首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为探讨杉木径向变化的季节动态及其气候响应特征,利用径向生长仪连续2年(2016—2017年)监测了江西中部杉木的径向变化过程,分析了径向变化的日动态、季节动态规律及其与气候因子的相关性。结果表明: 杉木日径向昼夜变化呈白天收缩、夜间膨胀的格局;2017年径向生长开始时间比2016年提前一个月,但旱季持续的水分亏缺使生长季也早一个月结束;在主要生长季内(4—9月),无论湿季与旱季,径向增长量与降雨、相对湿度呈显著正相关,与光合有效辐射、饱和水汽压差呈显著负相关,而水分亏缺量的气候相关性与径向增长量相反;旱季严重缺水时土壤含水量对径向变化的影响显著增强。水分条件始终是影响杉木径向变化的关键因素,夏季干旱时可通过提高土壤含水量等有效途径促进杉木径向生长。  相似文献   

2.

Background

Stem diameter variations are mainly determined by the radial water transport between xylem and storage tissues. This radial transport results from the water potential difference between these tissues, which is influenced by both hydraulic and carbon related processes. Measurements have shown that when subjected to the same environmental conditions, the co-occurring mangrove species Avicennia marina and Rhizophora stylosa unexpectedly show a totally different pattern in daily stem diameter variation.

Methods

Using in situ measurements of stem diameter variation, stem water potential and sap flow, a mechanistic flow and storage model based on the cohesion–tension theory was applied to assess the differences in osmotic storage water potential between Avicennia marina and Rhizophora stylosa.

Key results

Both species, subjected to the same environmental conditions, showed a resembling daily pattern in simulated osmotic storage water potential. However, the osmotic storage water potential of R. stylosa started to decrease slightly after that of A. marina in the morning and increased again slightly later in the evening. This small shift in osmotic storage water potential likely underlaid the marked differences in daily stem diameter variation pattern between the two species.

Conclusions

The results show that in addition to environmental dynamics, endogenous changes in the osmotic storage water potential must be taken into account in order to accurately predict stem diameter variations, and hence growth.  相似文献   

3.
Changes in tomato fruit expansion rate and carbohydrate content have been assessed during treatments designed to alter the carbon import rate. Because fruit expansion is sensitive to plant water status, the relationship with carbon import is difficult to assess, and thus, the diameter growth rate of young fruit was measured on plants maintained at positive water potentials. The detached top metre of a tomato plant was supplied with water, through the cut stem base, at a pressure of 0.08 MPa. Developing fruit on the stem continued to grow at high rates for up to 2 d. Fruit diameter growth rate after plant detachment was directly proportional to temperature. Plants acclimated to different continuous irradiances for 5 d before detachment gave fruit growth rates after plant detachment which were directly proportional to the irradiance up to 7 MJ m−2d−1 photosynthetically active radiation (PAR). In continuous darkness, fruit growth rate remained unchanged for 20 h and then declined to less than 40% of the original rate over the following 30 h. On re-exposure to light, about 5 h elapsed before fruit growth rate increased but the growth rate stabilized at approximately 50% of the rate in continuously illuminated plants. During darkness, both fruit starch and hexose content decreased in comparison to illuminated controls, but on re-illumination, carbohydrate content increased before carbon was allocated to structural growth. Heat-killing the phloem of the fruit pedicel caused an immediate, but temporary, cessation of growth. After a partial recovery, expansion growth continued, but more slowly than in untreated fruit and at steadily declining rates. Starch and hexose sugars were not used to provide substrates for growth and starch synthesis was maintained. Continuing cell expansion was assumed to have been supported by water import via the xylem. Thus, fruit expansion may be related to carbon accumulation in most circumstances, but the changing allocation of imported carbon to storage and cell expansion may modify this relationship.  相似文献   

