首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lipogenesis from different substrates was determined in isolated human sebaceous glands after 17-20 h in culture. Rates of total lipogenesis were 1003 +/- 141, 842 +/- 90, 481 +/- 57 pmol.h-1 gland-1 +/- SE from acetate, lactate and glucose, respectively, when present as sole substrates: the rate from glucose was significantly lower (P less than 0.01). Squalene synthesis was greatest from acetate at 479 +/- 44 pmol.h-1.gland-1; significantly higher than from lactate (281 +/- 45 pmol.h-1.gland-1) or glucose at 119 +/- 18 pmol.h-1.gland-1. Wax ester plus cholesterol ester synthesis showed similar dependence on substrate but triglyceride synthesis was unaffected. We conclude that the added substrate determines both the rate and pattern of non-polar lipid synthesized by isolated human sebaceous glands.  相似文献   

2.
Previously we have shown that rats living under heterosexual conditions (HE-rats) have significantly higher weights of androgen target organs like prostate and bulbocavernosus/levator ani muscle (BCLA) than rats living under homosexual conditions (HO-rats). Knowing that androgen metabolism is an important regulator of androgenic action, we have measured in vitro by thin-layer chromatography the testosterone 5 alpha-reductase and 3 alpha (beta)-hydroxysteroid dehydrogenase (3 alpha (beta)-HSDH) activity in prostate and BCLA of both groups. Furthermore, we looked for weight differences of the kidney from HE- and HO-rats. The main results are: (1) The mean apparent Michaelis constant (Km) of 5 alpha-reductase in prostate was identical in both groups, being 0.22 and 0.24 microM for HE- and HO-rats, respectively. (2) The mean 5 alpha-reductase activity was significantly (P less than 0.001; n = 18) lower in prostate of HE- (11.1 +/- 0.5 (SEM) pmol 5 alpha-reduced metabolites X mg protein-1 X h-1 1) than HO-rats (13.9 +/- 0.4). (3) The mean apparent Km of 3 alpha (beta)-HSDH was identical in HE- and HO-rats, being 3.7 and 4.3 microM, respectively. (4) The mean 3 alpha (beta)-HSDH activity was significantly (P less than 0.001; n = 20) lower in prostate of HE- (1.58 +/- 0.05 (SEM) nmol 3 alpha (beta)-reduced metabolites X mg protein-1 X h-1) than HO-rats (1.85 +/- 0.05). (5) The mean 3 alpha (beta)-HSDH activity was significantly (P less than 0.001; n = 24) lower in BCLA of HE- (284 +/- 9.6 (SEM) pmol 3 alpha (beta)-reduced metabolites X mg protein-1 X h-1 than HO-rats (422 +/- 18.7). (6) Besides prostate and BCLA, also the absolute as well as relative weights of the kidney were significantly higher in HE- than HO-rats. (7) It will be discussed that despite various significant differences in androgen metabolism, other factors might be responsible for the organ weight differences of prostate, BCLA and kidney between HE- and HO-rats.  相似文献   

