首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Somatostatin analogs.   总被引:2,自引:0,他引:2  
Somatostatin is a hypothalamic peptide hormone that inhibits the secretion of growth hormone, glucagon, insulin, gastrin and secretin, and also plays a role in neural transmission. Because of its wide range of possible clinical applications hundreds of somatostatin analogs have been synthesized and bioassayed to date. This review gives a historical perspective, summarizing approximately 30 years of research on somatostatin. The main focus is on the structure-activity relationships and conformational studies of the last generation of somatostatin agonists and their selectivity for five somatostatin receptor subtypes. Achievements in the synthesis of nonpeptide somatostatin analogs, as well as the first somatostatin antagonists, are also discussed. Finally, the use of a cyclic somatostatin scaffold to design ligands for other G-protein-coupled receptors, such as opioid and melanocortin receptors, is mentioned.  相似文献   

2.
Two analogs of somatostatin were tested for their effects on release of growth hormone, glucagon, and insulin after subcutaneous injection into rats. These peptides significantly suppressed pentobarbital-stimulated growth hormone release but showed no effect on arginine-stimulated glucagon or insulin release at dosages greater than 2 mg/kg. Somotostatin acts on all three secretions at dosages below 200 μg/kg.  相似文献   

3.
Cells derived from rat islet tumor and grown in culture (parent cells-RIN-m) and two clones obtained from them were used to study the effect of various secretagogues on insulin, glucagon, and somatostatin secretion. Parent cells secreted all three hormones in various quantities, while clone 5F secreted predominantly insulin and clone 14B secreted predominantly somatostatin. The secretory behavior of these cells were compared to each other and to that of normal islets. In general, as in the case of normal islets, insulin secretion was stimulated by calcium, potassium, tolbutamide, theophylline, and glucagon. It was inhibited by somatostatin. Glucagon secretion was stimulated by calcium, arginine, and theophylline. Somatostatin secretion was stimulated in clone 14B by arginine, tolbutamide, theophylline, and insulin. These cells differ from normal islets, in that they do not respond to glucose or arginine with increased insulin secretion. Also somatostatin failed to inhibit glucagon secretion. The similarity in insulin secretory responses of parent cells and clone 5F suggests that local or paracrine islet hormone secretion plays only a negligible role in the control of other hormone secretion in these cells.  相似文献   

4.
Recent studies of isolated human islets have shown that glucose induces hormone release with repetitive pulses of insulin and somatostatin in antisynchrony with those of glucagon. Since the mouse is the most important animal model we studied the temporal relation between hormones released from mouse islets. Batches of 5-10 islets were perifused and the hormones measured with radioimmunoassay in 30s fractions. At 3mM glucose, hormone secretion was stable with no detectable pulses of glucagon, insulin or somatostatin. Increase of glucose to 20mM resulted in an early secretory phase with a glucagon peak followed by peaks of insulin and somatostatin. Subsequent hormone secretion was pulsatile with a periodicity of 5min. Cross-correlation analyses showed that the glucagon pulses were antisynchronous to those of insulin and somatostatin. In contrast to the marked stimulation of insulin and somatostatin secretion, the pulsatility resulted in inhibition of overall glucagon release. The cytoarchitecture of mouse islets differs from that of human islets, which may affect the interactions between the hormone-producing cells. Although indicating that paracrine regulation is important for the characteristic patterns of pulsatile hormone secretion, the mouse data mimic those of human islets with more than 20-fold variations of the insulin/glucagon ratio. The data indicate that the mouse serves as an appropriate animal model for studying the temporal relation between the islet hormones controlling glucose production in the liver.  相似文献   