4.
Daily dynamics of radial cell expansion during wood formation within the stems of 25-year-old Scots pine trees (Pinus sylvestris L.), growing in field conditions, were studied. The samples of forming wood layers were extracted 4 times per day for 3 days. Possible variations in the growth on different sides of the stem, duration of cell development in radial cell expansion phase and dynamics of cell growth in this phase were taken into account. The perimeters of tracheid cross-sections as a reflection of primary cell wall growth were the criterion of growth in a radial direction. For the evaluation of growing cell perimeters a special system for digital processing and image analysis of tracheid cross-sections of the forming wood was used. Growth rate for certain time intervals was estimated by the change in the relation of the perimeter of each observed cell in each of ten tracheid rows in each of 12 trees to the perimeter of the xylem cell of the same row before the expansion. Temporal differences in average values of the relations were estimated by Analyses of Variance. The existence of daily dynamics of Scots pine xylem cell radial growth has been proved. Intensive growth of pine tracheids has been shown to occur at any time of the day and to depend on the temperature regime of the day and the night as well as water supply of stem tissues. Moreover, reliable differences (P = 0.95) in the increment of cell walls during tracheid radial expansion have been found. Pulsing changes of the water potentials both of the cell and the apoplast, as the reason for the fluctuations of radial cell growth rate, were discussed.  相似文献   

5.
BACKGROUND AND AIMS: Daytime CO2 efflux rates (FCO2) from tree stems are often reported to be lower than expected from the exponential relationship between temperature and respiration. Explanations of daytime depression in FCO2 have focused on the possible role of internal CO2 transport in the xylem. However, another possible cause that has been overlooked is the daily dynamics of the water status in the living stem tissues and its influence on stem growth rate and thus respiration. The objective of this study was to assess the daily dynamics of stem water status and growth rate and to determine the extent to which they may be linked to daily variations in stem FCO2. METHODS: FCO2 of young beech and oak stems were measured under controlled conditions. Relative stem turgor pressure (Psi(p)), obtained from simulations with the 'RCGro' model, was used as an indicator of the water status in the living stem tissues. Daily dynamics of stem growth were derived from Psi(p): growth was assumed to occur when Psi(p) exceeded a relative threshold value. KEY RESULTS: There was a strong correspondence between fluctuations in FCO2 and simulated Psi(p). The non-growth conditions during daytime coincided with depressions in FCO2. Moreover, FCO2 responded to changes in Psi(p) in the absence of growth, indicating also that maintenance processes were influenced by the water status in the living stem tissues. CONCLUSIONS: Daytime depressions in stem FCO2 correlate with the daily dynamics of turgor, as a measure of the water status in the living stem tissues: it is suggested that water status of tree stems is a potentially important determinant of stem FCO2, as it influences the rate of growth and maintenance processes in the living tissues of the stem.  相似文献   

6.

Key message

The paper identifies and quantifies how crop load influences plant physiological variables that determine stem diameter variations to better understand the effect of crop load on drought stress indicators.

Abstract

Stem diameter (D stem) variations have extensively been applied in optimisation strategies for plant-based irrigation scheduling in fruit trees. Two D stem derived water status indicators, maximum daily shrinkage (MDS) and daily growth rate (DGR), are however influenced by other factors such as crop load, making it difficult to unambiguously use these indicators in practical irrigation applications. Furthermore, crop load influences the growth of individual fruits, because of competition for assimilates. This paper aims to explain the effect of crop load on DGR, MDS and individual fruit growth in peach using a water and carbon transport model that includes simulation of stem diameter variations. This modelling approach enabled to relate differences in crop load to differences in xylem and phloem water potential components. As such, crop load effects on DGR were attributed to effects on the stem phloem turgor pressure. The effect of crop load on MDS could be explained by the plant water status, the phloem carbon concentration and the elasticity of the tissue. The influence on fruit growth could predominantly be explained by the effect on the early fruit growth stages.  相似文献   

7.
Alfalfa (Medicago sativa) stem elongation is strongly reduced by a pea aphid (Acyrthosiphon pisum Harris) infestation. As pea aphid is a phloem feeder that does not transmit virus or toxins, assimilate withdrawal is generally considered as the main mechanism responsible for growth reduction. Using a kinematic analysis, we investigated the spatial distributions of relative elemental growth rates of control and infested alfalfa stems. The water, carbon, and nitrogen contents per unit stem length were measured along the growth zone. Deposition rates and growth-sustaining fluxes were estimated from these patterns. Severe short-term aphid infestation (200 young adults over a 24-h period) induced a strong and synchronized reduction in rates of elongation and of water and carbon deposition. Reduced nitrogen content and associated negative nitrogen deposition rates were observed in some parts of the infested stems, especially in the apex. This suggested a mobilization of nitrogen from the apical part of the growth zone, converted from a sink tissue into a source tissue by aphids. Calculation of radial growth rates suggested that aphid infestation led to a smaller reduction in radial expansion than in elongation. Together with earlier observations of long-lasting effects of a short-term infestation, this supports the hypothesis that in addition to nutrient withdrawal, a thigmomorphogenesis-like mechanism is involved in the effect of aphid infestation on stem growth.  相似文献   

