首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three potential secondary structures, stem-loops I, II, and III, are contained in the phage G4 origin of complementary DNA strand synthesis, G4oric, and are believed to be involved in its recognition by dnaG-encoded primase and the synthesis of primer RNA. In a previous publication [Sakai et al., Gene 71 (1988) 323-330], we suggested that base pairing between the loops of stem-loops I, and II, and/or II and III, might play a role in G4oric function. To test this hypothesis, site-directed mutagenesis was used to construct mutants which carried base substitutions in loops I, II and III that destroyed possible interloop base pairing. These mutations, however, did not seriously affect G4oric activity. This indicates that base pairing between the loops is not essential for G4oric functional activity, and also that base substitutions which do not affect the secondary structure of stem-loops I, II and III, do not affect G4oric activity. To complete an analysis of the effects of altering the structure of the G4oric stem-loops, insertions were made into stem-loop III. In contrast to stem-loops I and II, all insertions into stem-loop III destroyed in vivo G4oric activity.  相似文献   

2.
The effects of NaCl concentration on bleomycin-induced cleavages of single-strand and double-strand DNA fragments containing the phage G4 origin of complementary DNA strand synthesis were investigated. It was found that bleomycin could be used as a reagent to analyze secondary and tertiary structures and subtle changes of DNA structures. The effects of NaCl concentration on cleavages of single-stranded DNA were distinct at every target site, indicating that the diversity of topolotical properties of DNA might change the selectivity of the bleomycin-induced DNA cleavage. These results showed alternative secondary structures within and close to the G4 origin of complementary DNA strand synthesis.  相似文献   

3.
The cleavage by bleomycin-Fe(II) complex in the presence of dithiothreitol of 3'-or 5'-end-labeled DNA from the region of the bacteriophage G4 origin of complementary strand synthesis was investigated by using the DNA-sequencing technique. Bleomycin cleaved a single-stranded DNA substrate preferentially at inverted repeat sequences, which potentially form stem-and-loop structures, while it cleaved double-stranded DNA substrates with different specificity. The results support the formation of three adjoining stem-and-loop structures in the region of the phage G4 origin of complementary strand synthesis under the low-salt conditions used and suggest a difference in the form of the double helix between the stem and the double-stranded DNA fragment. Bleomycin appears to be a useful reagent for searching stem-and-loop structures. The results may also contribute to the understanding of the mode of action of bleomycin as an antitumor antibiotic.  相似文献   

4.
H Sakai  T Komano  G N Godson 《Gene》1987,53(2-3):265-273
Phage G4 origin of complementary DNA strand synthesis (oric) consists of three stable secondary loop structures. In a cloned 274-bp DNA fragment that is active as an ori in the filamentous phage cloning vector R199, insertion mutants have been constructed by introducing EcoRI and HindIII linkers at the base of loop III. The in vivo activity of these oric mutants (conversion of single-strand form to replicative form in the presence of rifampicin) was significantly reduced (50-70%) but not completely abolished. Nucleotide sequences and/or potential secondary structure of loop III centered at the AvaII site are therefore an important functional part of oric.  相似文献   

5.
6.
H Hiasa  H Sakai  K Tanaka  Y Honda  T Komano  G N Godson 《Gene》1989,84(1):9-16
The primase-dependent phage G4 origin of complementary DNA strand synthesis (G4oric) contains three stable stem-loops (I, II, and III) upstream from the initiation point of primer RNA (pRNA). Site-directed mutagenesis was used to introduce alterations into the nucleotide (nt) sequence of the G4oric pRNA template region. Mutations in stem-loop I, that changed the length of the stem and the sequence of the loop, slightly depressed, but did not abolish, G4oric activity. However, functional G4oric activity was destroyed when the sequence containing the starting position of pRNA synthesis was deleted, or when insertions were introduced between the pRNA starting position (5'-CTG-3') and stem-loop I. Reintroducing a CTG as part of a PstI linker close to stem-loop I, however, resulted in recovery of G4oric functional activity. These results suggest that the specific nt sequence, containing 5'-CTG-3', between nt 3994 and 4007, and also the distance between the starting position of pRNA synthesis and stem-loop I, are essential structural features for G4oric function.  相似文献   

