首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian leukotriene A4 (LTA4) hydrolase is a bifunctional zinc metalloenzyme possessing an Arg/Ala aminopeptidase and an epoxide hydrolase activity, which converts LTA4 into the chemoattractant LTB4. We have previously cloned an LTA4 hydrolase from Saccharomyces cerevisiae with a primitive epoxide hydrolase activity and a Leu aminopeptidase activity, which is stimulated by LTA4. Here we used a modeled structure of S. cerevisiae LTA4 hydrolase, mutational analysis, and binding studies to show that Glu-316 and Arg-627 are critical for catalysis, allowing us to a propose a mechanism for the epoxide hydrolase activity. Guided by the structure, we engineered S. cerevisiae LTA4 hydrolase to attain catalytic properties resembling those of human LTA4 hydrolase. Thus, six consecutive point mutations gradually introduced a novel Arg aminopeptidase activity and caused the specific Ala and Pro aminopeptidase activities to increase 24 and 63 times, respectively. In contrast to the wild type enzyme, the hexuple mutant was inhibited by LTA4 for all tested substrates and to the same extent as for the human enzyme. In addition, these mutations improved binding of LTA4 and increased the relative formation of LTB4, whereas the turnover of this substrate was only weakly affected. Our results suggest that during evolution, the active site of an ancestral eukaryotic zinc aminopeptidase has been reshaped to accommodate lipid substrates while using already existing catalytic residues for a novel, gradually evolving, epoxide hydrolase activity. Moreover, the unique ability to catalyze LTB4 synthesis appears to be the result of multiple and subtle structural rearrangements at the catalytic center rather than a limited set of specific amino acid substitutions.  相似文献   

2.
Leukotriene A4 hydrolase is a zinc-containing aminopeptidase   总被引:5,自引:0,他引:5  
A comparison of amino acid sequences revealed that leukotriene A4 (LTA4) hydrolase is homologous to various types of aminopeptidases. Consistently with the finding, the purified LTA4 hydrolases from both human and guinea pig sources contained equimolar zinc ion, as determined by atomic absorption spectrometry. The enzyme had a significant amount of aminopeptidase activity toward synthetic peptide substrates. Both LTA4 hydrolase and aminopeptidase activities were inhibited by o-phenanthroline, p-chloromercuribenzoic acid, and Leu-thiol with similar IC50 values. Co-purification as well as co-immunoprecipitation of both enzyme activities with an affinity-purified antibody against LTA4 hydrolase strongly suggest that the two enzyme activities reside in a single protein.  相似文献   

3.
Leukotriene A4 hydrolase: an epoxide hydrolase with peptidase activity   总被引:6,自引:0,他引:6  
Purified leukotriene A4 hydrolase from human leukocytes is shown to exhibit peptidase activity towards the synthetic substrates alanine-4-nitroanilide and leucine-4-nitroanilide. The enzymatic activity is abolished after heat treatment (70 degrees C, 30 min). At 37 degrees C these substrates are hydrolyzed at a rate of 380 and 130 nmol/mg/min, respectively, and there is no enzyme inhibition during catalysis. Apo-leukotriene A4 hydrolase, obtained by removal of the intrinsic zinc atom, exhibits only a low peptidase activity which can be restored by the addition of stoichiometric amounts of zinc. Reconstitution of the apoenzyme with cobalt results in a peptidase activity which exceeds that of enzyme reactivated with zinc. Preincubation of the native enzyme with leukotriene A4 reduces the peptidase activity. Semipurified preparations of bovine intestinal aminopeptidase and porcine kidney aminopeptidase do not hydrolyze leukotriene A4 into leukotriene B4.  相似文献   