8.
CO2 efflux (ECO2) from stems and branches is highly variable within trees. To investigate the mechanisms underlying the temporal dynamics and vertical variations in ECO2, we measured the stem ECO2 by infrared gas analysis (IRGA) and meteorological conditions at 10 different heights from 0.1 to 3.7 m aboveground on two consecutive days every month for 1 year in six Styphnolobium japonicum trees with a similar size. The results indicated that the seasonal change in ECO2 roughly followed the seasonal variations in woody tissue temperature (TW) and stem radial diameter increment (Di). Together, TW and Di explained the monthly change in ECO2, and the contributions of TW and Di changed with the stem positions and growth stages. The diurnal patterns of ECO2 differed greatly between the growing and dormant season, showing a bimodal distribution with an obvious midday depression in the former and a unimodal distribution in the latter. The strong vertical variation in the day-time ECO2 of the growing season was mainly caused by the vertical gradients of TW, Di and difference in sapwood volume per unit of the stem surface along the trunk. The temperature-sensitivity coefficient (Q10) was not constant, as assumed in some models, but was instead vertically altered and highly dependent on the measurement temperature. For all stem positions, the highest Q10 value appeared at approximately 5?°C, and both higher and lower temperatures decreased Q10. Our study demonstrated that application of a constant Q10 would cause an estimation error when scaling up chamber-based measurements to annual carbon budgets at the whole-stem level.  相似文献   

9.
The effects of short-term extreme events on tree functioning and physiology are still rather elusive. European beech is one of the most sensitive species to late frost and water shortage. We investigated the intra-annual C dynamics in stems under such conditions. Wood formation and stem CO2 efflux were monitored in a Mediterranean beech forest for 3 years (2015–2017), including a late frost (2016) and a summer drought (2017). The late frost reduced radial growth and, consequently, the amount of carbon fixed in the stem biomass by 80%. Stem carbon dioxide efflux in 2016 was reduced by 25%, which can be attributed to the reduction of effluxes due to growth respiration. Counter to our expectations, we found no effects of the 2017 summer drought on radial growth and stem carbon efflux. The studied extreme weather events had various effects on tree growth. Even though late spring frost had a strong impact on beech radial growth in the current year, trees fully recovered in the following growing season, indicating high resilience of beech to this stressful event.  相似文献   

10.
The effect of freezing temperatures on stem diameter was measured in the field and in climatic chambers using linear variable differential transformers (LVDT sensors). In acclimated stems, there was reversible stem shrinkage associated with freeze-thaw cycles. The maximum shrinkage correlated with stem diameter (thickness of the bark). The wood was responsible for only 15% of the shrinkage associated with a freeze event, and experiments with isolated bark showed that connection with the wood was not necessary for most of the freeze-induced shrinkage to occur. Considering the amount of stem shrinkage associated with summer drought in walnut, the amount of contraction of the bark with freezing was actually much less than might be predicted by water relations theory. Reversible stem shrinkage occurred in living tissues, but not in autoclaved tissues. For the latter, swelling was observed with freezing and this swelling could be explained by the bark alone. Similar swelling was observed during September and October for non-acclimated plants. Water was lost with each freeze-thaw cycle starting with the first, and freezing injury of the bark, with discoloration of tissues, was also observed in non-acclimated plants. Given that the diameter fluctuation patterns were dramatically different for acclimated versus non-acclimated plants, and for living versus autoclaved tissues, LVDT sensors could represent a novel, non-invasive approach to testing cold hardiness.  相似文献   

11.
Substantial uncertainty surrounds our knowledge of tree stem growth, with some of the most basic questions, such as when stem radial growth occurs through the daily cycle, still unanswered. We employed high‐resolution point dendrometers, sap flow sensors, and developed theory and statistical approaches, to devise a novel method separating irreversible radial growth from elastic tension‐driven and elastic osmotically driven changes in bark water content. We tested this method using data from five case study species. Experimental manipulations, namely a field irrigation experiment on Scots pine and a stem girdling experiment on red forest gum trees, were used to validate the theory. Time courses of stem radial growth following irrigation and stem girdling were consistent with a‐priori predictions. Patterns of stem radial growth varied across case studies, with growth occurring during the day and/or night, consistent with the available literature. Importantly, our approach provides a valuable alternative to existing methods, as it can be approximated by a simple empirical interpolation routine that derives irreversible radial growth using standard regression techniques. Our novel method provides an improved understanding of the relative source–sink carbon dynamics of tree stems at a sub‐daily time scale.  相似文献   

