首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Russell TR  Demeler B  Tu SC 《Biochemistry》2004,43(6):1580-1590
The homodimeric NADH:flavin oxidoreductase from Aminobacter aminovorans is an NADH-specific flavin reductase herein designated FRD(Aa). FRD(Aa) was characterized with respect to purification yields, thermal stability, isoelectric point, molar absorption coefficient, and effects of phosphate buffer strength and pH on activity. Evidence from this work favors the classification of FRD(Aa) as a flavin cofactor-utilizing class I flavin reductase. The isolated native FRD(Aa) contained about 0.5 bound riboflavin-5'-phosphate (FMN) per enzyme monomer, but one bound flavin cofactor per monomer was obtainable in the presence of excess FMN or riboflavin. In addition, FRD(Aa) holoenzyme also utilized FMN, riboflavin, or FAD as a substrate. Steady-state kinetic results of substrate titrations, dead-end inhibition by AMP and lumichrome, and product inhibition by NAD(+) indicated an ordered sequential mechanism with NADH as the first binding substrate and reduced FMN as the first leaving product. This is contrary to the ping-pong mechanism shown by other class I flavin reductases. The FMN bound to the native FRD(Aa) can be fully reduced by NADH and subsequently reoxidized by oxygen. No NADH binding was detected using 90 microM FRD(Aa) apoenzyme and 300 microM NADH. All results favor the interpretation that the bound FMN was a cofactor rather than a substrate. It is highly unusual that a flavin reductase using a sequential mechanism would require a flavin cofactor to facilitate redox exchange between NADH and a flavin substrate. FRD(Aa) exhibited a monomer-dimer equilibrium with a K(d) of 2.7 microM. Similarities and differences between FRD(Aa) and certain flavin reductases are discussed.  相似文献   

2.
3.
Reversed-phase high-performance liquid chromatography has been used to separate a number of flavin and flavin analogs at the riboflavin, FMN, and FAD coenzyme level. Analytical methods were developed which enable the facile determination of a particular flavin or mixture of flavins present. These methods also allowed the separation of oxidized from reduced forms of oxygen-stable flavin analogs. Past investigations have utilized enzymatically synthesized FAD analogs with the problem of potential contamination by other levels of the coenzyme or ATP a cosubstrate in the flavokinase/FAD synthetase reaction. Preparative methods show that all the potential reaction products may be separated from one another thereby allowing the rapid purification of these redox coenzyme analogs. To demonstrate the utility of this method, radiolabeled FAD and 1-deazaFAD were prepared and purified.  相似文献   

4.
The electronic absorption spectra of the flavomononucleotide (FMN) in aqueous solution and in glycerine-water solution with change of the dye concentration have been measured. The FMN dimer absorption spectrum, monomer absorption spectrum, dimerization constant K and molar fraction of the monomer were calculated. It was found that FMN dimerization constants in aqueous solution were Ka = 118.0 l/mol and in glycerine Kg = 20.5 l/mol. In the region of the monomer absorption band two dimer absorption bands appear, in accordance with the Kasha molecular exciton theory.  相似文献   

5.
6.
7.
Jeffers CE  Tu SC 《Biochemistry》2001,40(6):1749-1754
It is believed that the reduced FMN substrate required by luciferase from luminous bacteria is provided in vivo by NAD(P)H-FMN oxidoreductases (flavin reductases). Our earlier kinetic study indicates a direct flavin cofactor transfer from Vibrio harveyi NADPH-preferring flavin reductase P (FRP(H)) to the luciferase (L(H)) from the same bacterium in the in vitro coupled luminescence reaction. Kinetic studies were carried out in this work to characterize coupled luminescence reactions using FRP(H) and the Vibrio fischeri NAD(P)H-utilizing flavin reductase G (FRG(F)) in combination with L(H) or luciferase from V. fischeri (L(F)). Comparisons of K(m) values of reductases for flavin and pyridine nucleotide substrates in single-enzyme and luciferase-coupled assays indicate a direct transfer of reduced flavin, in contrast to free diffusion, from reductase to luciferase by all enzyme couples tested. Kinetic mechanisms were determined for the FRG(F)-L(F) and FRP(H)-L(F) coupled reactions. For these two and the FRG(F)-L(H) coupled reactions, patterns of FMN inhibition and effects of replacement of the FMN cofactor of FRP(H) and FRG(F) by 2-thioFMN were also characterized. Similar to the FRP(H)-L(H) couple, direct cofactor transfer was detected for FRG(F)-L(F) and FRP(H)-L(F). In contrast, despite the structural similarities between FRG(F) and FRP(H) and between L(F) and L(H), direct flavin product transfer was observed for the FRG(F)-L(H) couple. The mechanism of reduced flavin transfer appears to be delicately controlled by both flavin reductase and luciferase in the couple rather than unilaterally by either enzyme species.  相似文献   