4.
We isolated a cDNA encoding rat leukotriene A4 (LTA4) hydrolase from mesangial cells by the polymerase chain reaction according to the human amino acid sequence. The deduced amino acid sequence shows that rat LTA4 hydrolase is a 609 amino acid protein with an Mr 69 kDa. Comparison of human LTA4 hydrolase revealed 93% homology, and include zinc-binding motifs of aminopeptidases. COS-7 cells transfected with the cDNA revealed substantial LTA4 hydrolase activity, and their activities were abolished by preincubation with captopril, representing the first reported cDNA expression of recombinant enzyme in mammalian cells. RNA blot analysis indicated that LTA4 hydrolase was expressed in glomerular endothelial, epithelial and mesangial cells.  相似文献   

5.
"Suicide" inactivation of leukotriene (LT) A4 hydrolase/aminopeptidase occurs via an irreversible mechanism-based process which is saturable, of pseudo firstorder, and dependent upon catalysis. Data obtained with either recombinant enzyme or enzyme purified from human leukocytes were similar. Apparent binding constants and inactivation rate constants are equivalent, compatible with a single type of substrate-enzyme complex which partitions between two fates, turnover and inactivation. Both catalytic functions are inactivated, consistent with an overlapping active site for this bifunctional enzyme. The partition ratio (turnover/inactivation) for the LTA4-enzyme complex is 129 +/- 16 for LTA4 hydrolase activity and 124 +/- 10 for aminopeptidase activity. The pH dependence for turnover and inactivation are indistinguishable with a maximum at pH 8. L-Proline p-nitroanilide, a weak substrate with a high Km for the aminopeptidase affords only partial protection against inactivation by LTA4. However, two potent competitive inhibitors, bestatin and captopril, protect both catalytic processes from inactivation, consistent with an active-site specificity for the suicide event. Electrospray ionization mass spectrometry indicates that the molecular weight of pure recombinant enzyme is 69,399 +/- 4 and that covalent modification accompanies catalysis, producing an LTA4:enzyme adduct with a molecular weight 69,717 +/- 4 and a 1:1 stoichiometry. In agreement with kinetic data, electrospray ionization mass spectrometry shows that bestatin inhibits the covalent modification of enzyme by LTA4 and that the extent of modification is proportional to the loss of enzymatic activity.  相似文献   

6.
The phorbol ester, phorbol 12-myristate 13-acetate enhanced leukotriene B4 production stimulated by formyl-methionyl-leucyl-phenylalanine and arachidonic acid and reduced the production of the all-trans isomers of LTB4 by human neutrophils. Production of 5-hydroxyeicosatetraenoic acid was unaffected. These observations are consistent with a stimulatory effect of phorbol ester on LTA hydrolase, the enzyme which catalyses the conversion of LTA4 to LTB4. We demonstrate that a protein of the same molecular weight as LTA hydrolase is phosphorylated upon stimulation of neutrophils with PMA. These data suggest that the activity of LTA hydrolase may be regulated by protein kinase C-dependent phosphorylation.  相似文献   

7.
We prepared a highly specific polyclonal antibody against leukotriene (LT) A4 hydrolase using a recombinant human enzyme. Using this antibody, we quantified LTA4 hydrolase protein content in the cytosols of guinea pig tissues. The enzyme protein content correlated well with the enzyme activity with a correlation coefficient of 0.87. However, the enzyme activity per mg of the enzyme in the cytosols was low, particularly in the liver and adrenal gland, compared with the specific activity of the purified enzyme. These observations suggest the presence of inhibitory substances and/or inactive enzymes in the cytosols of these tissues. To determine the cellular localization of LTA4 hydrolase in tissues other than blood cells, we carried out immunohistochemical examinations of guinea pig tissues. We identified epithelial cells in the tracheobronchial system and gastrointestinal tract, smooth muscle cells in the bronchi and aorta, vascular endothelial cells, and the intestinal plexus as novel cellular sources of the enzyme in the parenchyme of the tissue. Thus, LTA4 hydrolase was widely distributed in various types of parenchymal cells in the tissues, and this observation warrants further investigations on the biological activities of LTB4 in these cells and tissues.  相似文献   