5.
Somatostatin is an inhibitor of hormone secretion through specific receptors (sst1-5). The aim of this study was to investigate the putative regulatory role of somatostatin analogues on the secretion of insulin and glucagon by rat pancreatic islets. After 48 h exposure only the non-selective agonists (somatostatin, octreotide and SOM-230) inhibited insulin accumulation. The inhibition of insulin secretion was accompanied by increased islet insulin contents. None of the analogues showed a consistent effect on the glucagon accumulation in the medium after 48 h. Since we observed a difference in the regulatory effect between the non-selective and selective analogues, combinations of selective analogues were studied. Combination of sst2+sst5 agonists inhibited the medium insulin accumulation, while combination of sst1+sst2 analogues caused a decrease in glucagon accumulation. After removal of somatostatin a rebound effect with increased insulin secretion were observed. This effect was reversed after 6 h. For SOM-230 insulin secretion continued to be suppressed even after the analogue was removed and returned to control values after 3 h. As for glucagon secretion there was an initial decline after culture with octreotide, while the other substances failed to induce any changes. In summary, non-selective somatostatin analogues or combinations of receptor selective analogues may cause inhibition of hormone secretion from rat pancreatic islets. For insulin and glucagon, combinations of sst2+sst5 and sst1+sst2, respectively may exert this effects. Thus, our data suggest that more than one sst must be involved to down-regulate islet glucagon and insulin secretion.  相似文献   

6.
Biological activities of highly potent octapeptide analogs of somatostatin (SS), D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Trp-NH2 (RC-160) and D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2 (RC-121), were investigated in male rats. When analog RC-160 was administered to rats in which serum growth hormone (GH) levels were elevated by pentobarbital anesthesia, a dose-related inhibition of GH was obtained at dose range of 0.1 to 2.5 micrograms/kg. The time course of GH inhibition by RC-160, RC-121 and SS-14 was studied in rats treated with phenobarbital, morphine and chlorpromazine. Analogs RC-160 and RC-121 induced a prolonged inhibition of GH levels, in contrast to SS-14, whose effect was short-lived. The analogs suppressed the GH level for more than 2 hr, the peak inhibition being seen 30 to 60 min after the injection. The effects of analogs RC-160 and RC-121 on insulin secretion were observed in rats, in which insulin levels had been elevated by intravenous administration of glucose (500 mg/rat). Administration of RC-160 suppressed insulin secretion, dose-dependently, maximum but not complete inhibition being achieved at a dose of 100 micrograms/kg. In this model, RC-160 and RC-121, in doses of 30 micrograms/kg, induced a similar inhibition of insulin release as 200 micrograms/kg of SS-14, whose action of SS-14 was transient. The effect of analog RC-160 on glucagon release was studied in rats with glucagon levels elevated by hypoglycemia. RC-160 suppressed the secretion of glucagon, the inhibition being dose-dependent in the range of 0.1 to 2 micrograms/kg. Doses of 2 and 10 micrograms/kg of this analog completely suppressed the hypoglycemia-induced glucagon release. These results indicate that analogs RC-160 and RC-121 possess prolonged and enhanced biological activities, the former analog showing a high selectivity in inhibiting GH and glucagon release in vivo as compared with that of insulin secretion.  相似文献   

7.
In order to study the oeffect of somatostatin on the endocrine pancreas directly, islets isolated from rat pancreas by collagenase were incubated for 2 hrs 1) at 50 and 200 mg/100 ml glucose in the absence and presence of somatostatin (1, 10 and 100 mg/ml) and2) at 200 mg/100 ml glucose together with glucagon (5 mug/ml), with or without somatostatin (100 ng/ml). Immunologically measurable insulin was determined in the incubation media at 0, 1 and 2 hrs. Insulin release was not statistically affected by any concentration stomatostatin. On the other hand, somatostatin exerted a significant inhibitory action on glucagon-potentiated insulin secretion (mean +/- SEM, mu1/2 hrs/10 islets: glucose and glucagon: 1253 +/- 92; glucose, glucagon and somatostatin: 786 +/- 76). The insulin output in th epresence of glucose, glucagon and somatostatin was also significantly smaller than in thepresence of glucose alone (1104 +/- 126) or of glucose and somatostatin (1061 +/- 122). The failure of somatostatin to affect glucose-stimulated release of insulin from isolated islets contrasts its inhibitory action on insulin secretion as observed in the isolated perfused pancreas and in vivo. This discrepancy might be ascribed to the isolation procedure using collagenase. However, somatostatin inhibited glucagon-potentiated insulin secretion in isolated islets which resulted in even lower insulin levels than obtained in the parallel experiments without glucagon. It is concluded that the hormone of the alpha cells, or the cyclic AMP system, might play a part in the machanism of somatostatin-induced inhibition of insulin release from the beta-cell.  相似文献   

