phosphomannoisomerase activity. The residual phosphomannomutase activity in mutant cell lysates is thermolabile in proportion to the severity of the sec53 cell growth defect. Introduction of the SEC53 gene on a multicopy plasmid into sec53 or wild type yeast and into Salmonella typhimurium results in an increase in phosphomannomutase activity that correlates with elevated expression of the Sec53 protein. Finally, the Sec53 protein and phosphomannomutase activity cofractionate exactly in a 70-fold partial purification involving gel filtration and DEAE chromatography. The secretory defect in sec53 cells may now be explained by a deficit in GDP-mannose production.  相似文献   

16.
The coat protein complex II (COPII) is essential for vesicle formation from the endoplasmic reticulum (ER) and is composed of two heterodimeric subcomplexes, Sec23p/Sec24p and Sec13p/Sec31p, and the small guanosine triphosphatase Sar1p. In an effort to identify novel factors that may participate in COPII vesicle formation, we isolated SMY2 , a yeast gene encoding a protein of unknown function, as a multicopy suppressor of the temperature-sensitive sec24-20 mutant. We found that even a low-copy expression of SMY2 was sufficient for the suppression of the sec24-20 phenotypes, and the chromosomal deletion of SMY2 led to a severe growth defect in the sec24-20 background. In addition, SMY2 exhibited genetic interactions with several other genes involved in the ER-to-Golgi transport. Subcellular fractionation analysis showed that Smy2p was a peripheral membrane protein fractionating together with COPII components. However, Smy2p was not loaded onto COPII vesicles generated in vitro . Interestingly, coimmunoprecipitation between Smy2p and the Sec23p/Sec24p subcomplex was specifically observed in sec23-1 and sec24-20 backgrounds, suggesting that this interaction was a prerequisite for the suppression of the sec24-20 phenotypes by overexpression of SMY2 . We propose that Smy2p is located on the surface of the ER and facilitates COPII vesicle formation through the interaction with Sec23p/Sec24p subcomplex.  相似文献   

17.
Sec22p is an endoplasmic reticulum (ER)-Golgi v-SNARE protein whose retrieval from the Golgi compartment to the endoplasmic reticulum (ER) is mediated by COPI vesicles. Whether Sec22p exhibits its primary role at the ER or the Golgi apparatus is still a matter of debate. To determine the role of Sec22p in intracellular transport more precisely, we performed a synthetic lethality screen. We isolated mutant yeast strains in which SEC22 gene function, which in a wild type strain background is non-essential for cell viability, has become essential. In this way a novel temperature-sensitive mutant allele, dsl1-22, of the essential gene DSL1 was obtained. The dsl1-22 mutation causes severe defects in Golgi-to-ER retrieval of ER-resident SNARE proteins and integral membrane proteins harboring a C-terminal KKXX retrieval motif, as well as of the soluble ER protein BiP/Kar2p, which utilizes the HDEL receptor, Erd2p, for its recycling to the ER. DSL1 interacts genetically with mutations that affect components of the Golgi-to-ER recycling machinery, namely sec20-1, tip20-5, and COPI-encoding genes. Furthermore, we demonstrate that Dsl1p is a peripheral membrane protein, which in vitro specifically binds to coatomer, the major component of the protein coat of COPI vesicles.  相似文献   

18.
A cell-free protein transport reaction has been used to monitor the purification of a functional form of the Sec23 protein, a SEC gene product required for the formation or stability of protein transport vesicles that bud from the endoplasmic reticulum (ER). Previously, we reported that Sec23p is an 84-kDa peripheral membrane protein that is released from a sedimentable fraction by vigorous mechanical agitation of yeast cells and is required for ER to Golgi transport assayed in vitro. We have purified soluble Sec23p by complementation of an in vitro ER to Golgi transport reaction reconstituted with components from sec23 mutant cells. Sec23p overproduced in yeast exists in two forms: a monomeric species and a species that behaves as a 250- to 300-kDa complex that contains Sec23p and a distinct 105-kDa polypeptide (p105). Sec23p purified from cells containing one SEC23 gene exists solely in the large multimeric form. A stable association between Sec23p and p105 is confirmed by cofractionation of the two proteins throughout the purification. p105 is a novel yeast protein involved in ER to Golgi transport. Like Sec23p, it is required for vesicle budding from the ER because p105 antiserum completely inhibits transport vesicle formation in vitro.  相似文献   

19.
Glycoproteins exit the endoplasmic reticulum (ER) of the yeast Saccharomyces cerevisiae in coat protein complex II (COPII) coated vesicles. The coat consists of the essential proteins Sec23p, Sec24p, Sec13p, Sec31p, Sar1p and Sec16p. Sec24p and its two nonessential homologues Sfb2p and Sfb3p have been suggested to serve in cargo selection. Using temperature-sensitive sec24-1 mutants, we showed previously that a secretory glycoprotein, Hsp150, does not require functional Sec24p for ER exit. Deletion of SFB2, SFB3 or both from wild type or the deletion of SFB2 from sec24-1 cells did not affect Hsp150 transport. SFB3 deletion has been reported to be lethal in sec24-1. However, here we constructed a sec24-1 Deltasfb3 and a sec24-1 Deltasfb2 Deltasfb3 strain and show that Hsp150 was secreted slowly in both. Turning off the SEC24 gene did not inhibit Hsp150 secretion either, and the lack of SEC24 expression in a Deltasfb2 Deltasfb3 deletant still allowed some secretion. The sec24-1 Deltasfb2 Deltasfb3 mutant grew slower than sec24-1. The cells were irregularly shaped, budded from random sites and contained proliferated ER at permissive temperature. At restrictive temperature, the ER formed carmellae-like proliferations. Our data indicate that ER exit may occur in vesicles lacking a full complement of Sec23p/24p and Sec13p/31p, demonstrating diversity in the composition of the COPII coat.  相似文献   

20.
SEC72 encodes the 23-kD subunit of the Sec63p complex, an integral ER membrane protein complex that is required for translocation of presecretory proteins into the ER of Saccharomyces cerevisiae. DNA sequence analysis of SEC72 predicts a 21.6-kD protein with neither a signal peptide nor any transmembrane domains. Antibodies directed against a carboxyl-terminal peptide of Sec72p were used to confirm the membrane location of the protein. SEC72 is not essential for yeast cell growth, although an sec72 null mutant accumulates a subset of secretory precursors in vivo. Experiments using signal peptide chimeric proteins demonstrate that the sec72 translocation defect is associated with the signal peptide rather than with the mature region of the secretory precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号