7.
Bacteriophage T7 DNA primase (gene-4 protein, 66,000 daltons) enables T7 DNA polymerase to initiate the synthesis of DNA chains on single-stranded templates. An initial step in the process of chain initiation is the formation of an oligoribonucleotide primer by T7 primase. The enzyme, in the presence of natural SS DNA, Mg++ (or Mn++), ATP and CTP (or a mixture of all 4 rNTPs), catalyzes the synthesis of di-, tri-, and tetraribonucleotides all starting at the 5' terminus with pppA. In a subsequent step requiring both T7 DNA polymerase and primase, the short oligoribonucleotides (predominantly pppA-C-C-AOH) are extended by covalent addition of deoxyribonucleotides. With the aid of primase, T7 DNA polymerase can also utilize efficiently a variety of synthetic tri-, tetra-, or pentanucleotides as chain initiators. T7 primase apparently plays an active role in primer extension by stabilizing the short primer segments in a duplex state on the template DNA.  相似文献   

8.
Insertions and deletions in coding sequences can alter the reading frame of genes and have profound biological consequences. In 1966, Streisinger proposed that these mutations result from strand slippage, which in repetitive sequences generates misaligned intermediates stabilized by correct base pairing that support polymerization. We report here crystal structures of human DNA polymerase lambda, which frequently generates deletion mutations, bound to such intermediates. Each contains an extrahelical template nucleotide upstream of the active site. Surprisingly, the extra nucleotide, even when combined with an adjacent mismatch, does not perturb polymerase active site geometry, which is indistinguishable from that for correctly aligned strands. These structures reveal how pol lambda can polymerize on substrates with minimal homology during repair of double-strand breaks and represent strand-slippage intermediates consistent with Streisinger's classical hypothesis. They are thus relevant to the origin of single-base deletions, a class of mutations that can confer strong biological phenotypes.  相似文献   

9.
The yeast DNA primase-DNA polymerase activities catalyze de novo oligoribonucleotide primed DNA synthesis on single-stranded DNA templates (Singh, H., and Dumas, L. B. (1984) J. Biol. Chem. 259, 7936-7940). In the presence of ATP substrate and poly(dT) template, the enzyme preparation synthesizes discrete-length oligoribonucleotides (apparent length 8-12) and multiples thereof. The unit length primers are the products of de novo processive synthesis and are precursors to the synthesis of the multimers. Multimeric length oligoribonucleotides are not generated by continuous processive extension of the de novo synthesis products, however, nor do they arise by ligation of unit length oligomers. Instead, dissociation and rebinding of a factor, possibly the DNA primase, results in processive extension of the RNA synthesis products by an additional modal length. Thus, catalysis by the yeast DNA primase can be viewed as repeated cycles of processive unit length RNA chain extension. Inclusion of dATP substrate results in three distinct transitions: (i) coupling of RNA priming to DNA synthesis, (ii) suppression of multimer RNA synthesis, and (iii) attenuation of primer length. The less than unit length RNA primers appear to result from premature DNA chain extension, not degradation from either end of the unit length primer. We discuss possible roles of DNA polymerase and DNA primase in RNA primer attenuation.  相似文献   

10.
An in vivo assay was used to define the DNA requirements at the bacteriophage G4 origin of complementary-strand DNA synthesis (G4 origin). This assay made use of an origin-cloning vector, mRZ1000, a defective M13 recombinant phage deleted for its natural origin of complementary-strand DNA synthesis. The minimal DNA sequence of the G4 genome sufficient for the restoration of normal M13 growth parameters was determined to be 139 bases long, located between positions 3868 and 4007. This G4-M13 construct was also found to give rise to proper initiation of complementary-strand synthesis in vitro. The cloned DNA sequence contains all the regions of potential secondary structure which have been implicated in primase-dependent replication initiation as well as additional sequence information. To address the role of one region which potentially forms a DNA secondary structure, the DNA sequence internal to the G4 origin was altered by site-directed mutagenesis. A 3-base insertion at the AvaII site as well as a 17-base deletion between the AvaI and AvaII sites both resulted in loss of origin function. The 17-base deletion was also generated within the G4 genome and found to dramatically reduce the infectious growth rate of the resulting phage. These results are discussed with respect to the role of the G4 origin as the recognition site for primase-dependent replication initiation and its possible role in stage II replication.  相似文献   

11.
The break in the complementary DNA strand of early G4 replicative form II DNA (RFII) and in the viral DNA strand of late RFII DNA was located using two single cleavage restriction enzymes (EcoRI and PstI) and by limited nick translation of the break using DNA polymerase I and 32P-labelled deoxyribonucleotides followed by digestion with the restriction enzymes HaeIII and HindII. The break in the complementary DNA strand was unique and in HaeIII Z5 close to the EcoRI cleavage site whereas the break in the viral DNA strand was on the other side of the molecule in HaeIII Z2 approxiately 50% away from the EcoRI cleavage site. Distribution of a short 3H pulse in early G4 replicating intermediates that were synthesising both DNA strands at the same time showed that synthesis of the strands started on opposite sides of the molecule and proceeded in opposite convergent directions, suggesting that initiation of synthesis of the two strands was independent and not unified in a single growing fork.  相似文献   