8.
Free reduced flavins are involved in a variety of biological functions. They are generated from NAD(P)H by flavin reductase via co-factor flavin bound to the enzyme. Although recent findings on the structure and function of flavin reductase provide new information about co-factor FAD and substrate NAD, there have been no reports on the substrate flavin binding site. Here we report the structure of TTHA0420 from Thermus thermophilus HB8, which belongs to flavin reductase, and describe the dual binding mode of the substrate and co-factor flavins. We also report that TTHA0420 has not only the flavin reductase motif GDH but also a specific motif YGG in C terminus as well as Phe-41 and Arg-11, which are conserved in its subclass. From the structure, these motifs are important for the substrate flavin binding. On the contrary, the C terminus is stacked on the NADH binding site, apparently to block NADH binding to the active site. To identify the function of the C-terminal region, we designed and expressed a mutant TTHA0420 enzyme in which the C-terminal five residues were deleted (TTHA0420-ΔC5). Notably, the activity of TTHA0420-ΔC5 was about 10 times higher than that of the wild-type enzyme at 20-40 °C. Our findings suggest that the C-terminal region of TTHA0420 may regulate the alternative binding of NADH and substrate flavin to the enzyme.  相似文献   

9.
T D Porter  C B Kasper 《Biochemistry》1986,25(7):1682-1687
The FMN-binding domain of NADPH-cytochrome P-450 oxidoreductase, residues 77-228, is homologous with bacterial flavodoxins, while the FAD-binding domain, residues 267-678, shows a high degree of similarity to two FAD-containing proteins, ferredoxin-NADP+ reductase and NADH-cytochrome b5 reductase. Comparison of these proteins to glutathione reductase, a flavoprotein whose three-dimensional structure is known, has permitted tentative identification of FAD- and cofactor-binding residues in these proteins. The remarkable conservation of sequence between NADPH-cytochrome P-450 oxidoreductase and ferredoxin-NADP+ reductase, coupled with the homology of the FMN-binding domain of the oxidoreductase with the bacterial flavodoxins, implies that NADPH-cytochrome P-450 oxidoreductase arose as a result of fusion of the ancestral genes for these two functionally linked flavoproteins.  相似文献   

10.
The reduction of flavin by reduced diphosphopyridine nucleotide and photoreduction were studied spectrophotometrically. Flavin was covalently bound to aminoethylcellulose, therefore the interaction between flavin molecules was excluded. Nevertheless a considerable quantity of free radicals was demonstrated under these conditions. The experimental dependence of the radical concentration as a function of reduction degree is readily explained if the reduction of flavin proceeds in two consecutive one-electron steps. The ratio of the rate constants of both reactions for the reduction of flavin by NADH k2'/k1' was equal to 4, for the photoreductions k2'/k1' to 6.5.  相似文献   

11.
12.
Studies on flavin binding in flavodoxins   总被引:4,自引:0,他引:4  
  相似文献   

13.
Flavodoxins were isolated for the cyanobacteria Anacystis nidulans and Nostoc strain MAC, and from the red alga Chondrus crispus, and apoflavodoxins prepared by five methods. Gel electrophoretic studies showed that whereas the apoproteins of A. nudulans and Nostoc strain MAC were recovered in monomeric form, the removal of riboflavin 5'-phosphate from C. crispus flavodoxin resulted in extensive aggregation of the apoprotein. In extent and nature this aggregation differed with the dissociating agent used.  相似文献   