8.
Leukotriene (LT) A(4) hydrolase is a bifunctional zinc metalloenzyme, which converts LTA(4) into the neutrophil chemoattractant LTB(4) and also exhibits an anion-dependent aminopeptidase activity. In the x-ray crystal structure of LTA(4) hydrolase, Arg(563) and Lys(565) are found at the entrance of the active center. Here we report that replacement of Arg(563), but not Lys(565), leads to complete abrogation of the epoxide hydrolase activity. However, mutations of Arg(563) do not seem to affect substrate binding strength, because values of K(i) for LTA(4) are almost identical for wild type and (R563K)LTA(4) hydrolase. These results are supported by the 2.3-A crystal structure of (R563A)LTA(4) hydrolase, which does not reveal structural changes that can explain the complete loss of enzyme function. For the aminopeptidase reaction, mutations of Arg(563) reduce the catalytic activity (V(max) = 0.3-20%), whereas mutations of Lys(565) have limited effect on catalysis (V(max) = 58-108%). However, in (K565A)- and (K565M)LTA(4) hydrolase, i.e. mutants lacking a positive charge, values of the Michaelis constant for alanine-p-nitroanilide increase significantly (K(m) = 480-640%). Together, our data indicate that Arg(563) plays an unexpected, critical role in the epoxide hydrolase reaction, presumably in the positioning of the carboxylate tail to ensure perfect substrate alignment along the catalytic elements of the active site. In the aminopeptidase reaction, Arg(563) and Lys(565) seem to cooperate to provide sufficient binding strength and productive alignment of the substrate. In conclusion, Arg(563) and Lys(565) possess distinct roles as carboxylate recognition sites for two chemically different substrates, each of which is turned over in separate enzymatic reactions catalyzed by LTA(4) hydrolase.  相似文献   

9.
An acetyl-coenzyme-A hydrolase from the supernatant fraction of rat liver is known to be rapidly inactivated at low temperature. Loss of catalytic activity is accompanied by apparent dissociation of tetrameric and dimeric forms of the enzyme into monomers. It was found that rewarming under appropriate conditions almost completely reversed the cold-induced inactivation and dissociation of the enzyme: At a protein concentration of 14 micrograms/ml, simple rewarming only partially restored the enzyme activity (less than 3% of the original activity), but at a higher concentration of the enzyme or in the presence of 1 mg/ml bovine serum albumin, the reactivation by warming was greater. Warming at 37 degrees C appeared to be optimal for reactivation; warming at 25 degrees C or at 43 degrees C was less effective. Longer exposure to cold did not affect reactivation on rewarming, but on repeated inactivation and reactivation the reactivation decreased to some extent, especially at lower concentrations of enzyme protein. Among various nucleotides tested, ATP greatly enhanced the restoration of the activity, while ITP, UTP and ADP were less effective and AMP, GTP, TTP and CTP had little effect. At an enzyme-protein concentration of 14 micrograms/ml, 2 mM ATP restored the enzyme activity to about 70% of that before cold treatment, while acetyl-CoA (0.5 mM) restored the activity about 50%. High concentrations of phosphate (0.92 M) and pyrophosphate (0.45 M) restored about 80% and 95%, respectively, of the original activity. Sucrose density gradient centrifugation of the active dimer at high enzyme concentration at 4 degrees C for 20 h produced a monomeric form without catalytic activity. Gel filtration showed that simple rewarming mostly converted the monomeric enzyme obtained in this way to the dimeric form, whereas on rewarming with ATP the monomer was mostly converted to a tetrameric form. The dimeric and tetrameric forms both had catalytic activity.  相似文献   