12.
The broad host range IncP (IncP1) plasmids of gram-negative bacteria encode DNA primases that are involved in conjugal DNA synthesis. The primase of RK2/RP4 is required for efficient DNA transfer to certain gram-negative bacteria, indicating that the enzyme primes complementary strand synthesis in the recipient. In vitro, the primase initiates synthesis of oligoribonucleotides at 3'-dGdT-5' dinucleotides on the template strand. In this report, replication-defective M13 phage are used to assay the ability of the RK2-encoded primase to initiate complementary strand synthesis in vivo on single-strand templates containing the RK2 origin of conjugal transfer (oriT) or the RK2 origin of vegetative replication (oriV). The results show that sequences from either strand of the oriT region serve as efficient substrates for the RK2 primase and can enhance the growth of the defective M13 vectors delta E101 and delta Elac to levels approaching wild-type. The primise-oriT interaction appeared specific, since neither the oriV sequence nor another RK2 region, trfB, significantly enhanced growth of the defective phage, either in the presence or in the absence of the primase. In contrast to ColEl and F, this study also shows that the oriV region of RK2 lacks sites that are recognized by the host-specified DNA priming systems. The results suggest that the oriT region contains sites on both DNA strands that are efficient substrates for the plasmid-encoded primase, facilitating initiation of complementary strand DNA synthesis in both donor and recipient during conjugation.  相似文献   

13.
We have used an in vivo plasmid-phi X174 packaging system to detect replication initiation signals in the region of the replication origin (oriC) of the Escherichia coli chromosome. The results obtained are summarized as follows: (i) Neither within nor close to oriC effective signals for initiating complementary strand synthesis could be detected. We conclude that initiation mechanisms for leading and lagging strand synthesis at oriC are not identical to any known priming mechanism of DNA synthesis. (ii) At least five signals that can function as complementary strand origins on ss-plasmid DNA are located in a region about 2000-3300 base pairs away from oriC in the clockwise direction on the chromosome. We suggest that these signals are protein n' like recognition sequences since they are dependent for their activity on dnaB protein and show sequence similarities to other putative n' recognition sequences. Surprisingly, some of the signals are located on the template for leading strand synthesis.  相似文献   

14.
Recently we reported that a DNA fragment, GCCAAAGC, forms an extraordinarily stable hairpin structure with two G-C pairs at the terminus and A-A-A stacked structure. The sequence is present at the replication origin of bacteriophage G4 ssDNA, and so on. Several kinds of possible hairpin structures, corresponding to the replication origin of phage G4, were synthesized and their secondary structures were examined. It was found that the fragments are able to form interconvertible hairpin structures depending on the length of the base-paired regions. The hairpin structure consisting of GCGAAAGC was not digested by the exonuclease activity of T4 DNA polymerase and it was stable enough to be only minimally bound by a single-stranded DNA binding protein.  相似文献   

15.
Bacteriophage P4 DNA replication depends on the product of the alpha gene, which has origin recognition ability, DNA helicase activity, and DNA primase activity. One temperature-sensitive and four amber mutations that eliminate DNA replication in vivo were sequenced and located in the alpha gene. Sequence analysis of the entire gene predicted a domain structure for the alpha polypeptide chain (777 amino acid residues, M(r) 84,900), with the N terminus providing the catalytic activity for the primase and the middle part providing that for the helicase/nucleoside triphosphatase. This model was confirmed experimentally in vivo and in vitro. In addition, the ori DNA recognition ability was found to be associated with the C-terminal third of the alpha polypeptide chain. The type A nucleotide-binding site is required for P4 replication in vivo, as shown for alpha mutations at G-506 and K-507. In the absence of an active DnaG protein, the primase function is also essential for P4 replication. Primase-null and helicase-null mutants retain the two remaining activities functionally in vitro and in vivo. The latter was demonstrated by trans complementation studies, indicating the assembly of active P4 replisomes by a primase-null and a helicase-null mutant.  相似文献   