8.
In order to elucidate the effect of glucagon antiserum on the endocrine pancreas, the release of somatostatin, glucagon, and insulin from the isolated perfused rat pancreas was studied following the infusion of arginine both with and without pretreatment by glucagon antiserum. Various concentrations of arginine in the presence of 5.5 mM glucose stimulated both somatostatin and glucagon secretion. However, the responses of somatostatin and glucagon were different at different doses of arginine. The infusion of glucagon antiserum strongly stimulated basal secretion in the perfusate total glucagon (free + antibody bound glucagon) and also enhanced its response to arginine, but free glucagon was undetectable in the perfusate during the infusion. On the other hand, the glucagon antiserum had no significant effect on either insulin or somatostatin secretion. Moreover, electron microscopic study revealed degrannulation and vacuolization in the cytoplasm of the A cells after exposure to glucagon antiserum, suggesting a hypersecretion of glucagon, but no significant change was found in the B cells or the D cells. We conclude that in a single pass perfusion system glucagon antiserum does not affect somatostatin or insulin secretion, although it enhances glucagon secretion.  相似文献   

9.
The synthesis by solid-phase methodology of two glycosylated analogs of somatostatin [Glc-Asn5]-SS and [NAcGlc-Asn5]-SS is described. These two analogs have been biologically tested on the secretion of pituitary growth hormone, pancreatic glucagon and insulin. The results show that glycosylation of somatostatin on the Asn5 residue decreases by a hundred fold the inhibition activity on GH release when tested invitro. Invivo, since the activity is similar to somatostatin the carbohydrates are probably removed by some enzymatic reaction and thus liberate the full activity of somatostatin.  相似文献   

10.
A nonreducible cyclic analog of somatostatin (SRIF) was prepared by a combination of solid phase and solution peptide synthesis. The compound, gamma-Abu-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Asp-OH, was tested for its effect on the release of growth hormone, glucagon and insulin in rats. It significantly suppressed pentobarbital-stimulated growth hormone release but showed no effect on arginine-stimulated glucagon or insulin release. The linear form, NH2-gamma-Abu-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Asp-OH, was also prepared and tested in vivo. It was shown to have only slight activity.  相似文献   

11.
Postprandial changes in blood glucose, insulin and glucagon were examined in 7 non-insulin dependent diabetic patients, before and after 3 days' treatment with the somatostatin analogue, octreotide (50 ug injected subcutaneously thricedaily). After octreotide injection, postprandial rises in plasma insulin and glucagon were significantly flattened. The postprandial glycaemic rise was delayed but the area under the glycaemic curve was not increased. Animal studies have suggested that octreotide inhibits growth hormone and glucagon secretion much more powerfully than native somatostatin, while relatively sparing insulin secretion. However, the present findings suggest that this analogue is not sufficiently selective to be therapeutically useful in non-insulin dependent diabetes.  相似文献   

12.
T Karashima  A V Schally 《Peptides》1988,9(3):561-565
The action of the new analog of somatostatin, D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Trp-NH2 (RC-160), on plasma glucagon and glucose levels was evaluated in streptozotocin-diabetic rats. The effect of this analog on the insulin-induced hypoglycemia in diabetic rats was also investigated in order to evaluate the risk of exacerbating hypoglycemia. Administration of analog RC-160, in a dose of 25 micrograms/kg b. wt. SC, inhibited plasma glucagon secretion and decreased plasma glucose levels. This effect also occurred when plasma glucagon and glucose levels were first elevated by arginine infusion, 1000 mg/kg/hr for 30 min. Subcutaneous injection of regular insulin, 15 U/kg b. wt., produced hypoglycemia with a progressive increase in glucagon levels. Analog RC-160 completely suppressed the hypoglycemia-induced glucagon release for up to 150 min after injection of the analog or insulin. A greater decrease in the plasma glucose level was observed in the group treated with insulin and the analog than in the group injected only with insulin. These results indicate that somatostatin analog RC-160 can produce a marked and prolonged inhibition of glucagon release and a decrease in the plasma glucose level in diabetic rats. This analog may be useful as an adjunct to insulin in the treatment of diabetic patients, although caution should be exercised, to prevent hypoglycemia when using somatostatin analogs together with insulin.  相似文献   