10.
Three fragments of the cDNA encoding human 3-hydroxy-3-methylglutaryl-CoA reductase, all incorporating the majority of the catalytic domain of the protein, were subcloned into Escherichia coli expression vectors containing the pL promoter. The two larger expressed fragments (58 and 52 kDa) were soluble and had enzymatic activity, while the smallest (48 kDa) was insoluble. The two active fragments were purified by a combination of conventional techniques and affinity chromatography. A number of properties of the two enzymes were compared including specific activity, kinetic parameters, relative solubility, and cold lability. The 52-kDa enzyme was observed to change from a dimeric to monomeric form and to lose activity at 4 degrees C. In contrast, the 58-kDa enzyme was found to be much less cold labile, and was dimeric at both 20 and 4 degrees C. In order to resolve the number of subunits required to form an active site, the number of inhibitor binding sites for a known inhibitor was determined to be one per subunit in the 58-kDa enzyme.  相似文献   

11.
Leukotriene A4-hydrolase activity in guinea pig and human liver   总被引:3,自引:0,他引:3  
Guinea pig and human liver homogenates transformed leukotriene A4 into leukotriene B4. In both species, the enzymatic activity was recovered in the 105000 X g supernatant, and it was found to be susceptible to heat treatment (56 degrees C, 1 h). Digestion with a proteolytic enzyme also resulted in loss of enzymatic activity. The formation of leukotriene B4 was pH-dependent, with an optimum between pH 7 and pH 8.5. In addition, two other organs from the guinea-pig, lungs and kidneys, contained leukotriene A4-hydrolase activity. The identity of leukotriene B4 was ascertained by high-performance liquid chromatography, ultraviolet spectrometry, gas chromatography-mass spectrometry and bioassay. We have recently demonstrated the presence of leukotriene A4-hydrolase activity in mammalian plasma (Fitzpatrick et al. (1983) Proc. Natl. Acad. Sci. USA 80, 5425-5429). The results of the present study suggest several possible origins of this plasma leukotriene A4 hydrolase.  相似文献   

12.
Leukotriene A4 (LTA4) hydrolase catalyzes the final step in leukotriene B4 (LTB4) synthesis. In addition to its role in LTB4 synthesis, the enzyme possesses aminopeptidase activity. In this study, we sought to define the subcellular distribution of LTA4 hydrolase in alveolar epithelial cells, which lack 5-lipoxygenase and do not synthesize LTA4. Immunohistochemical staining localized LTA4 hydrolase in the nucleus of type II but not type I alveolar epithelial cells of normal mouse, human, and rat lungs. Nuclear localization of LTA4 hydrolase was also demonstrated in proliferating type II-like A549 cells. The apparent redistribution of LTA4 hydrolase from the nucleus to the cytoplasm during type II-to-type I cell differentiation in vivo was recapitulated in vitro. Surprisingly, this change in localization of LTA4 hydrolase did not affect the capacity of isolated cells to convert LTA4 to LTB4. However, proliferation of A549 cells was inhibited by the aminopeptidase inhibitor bestatin. Nuclear accumulation of LTA4 hydrolase was also conspicuous in epithelial cells during alveolar repair following bleomycin-induced acute lung injury in mice, as well as in hyperplastic type II cells associated with fibrotic lung tissues from patients with idiopathic pulmonary fibrosis. These results show for the first time that LTA4 hydrolase can be accumulated in the nucleus of type II alveolar epithelial cells and that redistribution of the enzyme to the cytoplasm occurs with differentiation to the type I phenotype. Furthermore, the aminopeptidase activity of LTA4 hydrolase within the nucleus may play a role in promoting epithelial cell growth.  相似文献   