3.
We have previously reported that cytochrome P-450LTB in the microsomes of human polymorphonuclear leukocytes (PMN) catalyzes three omega-oxidations of leukotriene B4 (LTB4), leading to the sequential formation of 20-OH-LTB4, 20-CHO-LTB4, and 20-COOH-LTB4 (Soberman, R.J., Sutyak, J.P., Okita, R.T., Wendelborn, D.F., Roberts, L.J., II, and Austen, K. F. (1988) J. Biol. Chem. 263, 7996-8002). The identification of the novel final intermediate, 20-CHO-LTB4, allowed direct analysis of its metabolism by PMN microsomes in the presence of adenine nucleotide cofactors. Microsomes in the presence of 100 microM NAD+ or 100 microM NADP+ converted 1.0 microM 20-CHO-LTB4 to 20-COOH-LTB4 with a Km of 2.4 +/- 0.8 microM (mean +/- S.E., n = 4) and a Vmax of 813.9 +/- 136.6 pmol.min-1.mg-1, for NAD+, as compared to 0.12 microM and 5.0 pmol.min-1.mg-1 (n = 2) for NADPH as a cofactor. The conversion of 1.0 microM of 20-CHO-LTB4 to 20-COOH-LTB4 in the presence of saturating concentrations (1.0 mM) of both NAD+ and NADP+ was not greater than the reaction in the presence of 1.0 mM of each cofactor separately, indicating that NAD+ and NADP+ were cofactors for the same enzyme. Antibody to cytochrome P-450 reductase did not inhibit the conversion of 20-CHO-LTB4 to 20-COOH-LTB4. When 1.0 microM 20-OH-LTB4 was added to microsomes in the presence of NADPH, approximately three-fourths of the product formed (63.7 +/- 5.1 pmol; mean +/- S.E., n = 3) was 20-CHO-LTB4 and approximately one-fourth (21.3 +/- 3.9 pmol; mean +/- S.E., n = 3) was 20-COOH-LTB4. In the presence of both NADPH and NAD+, only 20-COOH-LTB4 (85.5 +/- 9.9 pmol; mean +/- S.E., n = 3) was formed. PMN microsomes also contain an NADH-dependent aldehyde reductase which converts 20-CHO-LTB4 to 20-OH-LTB4, a member of the LTB4 family of molecules with biological activity. Based upon kinetic, cofactor and inhibition data, microsomal aldehyde dehydrogenase preferentially regulates the final and irreversible inactivation step in the LTB4 metabolic sequence.  相似文献   

4.
Placental estrogen hydroxylase (EH) enzyme activity was measured at term using the catechol-O-methyl transferase coupled method in normal and high risk conditions. The identity and ratio of products formed during incubation of microsomes as analysed by high performance liquid chromatography in chronic hypertension, toxemia and diabetes mellitus was not different from controls. The mean enzymatic activity was also not different among the conditions studied as expressed mean +/- SE pmol/min/mg, protein: chronic hypertension (7.8 +/- 1), toxemia (8 +/- 1.6), diabetes mellitus (6.1 +/- 0.9) and controls (8.3 +/- 1.5). The cofactor dependence of EH was studied showing that NADPH is a better substrate for the enzyme than NADH.  相似文献   

5.
Sarcoplasmic reticulum (SR) and plasma membranes from canine left ventricle were used to evaluate the presence of the enzyme CDPdiglyceride-inositol transferase in these membranes. (K+,-Ca2+)-ATPase activity, a marker for SR, was 79.2 +/- 5.0 (SE) and 11.2 +/- 2.0 mumol.mg-1.h-1 in SR and plasma membrane preparations, respectively, and (Na+,K+)-ATPase activity, a marker for plasma membranes, was 5.6 +/- 1.2 and 99.2 +/- 8.0 mumol.mg-1.h-1, respectively. Contamination of SR and plasma membrane preparations by mitochondria was estimated to be 2% and 8%, respectively, and by Golgi membranes, 0.9% and 1.8%, respectively. Transferase activity, measured at pH 6.8, was 1.32 +/- 0.04 (SE) and 0.28 +/- 0.04 nmol of [3H]phosphatidylinositol ([3H]PtdIns).mg-1.min-1 in three SR and plasma membrane preparations, respectively. The transferase activity detected in the plasma membrane preparation could be accounted for largely, but not entirely, by contaminating SR membranes. The pH optimum for the SR transferase activity was between 8.0 and 9.0; little or no activity was detectable at pH 6.3 and 5.5, the lowest pH tested. Ca2+ inhibited the enzyme, half-maximal inhibition occurring at about 10 microM Ca2+; removal of the Ca2+ by addition of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid restored activity. No loss of [3H]PtdIns could be detected when membranes were incubated in the presence or absence of Ca2+. The Ca2+ inhibition of the transferase was noncompetitive with respect to CDP-dipalmitin while that with respect to myo-inositol was slightly noncompetitive at low [Ca2+] and became uncompetitive at higher [Ca2+].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
When the plasma concentrations of estrone sulfate (E1S) were measured in five menstrual cycles, the highest concentrations were found on the day of LH peak (14.25 nmol/l +/- 2.94 [SE]). Peak levels of E1S were 20 times higher than the highest E2 levels measured (0.769 +/- 0.276 nmol/l). To determine whether E1S can be metabolized by adult and fetal tissues we examined estrone (E1) sulfatase activity in brain and other tissues. E1 Sulfatase activity was present in all tissues studied including adult endometrium, fat and skin. When the rate of sulfatase activity was measured in homogenates of fetal hypothalamus, frontal cortex and pituitary (n = 4), the hypothalamic activity (306.0 +/- 39.1 [SE] pmol/min/mg protein) was significantly higher than that of the frontal cortex (127.4 +/- 19.4, P less than 0.002) or pituitary (193.7 +/- 43.3, P less than 0.03). This was not apparent in the adult (n = 2) where the enzyme activity was similar in the hypothalamus (413.9 +/- 27.3) and frontal cortex (446.3 +/- 82.2) and lower in the pituitary (98.2 +/- 19.2). The Km for E1 sulfatase in the fetal frontal cortex was 28.9 microM. The high E1 sulfatase activity in estrogen responsive target tissues, particularly fetal hypothalamus, accompanied by a large circulating reservoir of E1S, suggest that this enzyme could possibly have a regulatory role in controlling the level of intracellular estrogens and in modulating their intracellular function.  相似文献   