13.
Three analogs of somatostatin, [D-Cys14] -, [Ala2, D-Cys14] - and [D-Trp8, D-Cys14] - somatostatin, were synthesized by the solid phase method, characterized by several means, and tested for their effects on the release of insulin, glucagon, and growth hormone. The peptides sharply suppressed the release of growth hormone in vitro and glucagon in vivo, but had less effect on insulin secretion in vivo. These analogs, particularly [D-Trp8, D-Cys14] - somatostatin, could possibly be useful for the treatment of diabetes mellitus.  相似文献   

14.
It has been previously demonstrated that glucagon increased plasma post-heparin lipolytic activity (PHLA) in normal rats, but this was not the case in alloxan diabetic rats. The present work was designed to determine if the administration of exogenous glucagon (0.2 mg i.v.) during suppression of endogenous hormone secretion with somatostatin modifies the plasma post-heparin lipolytic activity in normal rats and the action of such hormone upon monoglyceride hydrolase (MGH) activity. It was found that exogenous glucagon significatively increased PHLA and MGH activity in normal rats after 18-24 hours of starvation. However, both enzymatic activities were not influenced by exogenous glucagon when they were measured during somatostatin administration. Therefore it is believed that the enhancement of these activities observed when somatostatin was not simultaneously given was due to the insulin secretion that follows the glucagon injection.  相似文献   

15.
Conclusions drawn from the pancreatic (or islet) clamp technique (suppression of endogenous insulin, glucagon, and growth hormone secretion with somatostatin and replacement of basal hormone levels by intravenous infusion) are critically dependent on the biological appropriateness of the selected doses of the replaced hormones. To assess the appropriateness of representative doses we infused saline alone, insulin (initially 0.20 mU.kg(-1).min(-1)) alone, glucagon (1.0 ng.kg(-1).min(-1)) alone, and growth hormone (3.0 ng.kg(-1).min(-1)) alone intravenously for 4 h in 13 healthy individuals. That dose of insulin raised plasma insulin concentrations approximately threefold, suppressed glucose production, and drove plasma glucose concentrations down to subphysiological levels (65 +/- 3 mg/dl, P < 0.0001 vs. saline), resulting in nearly complete suppression of insulin secretion (P < 0.0001) and stimulation of glucagon (P = 0.0059) and epinephrine (P = 0.0009) secretion. An insulin dose of 0.15 mU.kg(-1).min(-1) caused similar effects, but a dose of 0.10 mU.kg(-1).min(-1) did not. The glucagon and growth hormone infusions did not alter plasma glucose levels or those of glucoregulatory factors. Thus, insulin "replacement" doses of 0.20 and even 0.15 mU.kg(-1).min(-1) are excessive, and conclusions drawn from the pancreatic clamp technique using such doses may need to be reassessed.  相似文献   

16.
A patient presenting clinically with the glucagonoma syndrome had high plasma glucagon levels (1920 ng/l) and at laparotomy, a pancreatic islet cell tumour was removed. The tumour was dispersed and placed in culture where it remained viable for 63 days. The tumour cells secreted immunoreactive (IR) glucagon at levels up to 2400 ng/l as detected by a C-terminal glucagon specific antibody and 85 400 ngequiv./l as measured by an N-terminal glucagon specific antibody. The difference between these two levels was attributed to the presence of different molecular forms of glucagon measured with the N-terminal specific antibody. IR insulin (up to 302 mU/l) and IR somatostatin (up to 2500 ng/l) were also detected. There was no direct or inverse correlation between different hormone levels. Small but significant levels of N-terminal and C-terminal vasoactive intestinal peptide (VIP) were detected in some cultures but there was no evidence of gastrin or ACTH. Glucagon and somatostatin secretion persisted for the duration of the culture (63 days) but insulin concentrations declined. Incubation of cultures with somatostatin (1 ng/ml) caused a 75% decrease in glucagon levels, while insulin (1000 mU/l) produced a 70% inhibition of somatostatin.  相似文献   