12.
In view of the projected decrease in precipitation and increase in temperature, a better understanding on growth-climate responses in different populations of tree species is needed to improve and enhance the conservation and management strategies for major forest tree species. In this study, we assessed differences in growth traits (i.e., stem diameter, tree height, and stem radial growth) and analysed climate-growth relationships in five provenances of maritime pine (Pinus pinaster Ait.) grown in four replicated common gardens in Sardinia (Italy). Stem radial growth increased under a positive water balance in late winter and early spring. Conversely, high temperature and low precipitation in summer had a negative impact on stem radial growth. At age 40, none of the considered provenances (Portugal, Corsica, Tuscany, Sardinia-Telti, Sardinia-Limbara) showed a substantial advantage in more than one common garden site for tree height and stem diameter. Nevertheless, differences were found among common garden sites in terms of dendrometric parameters, stem radial growth, and growth-climate responses (including sensitivity to summer drought), suggesting a greater site dependent over tree growth. Although in juvenile stages the Portuguese provenance (in particular) showed greater growth than the Sardinian ones, this study showed that, with tree age, the differences among the five provenances tends to narrow. Therefore, irrespective of the seed source, tree growth patterns and growth-climate responses were similar at age 40. This result can be important for implementing forest management strategies to balance adaptation and mitigation potential of maritime pine plantations in harsh environmental conditions.  相似文献   

13.
As a system to study the regulation of growth anisotropy, we studied thinning of the primary root of maize (Zea mays L.) occurring developmentally or induced by water stress. Seedlings were transplanted into vermiculite at a water potential of approximately -0.03 MPa (well-watered) or -1.6 MPa (water-stressed). The diameter of roots in both treatments decreased with time after transplanting; the water-stressed roots became substantially thinner than well-watered roots at steady state, showing that root thinning is a genuine response to water stress. To analyze the thinning responses we quantified cell numbers and the spatial profiles of longitudinal, radial, and tangential expansion rates separately for the cortex and stele. The results showed that there was no zone of isotropic expansion and the degree of anisotropy varied greatly with position and treatment. Thinning over time in well-watered roots was caused by rates of radial and tangential expansion being too low to maintain the shape of the root. In response to low water potential, cell number in both tissues was unchanged radially but increased tangentially, which shows that thinning was caused wholly by reduced cell expansion. Water stress substantially decreased rates of tangential and radial expansion in both the stele and cortex, but only in the apical 5 mm of the root; basal to this, rates were similar in well-watered and water-stressed roots. By contrast, as in previous studies, longitudinal expansion was identical between the treatments in the apical 3 mm but in water-stressed roots was inhibited at more basal locations. The results show that expansion in longitudinal and radial directions can be regulated independently.  相似文献   

14.
Pluripotent mouse embryonic stem (ES) cells multiply in simple monoculture by symmetrical divisions. In vivo, however, stem cells are generally thought to depend on specialised cellular microenvironments and to undergo predominantly asymmetric divisions. Ex vivo expansion of pure populations of tissue stem cells has proven elusive. Neural progenitor cells are propagated in combination with differentiating progeny in floating clusters called neurospheres. The proportion of stem cells in neurospheres is low, however, and they cannot be directly observed or interrogated. Here we demonstrate that the complex neurosphere environment is dispensable for stem cell maintenance, and that the combination of fibroblast growth factor 2 (FGF-2) and epidermal growth factor (EGF) is sufficient for derivation and continuous expansion by symmetrical division of pure cultures of neural stem (NS) cells. NS cells were derived first from mouse ES cells. Neural lineage induction was followed by growth factor addition in basal culture media. In the presence of only EGF and FGF-2, resulting NS cells proliferate continuously, are diploid, and clonogenic. After prolonged expansion, they remain able to differentiate efficiently into neurons and astrocytes in vitro and upon transplantation into the adult brain. Colonies generated from single NS cells all produce neurons upon growth factor withdrawal. NS cells uniformly express morphological, cell biological, and molecular features of radial glia, developmental precursors of neurons and glia. Consistent with this profile, adherent NS cell lines can readily be established from foetal mouse brain. Similar NS cells can be generated from human ES cells and human foetal brain. The extrinsic factors EGF plus FGF-2 are sufficient to sustain pure symmetrical self-renewing divisions of NS cells. The resultant cultures constitute the first known example of tissue-specific stem cells that can be propagated without accompanying differentiation. These homogenous cultures will enable delineation of molecular mechanisms that define a tissue-specific stem cell and allow direct comparison with pluripotent ES cells.  相似文献   