8.
A highly sensitive and simple assay for the activity of GTP cyclohydrolase I (EC 3.5.4.16) was established using a newly developed radioimmunoassay. D-erythro-7,8-Dihydroneopterin triphosphate formed from GTP by GTP cyclohydrolase I was oxidized by iodine and dephosphorylated by alkaline phosphatase to D-erythro-neopterin, and quantified by a radioimmunoassay for D-erythro-neopterin. This method was highly sensitive and required only 0.2 mg of rat liver tissues for the measurement of the activity. It was reproducible and can be applied for the simultaneous assay of many samples. The activity of GTP cyclohydrolase I was measured in several rat tissues. For example, the enzyme activity in rat striatum (n = 5) was 13.7 +/- 1.5 pmol/mg protein per hour (mean +/- SE), and agreed well with those obtained by high-performance liquid chromatography with fluorescence detection. The activity in the autopsy human brains (caudate nucleus) was measured by this new method for the first time. The activity in the caudate nucleus from parkinsonian patients (n = 6) was 0.82 +/- 0.56 pmol/mg protein per hour which was significantly lower than the control value, 4.22 +/- 0.43 pmol/mg protein per hour (n = 10).  相似文献   

9.
We have evaluated the biosynthesis, characterization and inhibition of Leukotriene (LT) B4 in unstimulated and in A23187-stimulated human whole blood. LTB4 was assayed by radioimmunoassay (RIA) both in unextracted serum and after extraction and thin-layer chromatography (TLC). Unstimulated human whole blood allowed to clot at 37 degrees C for 60 min produced only trace amounts of LTB4 (0.16 +/- 0.05 ng/ml, mean +/- SD, n = 3). LTB4-like immunoreactivity (ir-LTB4) detectable in unstimulated serum samples was largely overestimated by direct RIA, most likely because of interfering substance(s) unrelated to cyclooxygenase or lipoxygenase activity. Incubation of human whole blood with A23187 (2-10 microM) resulted in a concentration-dependent stimulation of LTB4 production. At 10 microM A23187, ir-LTB4 was 18 +/- 2.4 ng/ml (mean +/- SEM, n = 28). In A23187-stimulated serum samples, LTB4 concentrations measured by direct RIA correlated in a statistically significant fashion with those measured after extraction and TLC. Nafazatrom added in vitro caused a dose-dependent inhibition of A23187-stimulated ir-LTB4 production with an IC50 of 17 microM.  相似文献   