17.
The effects of glucose alone, combinations of glucose with arginine or tolbutamide and either arginine or tolbutamide alone, on somatostatin, insulin, and glucagon secretion were investigated using the isolated perfused rat pancreas. When glucose alone was raised in graded increments at 15-min intervals from an initial concentration of 0 mM to a maximum of 16.7 mM, somatostatin as well as insulin in the perfusate increased with the glucose, while glucagon decreased. The similarity of the glucose stimulated somatostatin and insulin release was especially evident when the perfusate glucose was increased from an initial dose of 4.4 mM rather than 0 mM to 8.8 mM or 16.7 mM. In addition, glucose at concentrations varying from 4.4 mM to 11 mM dose-dependently enhanced arginine-induced somatostatin and insulin release and suppressed glucagon release dose-dependently as before. Arginine in the absence of glucose was not capable of stimulating somatostatin secretion whereas tolbutamide, in contrast, was capable of stimulating somatostatin secretion even in the absence of glucose.  相似文献   

18.
When adult male rats were fasted for 24 or 72 h there was no change in the pancreatic content of insulin or glucagon, but the somatostatin content increased at 72 h. This contrasts with earlier reports of reduced pancreatic somatostatin after fasting. After a 48-hour fast there was an increase in the concentration of duodenal somatostatin, and a tendency toward reduced concentrations in stomach, jejunum, and ileum. When duodenal mucosa and muscle extracts were chromatographed the relative amounts of putative somatostatin-28 and somatostatin-14 were unchanged. Insulin secretion from the perfused pancreata of 72-hour-fasted rats was markedly reduced, but glucagon and somatostatin secretion was indistinguishable from that of fed controls. These results indicate that in spite of the marked alterations of nutrient metabolism and insulin secretion which occur during fasting, the pancreatic content of insulin, glucagon and somatostatin and the gut concentration of somatostatin are well maintained.  相似文献   

19.
High affinity, subtype selective non-peptide agonists of somatostatin receptor subtypes 1-5 were identified in combinatorial libraries constructed based on molecular modeling of known peptide agonists. Simultaneous traditional chemical synthesis yielded an additional series of somatostatin subtype-2 receptor (SSTR2) selective agonists. These compounds have been used to further define the physiological functions of the individual somatostatin receptor subtypes. In vitro experiments demonstrated the role of the SSTR2 in inhibition of glucagon release from mouse pancreatic alpha-cells and the somatostatin subtype-5 receptor (SSTR5) as a mediator of insulin secretion from pancreatic beta-cells. Both SSTR2 and SSTR5 regulated growth hormone release from the rat anterior pituitary gland. In vivo studies performed with SSTR2 receptor selective compounds demonstrated effective inhibition of pulsatile growth hormone release in rats. The SSTR2 selective compounds also lowered plasma glucose levels in normal and diabetic animal models. The availability of high affinity, subtype selective non-peptide agonists for each of the somatostatin receptors provides a direct approach to defining their physiological function both peripherally and in the central nervous system.  相似文献   

20.
J Stagner  E Samols 《Life sciences》1988,43(11):929-934
Sustained pulses of insulin and glucagon were obtained from the isolated perfused in vitro rat pancreas. The respective periodicity of hormone release (peak to peak interval) was calculated by the Pulsar computer algorithm as insulin 5.8 +/- 0.3 min and glucagon 6.5 +/- 0.25 min. Because pulsatile insulin secretion is absent in type II diabetics, pulsatile islet hormone secretion could theoretically be regulated directly by intra-islet hormone interactions or indirectly by hormone sensitive nerve feedback, possibly from a venous hormone sensitive receptor system within the pancreas. To test the possible contributions of these systems in pulse regulation, the direction of perfusion was reversed in both rat and dog pancreata to prevent hormone contact with putative venous hormone receptors. The periodicity of hormone secretion was unchanged by reversed perfusion in both species. As vascular perfusion of islet cells is normally B to A to D, these results suggest that neither intra-islet hormone interactions nor intra-pancreatic insulin or glucagon sensitive nerve feedback systems are responsible, on an acute basis, for the regulation of pulsatile insular secretion from the normal pancreas. Insulin regulates net glucagon secretion but does not acutely influence glucagon pulses. The presence of pulses during retrograde perfusion may be the result of the entrainment of the pacemaker-islet system. These observations are consistent with the presence of an independent pacemaker and neural coordinating system within the dog and rat pancreas which may influence both the A- and B-cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号