14.
The "flavin destructase" enzyme BluB catalyzes the unprecedented conversion of flavin mononucleotide (FMN) to 5,6-dimethylbenzimidazole (DMB), a component of vitamin B(12). Because of its unusual chemistry, the mechanism of this transformation has remained elusive. This study reports the identification of 12 mutant forms of BluB that have severely reduced catalytic function, though most retain the ability to bind flavin. The "flavin destructase" BluB is an unusual enzyme that fragments the flavin cofactor FMNH(2) in the presence of oxygen to produce 5,6-dimethylbenzimidazole (DMB), the lower axial ligand of vitamin B(12) (cobalamin). Despite the similarities in sequence and structure between BluB and the nitroreductase and flavin oxidoreductase enzyme families, BluB is the only enzyme known to fragment a flavin isoalloxazine ring. To explore the catalytic residues involved in this unusual reaction, mutants of BluB impaired in DMB biosynthesis were identified in a genetic screen in the bacterium Sinorhizobium meliloti. Of the 16 unique point mutations identified in the screen, the majority were located in conserved residues in the active site or in the unique "lid" domain proposed to shield the active site from solvent. Steady-state enzyme assays of 12 purified mutant proteins showed a significant reduction in DMB synthesis in all of the mutants, with eight completely defective in DMB production. Ten of these mutants have weaker binding affinities for both oxidized and reduced FMN, though only two have a significant effect on complex stability. These results implicate several conserved residues in BluB's unique ability to fragment FMNH(2) and demonstrate the sensitivity of BluB's active site to structural perturbations. This work lays the foundation for mechanistic studies of this enzyme and further advances our understanding of the structure-function relationship of BluB.  相似文献   

15.
16.
17.
Oxynitrilase containing 2-thioFAD [C(2) = S] in place of FAD exhibits catalytic activity similar to that of native enzyme. Reaction of methyl methanethiolsulfonate with 2-thioFAD bound to oxynitrilase results in the formation of the corresponding flavin disulfide [C(2)-SSCH3]. Normal flavin [C(2) = O] is formed by reacting 2-thioFAD oxynitrilase with m-chloroperoxybenzoate or H2O2. Both reactions proceed via a spectrally detectable flavin 2-S-oxide intermediate [C(2) = S+-O-], but sizable amounts of this intermediate accumulate only in the m-chloroperoxybenzoate reaction (about 40%). While similar reactions have been reported with free 2-thioflavin, kinetic and other data indicate that the oxynitrilase reactions occur with intact enzyme. This shows that the 2-position of the pyrimidine ring in the bound coenzyme is accessible to solvent. The data are consistent with previous studies on the reaction of peroxides with oxynitrilase-bound 5-deazaFAD which show that the pyrimidine ring is accessible at position 4. Analogous studies indicate that the pyrimidine ring is buried in the case of flavin bound to lactate oxidase, since the data indicate that both positions 2 and 4 are inaccessible to solvent.  相似文献   

18.
Garnaud PE  Koetsier M  Ost TW  Daff S 《Biochemistry》2004,43(34):11035-11044
Electron transfer through neuronal nitric oxide synthase (nNOS) is regulated by the reversible binding of calmodulin (CaM) to the reductase domain of the enzyme, the conformation of which has been shown to be dependent on the presence of substrate, NADPH. Here we report the preparation of the isolated flavin mononucleotide (FMN)-binding domain of nNOS with bound CaM and the electrochemical analysis of this and the isolated flavin adenine dinucleotide (FAD)-binding domain in the presence and absence of NADP(+) and ADP (an inhibitor). The FMN-binding domain was found to be stable only in the presence of bound CaM/Ca(2+), removal of which resulted in precipitation of the protein. The FMN formed a kinetically stabilized blue semiquinone with an oxidized/semiquinone reduction potential of -179 mV. This is 80 mV more negative than the potential of the FMN in the isolated reductase domain, that is, in the presence of the FAD-binding domain. The FMN semiquinone/hydroquinone redox couple was found to be similar in both constructs. The isolated FAD-binding domain, generated by controlled proteolysis of the reductase domain, was found to have similar FAD reduction potentials to the isolated reductase domain. Both formed a FAD-hydroquinone/NADP(+) charge-transfer complex with a long-wavelength absorption band centered at 780 nm. Formation of this complex resulted in thermodynamic destabilization of the FAD semiquinone relative to the hydroquinone and a 30 mV increase in the FAD semiquinone/hydroquinone reduction potential. Binding of ADP, however, had little effect. The possible role of the nicotinamide/FADH(2) stacking interaction in controlling electron transfer and its likely dependence on protein conformation are discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号