13.
14.
Purification of hepoxilin epoxide hydrolase from rat liver   总被引:3,自引:0,他引:3  
Hepoxilin epoxide hydrolase activity was demonstrated in rat liver cytosol using as substrate [1-14C] hepoxilin A3, a recently described hydroxy epoxide derivative of arachidonic acid. The enzyme was isolated and purified to apparent homogeneity using conventional chromatographic procedures resulting in 41-fold purification. The protein eluted during isoelectric focusing at a pI in the 5.3-5.4 range. The specific activity of the purified protein was 1.2 ng/microgram protein/20 min at 37 degrees C. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, under denaturing conditions, a molecular mass value of 53 kDa was observed. Using native polyacrylamide gel electrophoresis, enzyme activity corresponded to the main protein band. The purified protein used hepoxilin A3 as preferred substrate converting it to trioxilin A3. The enzyme was marginally active toward other epoxides such as leukotriene A4 and styrene oxide. The Mr, pI, and substrate specificity of the hepoxilin epoxide hydrolase indicate that this enzyme is different from the recently reported leukotriene A4 hydrolase from human erythrocytes and rat and human neutrophils and constitutes a hitherto undescribed form of epoxide hydrolase with specificity toward hepoxilin A3. Tissue screening for enzyme activity revealed that this enzyme is ubiquitous in the rat.  相似文献   

15.
A new epoxide hydrolase with high enantioselectivity toward (R)-glycidyl phenyl ether (R-GPE) was partially purified from Bacillus megaterium strain ECU1001. The maximum activity of the isolated enzyme was observed at 30 degrees C and pH 6.5 in a buffer system with 5% (v/v) of DMSO as a cosolvent. The enzyme was quite stable at pH 7.5 and retained full activity after incubation at 40 degrees C for 6 h. Interestingly, when the cosolvent DMSO was replaced by an emulsifier (Tween-80, 0.5% w/v) as an alternative additive to help disperse the water-insoluble substrate, the apparent activity of the epoxide hydrolase significantly increased by about 1.8-fold, while the temperature optimum shifted from 30 to 40 degrees C and the half-life of the enzyme at 50 degrees C increased by 2.5 times. The enzymatic hydrolysis of rac-GPE was highly enantioselective, with an E-value (enantiomeric ratio) of 69.3 in the Tween-80 emulsion system, which is obviously higher than that (41.2) observed in the DMSO-containing system.  相似文献   

16.
Aminopeptidase B (Ap-B) is a ubiquitous enzyme and its physiological function still remains an open question. This Zn2+ -exopeptidase catalyzes the amino-terminal cleavage of basic residues of peptide or protein substrates, indicating a role in precursor processing. In addition, the enzyme exhibits a residual capacity to hydrolyze leukotriene A4 (LTA4) into the pro-inflammatory lipid mediator leukotriene B4 (LTB4) in vitro. This potential bi-functional nature of Ap-B is supported by a close structural relationship with LTA4 hydrolase, which hydrolyzes LTA4 into LTB4, in vivo, and exhibits an aminopeptidase activity, in vitro. Structural studies are necessary for the detailed understanding of the bi-functional enzymatic mechanism of Ap-B. In this study, we report cDNA cloning, baculovirus expression, and purification of the rat Ap-B (rAp-B). The Ap-B cDNA was constructed from extracted rat testes total RNA and introduced into the pBAC1 baculovirus transfer vector to generate recombinant baculoviruses. rAp-B expression, with or without COOH-hexahistidine tag, was tested in two different insect cell hosts (Sf9 and H5). The enzyme is secreted into the insect cell culture medium, which allowed a rapid purification of the protein. The His-tagged rAp-B was purified using metal affinity resin while the native recombinant rAp-B was partially purified using a single step DEAE Trisacryl ion exchange column. Although the recombinant rAp-B exhibits biochemical properties equivalent to those of the rat testes purified protein, the presence of the histidine-tag seems to partially inhibit the exopeptidase activity. However, this report shows that baculovirus-infected cells are a useful system to produce rat Ap-B for use in studying enzymatic mechanisms in vitro and 3D structure.  相似文献   