16.
We found a synthetic GCGAAAGC fragment with a mobility greater than that of other oligodeoxyribonucleotides in gel electrophoresis to take on a stable hairpin structure possessing two terminal G-C base pairs. The GCGAAAGC sequence is also found in the replication origin of phage G4 single-stranded DNA, but the hairpin structure originally proposed differs from that of the GCGAAAGC fragment we have studied. Possibility of rearrangement of the secondary structure in the replication origin of phage G4 was examined in relation to its replication initiation mechanism.  相似文献   

17.
Our studies on the T4 replisome build on the seminal work from the Alberts laboratory. They discovered essentially all the proteins that constitute the T4 replisome, isolated them, and measured their enzymatic activities. Ultimately, in brilliant experiments they reconstituted in vitro a functioning replisome and in the absence of structural information created a mosaic as to how such a machine might be assembled. Their consideration of the problem of continuous leading strand synthesis opposing discontinuous lagging strand synthesis led to their imaginative proposal of the trombone model, an illustration that graces all textbooks of biochemistry. Our subsequent work deepens their findings through experiments that focus on defining the kinetics, structural elements, and protein-protein contacts essential for replisome assembly and function. In this highlight we address when Okazaki primer synthesis is initiated and how the primer is captured by a recycling lagging strand polymerase--problems that the Alberts laboratory likewise found mysterious and significant for all replisomes.  相似文献   

18.
A chimeric single-stranded DNA phage, M13Gori1, has been formed as a result of the in vitro insertion of a 2216 base-pair HaeII fragment of bacteriophage G4 replicative form DNA into the replicative form DNA of bacteriophage M13. The inserted G4 DNA carries the dnaG-dependent origin for G4 complementary strand synthesis. The cloned G4 origin functions both in vivo and in vitro in the conversion of M13Gori1 single-stranded viral DNA to the duplex replicative form by a rifampicin-resistant mechanism. Labelling of the 3′ terminus of the single discontinuity in M13Gori1 replicative form II molecules synthesized in crude extracts and subsequent restriction analysis indicate that M13Gori1 complementary strand synthesis can be initiated at either the RNA polymeraseprimed M13 origin or at the dnaG-primed G4 origin. The M13Gori1 complementary strand initiated at the G4 origin terminates in the vicinity of the G4 origin after progressing around the circular template and traversing the M13 origin region, indicating the absence of a specific nucleotide sequence in the M13 origin for termination of the newly formed complementary strand. The ability of this chimeric phage to utilize the cloned G4 origin in vivo even in the presence of the presumed M13 pilot protein (gene 3 protein) indicate that the nucleotide sequence of the replication origin is sufficient for recognizing the appropriate initiation enzymes. Since decapsidation of M13 is tightly coupled to replicative form formation, initiation at the G4 origin, located over 1000 nucleotides from the M13 complementary strand origin, indicates that widely separated nucleotide sequences contained in the filamentous virion can be exposed to the cell cytoplasm during eclipse.  相似文献   

19.
The immunoaffinity purification of human placenta DNA primase devoid of DNA polymerase alpha activity is described. Primase consists of 52 and 59 kDa polypeptides. They form a single protein of 330 kDa under native conditions. The polypeptide structure of primase is believed to be (52 + 59)3. Primase synthesizes the oligoribonucleotides 2-9 monomers long and multimeric oligoribonucleotides of a modal length of about 10 monomers. The following model of RNA primer synthesis is proposed: 1) primase, being in free state or in complex with Pol alpha, forms a protein trimer or another structure that includes several primases; 2) primase synthesizes de novo only the oligonucleotides 2-10 monomers in length; 3) the newly synthesized oligonucleotides dissociate in solution or translocate to either Pol alpha or a neighbouring primase unit to be further elongated with the next 7-10 mononucleotides.  相似文献   

20.
Bacteriophage alpha 3 origin of complementary strand DNA synthesis contains two potential secondary loop structures, I and II, which have been implicated in direct recognition sites for host Escherichia coli dnaG protein. To elucidate the function of the hairpin loops, we have introduced point mutations within the stem of the hairpin II so as to disturb its base-pairings. A mutant, oriAA, which had two point mutations in the region, formed minute plaques on E. coli host cells and its mean burst size at 37 degrees C was about 50, whereas that of wild-type was 250. In addition, the growth of oriAA at 42 degrees C was thermosensitive and the burst size was reduced to 5. From the oriAA, a revertant-like phage oriGA occurred spontaneously with a high-frequency of about 2.10(-2). It retained one point mutation and the plaque size and phage yield were nearly same as those of wild-type. These results are discussed with respect to the role of secondary structure as well as specific nucleotide sequence in the recognition site for the dnaG protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号