15.
曾林辉  周蕾  寇亮  迟永刚 《生态学报》2023,43(16):6637-6648
树干径向变化的多尺度研究提供了树木生长及其和环境因子关系的详细信息,有助于准确评估全球气候变化背景下森林生态系统碳汇变异。以往树干径向变化研究主要集中在温带和热带地区,且大多数研究方法基于时间分辨率较粗的树木年轮法,然而缺少亚热带地区高时间分辨率树干径向变化的研究。利用树干径向变化记录仪连续监测亚热带地区马尾松13个月的树干径向变化动态,探索不同时间尺度树干径向变化规律及与环境因子的关系。结果表明:(1)在日尺度,马尾松径向变化模式为白天收缩夜晚膨胀,秋冬季节夜晚膨胀没有春夏季明显。(2)在季节尺度,马尾松树干径向变化可分为4个时期,其中3-8月是主要生长月份,4月是累计生长量最大的月份。(3)在日尺度上,相对湿度和饱和水汽压亏缺是调节马尾松径向变化主要环境因素;在季节尺度上,土壤温度对树干径向变化的影响大于空气温度,降水量与相对湿度等水分因素对树干径向生长的促进作用在生长季中后期更为明显。研究结果有助于深入理解亚热带季风气候区树干径向变化及其对环境变化的响应,为气候变化背景下亚热带地区的植树造林设计和森林可持续管理提供依据。  相似文献   

16.
A glasshouse experiment was conducted with plants of Phaseolus grown in liquid culture. Root growth parameters (biomass, diameter, length, growth rate, zone of cell division), root rheological components (wall extensibility, water potential yield threshold, water potential), shoot growth, carbon allocation, and abscisic acid (ABA) concentration were measured in Phaseolus acutifolius A. Gray at ambient (550 μmol mol-1) and elevated (700 μmol mol-1) atmospheric CO2 concentrations. For contrast, measurements of above- and belowground growth were conducted on Phaseolus vulgaris L. in the same treatments. Under nonlimiting conditions of water and nutrients, elevated CO2 increased root and shoot growth of P. acutifolius but not P. vulgaris. While root mass was increased by nearly 60% in P. acutifolius, there was no effect of atmospheric CO2 on any of the rheological components measured. In contrast, starch and ABA accumulated in roots of P. acutifolius. The concentration of starch in roots of P. acutifolius increased by 10-fold, while root concentrations of ABA doubled. From the data it is concluded that CO2 enrichment is favorable for root growth in some species in that more carbon is allocated to belowground growth. In addition, ABA may play a role in growth responses and/or allocation of photosynthates at elevated CO2 in P. acutifolius.  相似文献   

17.

Background and Aims

Successive vascular cambia are involved in the secondary growth of at least 200 woody species from >30 plant families. In the mangrove Avicennia these successive cambia are organized in patches, creating stems with non-concentric xylem tissue surrounded by internal phloem tissue. Little is known about radial growth and tree stem dynamics in trees with this type of anatomy. This study aims to (1) clarify the process of secondary growth of Avicennia trees by studying its patchiness; and (2) study the radial increment of Avicennia stems, both temporary and permanent, in relation to local climatic and environmental conditions. A test is made of the hypothesis that patchy radial growth and stem dynamics enable Avicennia trees to better survive conditions of extreme physiological drought.

Methods

Stem variations were monitored by automatic point dendrometers at four different positions around and along the stem of two Avicennia marina trees in the mangrove forest of Gazi Bay (Kenya) during 1 year.

Key Results

Patchiness was found in the radial growth and shrinkage and swelling patterns of Avicennia stems. It was, however, potentially rather than systematically present, i.e. stems reacted either concentrically or patchily to environment triggers, and it was fresh water availability and not tidal inundation that affected radial increment.