10.
Although HHT accounts for approximately one third of the arachidonic acid (AA) metabolites produced by stimulated platelets, no well defined function has been attributed to this product. We report that HHT stimulates prostacyclin production by endothelial cells, and have identified the mechanism for this effect. In human umbilical venous endothelial cells, HHT (0.5 and 1 microM) stimulated prostacyclin (RIA for 6KPGF1 alpha) by 32 +/- 22% (1SD) and 42 +/- 38% (P less than 0.05 and less than 0.01). Similar changes were observed when the effect of HHT on exogenous [1-14C] AA metabolism in fetal bovine aortic endothelial cells (FBAECs) was studied. Kinetic analyses revealed that HHT affected vascular cyclooxygenase. HHT (1 microM) increased Vmax in test microsomes (706 +/- 21 pmol/mg/min, mean +/- 1SE) when compared to controls (529 +/- 20; P less than 0.02). No concomitant effect on Km was observed. A further effect of HHT on AA release from endothelial cell membrane phospholipids was noted. Prelabeling experiments revealed that HHT (1 microM) increased the ionophore stimulated release of AA from FBAECs (20952 +/- 555 cpm/well control mean +/- 1SE vs 25848 +/- 557 for paired HHT treated cells; P less than 0.05). The effect of HHT on platelet AA metabolism was next studied. Preincubation of washed platelets with HHT (1 microM) did not enhance thrombin or arachidonic acid induced platelet TXB2 formation. In platelets prelabelled with [1-14C]AA, HHT (1 microM) had no effect on AA release post thrombin stimulation. Conversion to cyclooxygenase metabolites was also not enhanced. HHT stimulates vascular prostacyclin without a concomitant effect on platelet AA metabolism. HHT may thus be an important local modulator of platelet plug formation.  相似文献   

11.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity was measured in extracts of cultured fibroblasts derived from patients with mevalonate kinase deficiency (MKD). For six patients studied, the mean activity of 63.3 +/- 41.1 pmol/min-mg protein (+/- 1 SD, range 37.7-146.2) was significantly higher than the mean value in three control fibroblast lines of 11.1 +/- 3.5 (+/- 1 SD, range 8.0-14.9). These values were obtained using cells subcultured in medium supplemented with 10% fetal bovine serum (FBS) 21 h prior to assay. When cells were deprived of cholesterol by subculturing for 21 h in delipidated FBS, the mean value for patient cells was increased to 230.8 +/- 78.5 pmol/min-mg protein (range 130.9-333.8) as compared to 109.5 +/- 47.1 (range 78.0-163.6) for controls. The activity of HMG-CoA synthase in extracts of fibroblasts derived from the patients was not elevated. The mevalonic acid concentration in the surrounding culture medium was assessed by stable isotope dilution assay. For five patients, the mean concentration in medium containing FBS was 0.92 +/- 0.37 microM (+/- 1 SD, range 0.46-1.48) in contrast to 1.24 +/- 0.83 microM (range 0.46-2.54) for cells subcultured in delipidated FBS. The mean value for three control fibroblast lines was 0.22 +/- 0.12 microM (+/- 1 SD, range 0.11-0.35) for cells subcultured in FBS as compared to 0.01 +/- 0.01 microM (range 0.0-0.01 microM) for cells sucultured in delipidated FBS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
To investigate the effects of training in normoxia vs. training in normobaric hypoxia (fraction of inspired O2 = 20.9 vs. 13.5%, respectively) on the regulation of Na+-K+-ATPase pump concentration in skeletal muscle (vastus lateralis), 9 untrained men, ranging in age from 19 to 25 yr, underwent 8 wk of cycle training. The training consisted of both prolonged and intermittent single leg exercise for both normoxia (N) and hypoxia (H) during a single session (a similar work output for each leg) and was performed 3 times/wk. Na+-K+-ATPase concentration was 326 +/- 17 (SE) pmol/g wet wt before training (Control), increased by 14% with N (371 +/- 18 pmol/g wet wt; P < 0.05), and decreased by 14% with H (282 +/- 20 pmol/g wet wt; P < 0.05). The maximal activity of citrate synthase, selected as a measure of mitochondrial potential, showed greater increases (P < 0.05) with H (1.22 +/- 0.10 mmol x h-1 x g wet wt-1; 70%; P < 0.05) than with N (0.99 +/- 0.10 mmol x h-1 x g wet wt-1; 51%; P < 0.05) compared with pretraining (0.658 +/- 0.09 mmol x h-1 x g wet wt-1). These results demonstrate that normobaric hypoxia induced during exercise training represents a potent stimulus for the upregulation in mitochondrial potential while at the same time promoting a downregulation in Na+-K+-ATPase pump expression. In contrast, normoxic training stimulates increases in both mitochondrial potential and Na+-K+-ATPase concentration.  相似文献   