17.
Leukotriene A4 epoxide hydrolase from dog lung, a soluble enzyme catalyzing the hydrolysis of leukotriene A4 (LTA4) to leukotriene B4 (LTB4) was partially purified by anion exchange HPLC. The enzymatic reaction obeys Michaelis- Menten kinetics. The apparent Km ranged between 15 and 25 microM and the enzyme exhibited an optimum activity at pH 7.8. An improved assay for the epoxide hydrolase has been developed using bovine serum albumin and EDTA to increase the conversion of LTA4 to LTB4. This method was used to produce 700 mg of LTB4 from LTA4 methyl ester. The partial by purified enzyme was found to be uncompetitively inhibited by divalent cations. Ca+2, Mn+2, Fe+2, Zn+2 and Cu+2 were found to have inhibitor constants (Ki) of 89 mM, 3.4 mM, 1.1 mM, 0.57 mM, and 28 microM respectively Eicosapentaenoic acid was shown to be a competitive inhibitor of this enzyme with a Ki of 200 microM. From these inhibition studies, it can be theorized that the epoxide hydrolase has at least one hydrophobic and one hydrophilic binding site.  相似文献   

18.
The anionic protease component which frequently contaminates preparations of routinely isolated cationic protease (thermitase) from Thermoactinomyces vulgaris was purified, virtually to homogeneity, by rechromatography on controlled pore glass (CPG-10). Starting materials were column eluates with anionic protease, contaminated with residual thermitase activity. The purified anionic enzyme shares several properties with thermitase, such as size, sensitivity against phenylmethanesulfonyl fluoride and Hg2+, UV-spectral, immunological and pH behavior. On the other hand, the isoelectric point (at pH 6.5), temperature dependence (more heat stable) and enzymatic activity (less active) of anionic protease differ significantly from thermitase. At pH 8 or 6 and 25 degrees or 4 degrees C anionic protease is hydrolysed completely by thermitase. Like other protein substrates, anionic protease simultaneously acts as a stabilizer for thermitase. In contrast to thermitase, the anionic enzyme partially changes spontaneously during long-term storage at 4 degrees C and pH 6 to a cationic protein species endowed with proteolytic activity.  相似文献   

19.
Epoxide hydrolase in human adrenal gland was characterized with respect to catalytic properties and subcellular distribution. With human adrenal microsomes and the substrates styrene-7,8-oxide, cis-stilbene oxide, estroxide and androstene oxide the specific activities were between 1.9 and 19.0 nmol/min/mg protein. With styrene-7,8-oxide as substrate the apparent Km-value was 0.98 mM and the pH optimum was 9.2. Subcellular fractionation revealed that the bulk of the activity was confined to the endoplasmic reticulum. Different compounds known to influence rodent microsomal epoxide hydrolase activity were also tested on the human adrenal enzyme. 1,1,1-Trichloropropene-2,3-oxide (TCPO) and cyclohexene oxide (CHO) inhibited the activity while benzil and clotrimazole stimulated the activity. Partial purification of human adrenal epoxide hydrolase indicates that its molecular weight is about 51 000 and that its concentration relative total protein in the human adrenal microsomes is about 10%.  相似文献   

20.
A novel aminopeptidase, Aminopeptidase T (APase T), was purified from porcine skeletal muscle following successive column chromatography: twice on DEAE-cellulose, hydroxyapatite, and Sephacryl S-200 HR using Leu-β-naphthylamide (LeuNap) as a substrate. The molecular mass of the enzyme was 69 kDa on SDS-PAGE. The optimum pH towards LeuNap of the enzyme was about 7. The enzyme activity was strongly inhibited by bestatin and was negatively affected by ethylenediaminetetraacetic acid (EDTA). Chlorine-activated APase T liberated Leu, Ala, Met, Pro, and Arg from Nap derivatives. The APase T gene consisted of an ORF of 1,836 bp encoding a protein of 611 amino acid residues. The APase T was highly homologous to bovine, human, and mouse Leukotriene A(4) hydrolase (LTA(4)H), a bifunctional enzyme which exhibits APase and epoxide hydrolase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号