Conclusions

It is concluded that the ability to develop successive cambia in a patchy way enables Avicennia trees to adapt to changes in the prevailing environmental conditions, enhancing its survival in the highly dynamic mangrove environment. Limited water could be used in a more directive way, investing all the attainable resources in only some locations of the tree stem so that at least at these locations there is enough water to, for example, overcome vessel embolisms or create new cells. As these locations change with time, the overall functioning of the tree can be maintained.  相似文献   

18.
梨枣花果期耗水规律及其与茎直径变化的相关分析   总被引:3,自引:0,他引:3  
设置4个水分处理,研究了4年生梨枣2010年及2011年花果期不同供水条件下土壤水分动态和耗水规律,分析了梨枣日耗水量与茎直径变化间的相关性,建立回归模型.结果表明:(1)2a内各处理梨枣耗水量随土壤供水量的增加而增大,其日耗水量最大值均出现在灌水后1周内;各处理果实膨大期日耗水强度大于开花坐果期.(2)2a内各处理茎直径日变化平均值(MTD)、茎直径日最大值(MXTD)均符合Logistic函数关系,MXTD与MTD在表征梨枣茎秆生长规律方面效果一致,各处理茎直径变化指标(MTD、MXTD)增长率因水分处理的不同而存在差异.(3)高水分(T1处理)条件下茎直径变化指标(MTD、MXTD、MDS(茎直径日最大收缩量)、DG(茎直径日生长量))在表征枣树耗水状况方面不敏感;在低水分(T4处理)条件下,日耗水量与茎直径日最大收缩量(MDS)相关系数较其他3个茎直径变化指标(MTD、MXTD、DG)高且达极显著水平,说明MDS能够更好的表征低水分处理的梨枣耗水规律.在此基础上建立耗水量与茎直径变化回归模型,为评价梨枣耗水状况提供依据.  相似文献   

19.
芦芽山林线白杄生长季径向生长动态   总被引:6,自引:0,他引:6       下载免费PDF全文
高山林线作为树木分布的高度上限, 是全球范围最重要的植被过渡带之一, 其树木生长显著受到外界极端环境条件的影响。利用点状树木径向变化记录仪于2009年5-9月, 对山西省芦芽山林线组成树种白杄(Picea meyeri)生长季内树木径向生长进行了持续的动态监测。结果表明: 白杄茎干日变化主要受到树木蒸腾作用日变化的影响, 茎干呈现出白天脱水收缩与夜间吸水膨胀的循环变化; 生长季白杄径向生长可划分为3个不同的生长时段: 1)茎干水分恢复时段, 2)茎干快速生长时段, 3)茎干脱水收缩时段。在茎干水分恢复时段, 白杄茎干径向累积变化主要受到土壤含水量变化的影响。土壤温度是茎干快速生长时段影响茎干径向生长的主导环境因子, 同时它也影响着白杄茎干径向生长的开始。在茎干脱水收缩时段, 土壤温度、土壤含水量是影响茎干径向累积变化的主要环境因子。白杄径向生长最大速度出现在6月末, 其主要受到光周期(即白昼长短)影响, 是对林线处极端环境的一种适应。  相似文献   

20.
A comprehensive model of stem and root diameter variation was developed. The stem (or root) was represented using two coaxial cylinders corresponding with the mature xylem and the extensible tissues. The extensible tissues were assumed to behave as a single cell separated from the mature xylem by a virtual membrane. The mature xylem and the extensible tissues are able to dilate with temperature and grow. Moreover, the extensible tissues are able to shrink and swell according to water flow intensity. The model is mainly based on the calculation of water volume flows in the "single cell" that are described using the principles of irreversible thermodynamics. The elastic response to storage volume and plastic extension accompanying growth are described. The model simulates diameter variation due to temperature, solute accumulation, and xylem, water potential. The model was applied to the peach (Prunus persica) stem and to the plum (Prunus domestica x Prunus spinosa) root. The simulation outputs corresponded well with the diameter variation observed. The model predicts that variations of turgor pressure and osmotic potential are smaller than the variations of xylem water potential. It also demonstrates correlations between the xylem water potential, the turgor pressure, the elastic modulus, and the osmotic potential. The relationship between the diameter and the xylem water potential exhibits a substantial hysteresis, as observed in field data. A sensitivity analysis using the model parameters showed that growth and shrinkage were highly sensitive to the initial values of the turgor pressure and to the reflection coefficient of solutes. Shrinkage and growth were sensitive to elastic modulus and wall-yielding threshold pressure, respectively. The model was not sensitive to changes in temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号