13.
N-methylation of 1,2,3,4-tetrahydroisoquinoline (TIQ) present in human brain was found by a N-methyltransferase in human brain homogenate. Formation of N-methyl-1,2,3,4-tetrahydroisoquinoline (NMTIQ) from TIQ was quantitatively assayed by high-performance liquid chromatography with electrochemical detection. The reaction required S-adenosyl-L-methionine (SAM) as a methyl donor and in terms of SAM the value of the Michaelis constant, Km, and of the maximal velocity, Vmax, were 5.11 +/- 1.69 microM and 7.31 +/- 0.21 pmol/min/mg protein, respectively. The value of Km and Vmax in terms of TIQ were 20.9 +/- 5.5 microM and 7.98 +/- 1.21 pmol/min/mg protein, respectively. The optimal pH of the reaction was 8.25. A major part of the N-methyltransferase activity was found in the cytosolic fraction of human cortex. Enzymatic formation of NMTIQ indicates that in human brain this compound may be an intermediate of biosynthesis of a potent neurotoxin of dopamine metabolism, N-methylisoquinolinium ion, from naturally-occurring TIQ.  相似文献   

14.
We have measured microsomal steroid aromatase activity in the fetal component of ovine placental cotyledons collected from pregnant ewes between 124 days and 127 days of gestation. Aromatase activity was determined by quantifying the [3H]water by-product when [1 beta-3H(N)] androstenedione was used as substrate. The mean microsomal aromatase activity (+/- SD) was 5.7 +/- 2.2 pmol.min-1.mg protein-1 (n = 12) and was 9% of the aromatase activity of human placental microsomes [mean (+/- SD) of 66.1 +/- 25.0 pmol.min-1.mg protein-1 (n = 7)]. The apparent Km for ovine placental aromatase for androstenedione, at pH 7.4 and 37 degrees C, was 50 nM while the Vmax was 20.6 pmol.min-1.mg protein-1. The respective concentrations effecting 50% inhibition of ovine placental aromatase activity (the I50) for econazole, 4-hydroxyandrostenedione, imazalil, miconazole, ketoconazole and aminoglutethimide were 0.03, 0.05, 0.15, 0.50, 5.0 and 5.5 microM. The order of relative potencies were similar to those obtained for human placental aromatase. Ketoconazole and aminoglutethimide were approx 10 times more potent inhibitors of the sheep enzyme relative to the human. Aromatase activity was not confined to the microsomal fraction of ovine placental tissue but was distributed throughout all the particulate subcellular fractions. The proportionally high activity of the tissue homogenate (1.75 pmol.min-1.mg protein-1) is suggestive that in the last third of pregnancy, aromatase is not rate limiting with regard to placental estrogen production. It would appear, therefore, that the major factor regulating placental estrogen synthesis in ovine pregnancy is the availability of substrate.  相似文献   

15.
Pyridine nucleotide levels and the activities of enzymes involved in NAD synthesis (nicotinic acid phosphoribosyltransferase, nicotinic acid- and nicotinamide mononucleotide-adenylyltransferase) have been assayed in human normal lymphocytes by an HPLC method using radioactive or nonradioactive substrates. NAD concentration was 46.4 +/- 17.2 pmol 10(-6) cells, and that of NADP was 14.5 +/- 3.9 pmol 10(-6) cells (mean +/- standard deviation). The adenylyltransferase activity using nicotinic acid mononucleotide as substrate was 1.530 +/- 0.216 nmol h(-1) 10(-6) cells, using nicotinamide mononucleotide was 1.466 +/- 0.354 nmol h(-1) 10(-6) cells. The apparent K(M) values were 0.015 mM for the former substrate and 0.167 mM for the latter. The mean activity of nicotinic acid phosphoribosyltransferase was 0.038 +/- 0.014 nmol h(-1) 10(-6) cells, and the apparent K(M) for nicotinic acid was 0.165 mM. The proposed methods, easy and rapid to perform, are reliable and sensitive, avoiding the use of radiolabels except for NAPRT and displaying a very low activity. The reported findings, together with the previous ones in human erythrocytes, can provide an useful base to investigate NAD metabolism in humans through the study of blood cells.  相似文献   

16.
Significant cholesterol synthesis occurs in gut mucosa of animals and humans. However, the role of gut synthesis in hypercholesterolemia and the effect of drugs on this function have not been defined. We obtained jejunal biopsies and bile samples from 21 Type II hypercholesterolemic subjects (mean serum cholesterol = 331 mg/dl) on a low fat diet after an over-night fast. Whole gut mucosal homogenate was assayed for activity of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, the rate-determining enzyme of cholesterol synthesis. Mean reductase activity (pmol/mg per min) was 5.5 +/- 1.0 (n = 21) in hypercholesterolemic subjects versus 11.3 +/- 1.0 in 52 normal subjects (P less than 0.01). This is consistent with the hypothesis that the primary defect in these patients is not excessive cholesterol synthesis but decreased low density lipoprotein (LDL) clearance. It implies that high LDL levels down-regulate gut reductase activity. After treatment of 7 patients with lovastatin (40-80 mg/day for at least 6-13 weeks), gut reductase activity decreased from 7.7 +/- 2.6 to 3.6 +/- 0.5 (P less than 0.05), in biopsies obtained 12 hr after the last drug dose. Inhibition of reductase activity by this drug was detected 12 hr after a dose, and the enzyme was not measurably induced during 6-13 weeks of therapy. In keeping with the decrease in serum cholesterol (332----239 mg/dl) and mucosal reductase activity during lovastatin therapy, mean gallbladder bile cholesterol saturation index also decreased (1.045 +/- 0.112 vs. 0.883 +/- 0.109, n = 7).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
5 alpha-Dihydrotestosterone 3 alpha(beta)-hydroxysteroid dehydrogenase [3 alpha(beta)-HSDH] [EC 1.1.1.50/EC 1.1.1.51] which catalyses the conversion of 5 alpha-dihydrotestosterone (5 alpha-DHT) to both 5 alpha-androstane-3 alpha,17 beta-diol and 5 alpha-androstane-3 beta,17 beta-diol was purified to an apparent homogeneous state using cytosol of three human hyperplastic prostates by a 4-step purification procedure. After each purification step 3 alpha-HSDH activity was coincident with 3 beta-HSDH activity. On average, specific 3 alpha-HSDH activity was enriched 856-fold, specific 3 beta-HSDH activity 749-fold compared to human prostatic cytosol using anion exchange, hydrophobic interaction, gel filtration and affinity chromatography. Examination of the purified enzyme by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS) revealed a single protein band with silver staining. The molecular weight of the enzyme was estimated as 33 kDa by SDS-polyacrylamide gel electrophoresis and as 28 kDa by Sephacryl S-200 gel filtration indicating that the native 3 alpha(beta)-HSDH is a monomer. In the presence of the preferred co-factor, NADPH, the purified enzyme had a mean apparent Km for 5 alpha-DHT of 3.9 microM and a Vmax of 93.3 nmol (mg protein)-1 h-1 with regard to 3 alpha-HSDH activity, and a Km of 6.3 microM and a Vmax of 20.6 nmol (mg protein)-1 h-1 with regard to 3 beta-HSDH activity.  相似文献   

18.
Insulin-resistant type 2 diabetic patients have been reported to have impaired skeletal muscle mitochondrial respiratory function. A key question is whether decreased mitochondrial respiration contributes directly to the decreased insulin action. To address this, a model of impaired cellular respiratory function was established by incubating human skeletal muscle cell cultures with the mitochondrial inhibitor sodium azide and examining the effects on insulin action. Incubation of human skeletal muscle cells with 50 and 75 microM azide resulted in 48 +/- 3% and 56 +/- 1% decreases, respectively, in respiration compared with untreated cells mimicking the level of impairment seen in type 2 diabetes. Under conditions of decreased respiratory chain function, insulin-independent (basal) glucose uptake was significantly increased. Basal glucose uptake was 325 +/- 39 pmol/min/mg (mean +/- SE) in untreated cells. This increased to 669 +/- 69 and 823 +/- 83 pmol/min/mg in cells treated with 50 and 75 microM azide, respectively (vs. untreated, both P < 0.0001). Azide treatment was also accompanied by an increase in basal glycogen synthesis and phosphorylation of AMP-activated protein kinase. However, there was no decrease in glucose uptake following insulin exposure, and insulin-stimulated phosphorylation of Akt was normal under these conditions. GLUT1 mRNA expression remained unchanged, whereas GLUT4 mRNA expression increased following azide treatment. In conclusion, under conditions of impaired mitochondrial respiration there was no evidence of impaired insulin signaling or glucose uptake following insulin exposure in this model system.  相似文献   

19.
The effects of the antianginal drugs nitroglycerin, nicorandil, diltiazem, verapamil and nicardipine on the activity of calcium-stimulated magnesium-dependent ATPase (Ca2+-ATPase) were investigated in the microsomal fraction from porcine coronary artery smooth muscle cells. Two discrete Ca2+-dependent ATPase components were observed: [1] a high affinity component, which was a specific Ca2+-ATPase, [with a half saturation constant for Ca2+ (Km) of 0.44 microM, and maximum velocity (Vmax) of 124.3 pmol of phosphate (Pi) released/micrograms of protein/30 min]: [2] a low affinity component in which Ca2+ could be replaced by Mg2+ without loss of its activity. Nitroglycerin and nicorandil (1 microM and 10 microM) both stimulated the activity of the Ca2+-ATPase significantly [142 +/- 12 (mean +/- standard error), and 137 +/- 10% of the control with nitroglycerin, and 152 +/- 17 and 135 +/- 20% with nicorandil] at a Ca2+ concentration of 0.3 microM. Diltiazem, verapamil and nicardipine did not cause significant stimulation. Nitroglycerin and nicorandil (1 microM), significantly decreased the Km for Ca2+ from the control value of 0.44 +/- 0.06 microM to 0.26 +/- 0.03 and 0.22 +/- 0.03 microM, respectively. Nitroglycerin and nicorandil may dilate coronary arteries by stimulating this Ca2+ extrusion pump enzyme through reduction of intracellular Ca2+ in smooth muscle cells.  相似文献   

20.
The effect of triiodothyronine (T3) on Na+,K(+)-ATPase activity of K562 human erythroleukemic cell was studied to understand why the erythrocyte sodium pump activity is decreased in hyperthyroidism. Na+,K(+)-ATPase activity of K562 cell lysates was assayed by measuring the release of inorganic phosphate (Pi) from ATP. Na+,K(+)-ATPase activity of K562 cell grown in the presence of T3 for 48 hours was significantly higher than that of control (0.98 +/- 0.05 mumol Pi h-1 mg protein-1 vs 0.82 +/- 0.10 mumol Pi h-1 mg protein-1, p < 0.05). The Na+,K(+)-ATPase activity could be stimulated in a time- and concentration-dependent manner; maximum stimulatory effect of T3 was seen at a concentration of 10(-7) mol/L. When an inducer [cytosine-beta-D-arabino-furanoside (ARA-C)] was added to the culture medium, the K562 cells showed signs of differentiation and synthesised haemoglobin. At the same time, the Na+,K(+)-ATPase activity remained high. We conclude that T3 stimulates Na+,K(+)-ATPase activity of K562 cells and in the presence of T3 during differentiation, the enzyme activity remains high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号