首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Blockade of NMDA receptors by intracortical infusion of 3-( R )-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP) increases glutamate (GLU) and serotonin (5-HT) release in the medial prefrontal cortex and impairs attentional performance in the 5-choice serial reaction time task. These effects are prevented by the 5-HT2A receptor antagonist, ( R )-(+)-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidine methanol (M100907). We explored the roles of endogenous 5-HT and 5-HT1A and 5-HT2C receptors in the mechanisms by which M100907 suppresses CPP-induced release of cortical GLU and 5-HT using in vivo microdialysis. CPP raised extracellular GLU and 5-HT by about 250% and 170% respectively. The 5-HT synthesis inhibitor, p -chlorophenylalanine (300 mg/kg), prevented M100907 suppressing CPP-induced GLU release. The effect of M100907 on these rises of GLU and 5-HT and attentional performance deficit was mimicked by the 5-HT2C receptor agonist, ( S )-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine fumarate, (Ro60-0175, 30 μg/kg) while intra-mPFC (SB242084, 6-chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-indoline, 0.1 μM), a 5-HT2C receptor antagonist, prevented the effect of M100907 on extracellular GLU. The 5-HT1A receptor antagonist, N -[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]- N -(2-pyridinyl)cyclohexane carboxenide trihydrochloride (100 μM) abolished the effect of M100907 on the CPP-induced 5-HT release. The data show that blockade of 5-HT2A receptors is not sufficient to suppress the CPP-induced rise of extracellular GLU and 5-HT and suggest that M100907 suppresses GLU release induced by CPP by enhancing the action of endogenous 5-HT on 5-HT2C receptors.  相似文献   

2.
Central serotonin2C receptors (5-HT(2C)Rs) control the mesoaccumbens dopamine (DA) pathway. This control involves the constitutive activity (CA) of 5-HT(2C)Rs, and is thought to engage regionally distinct populations of 5-HT(2C)Rs, leading to opposite functional effects. Here, using in vivo microdialysis in halothane-anesthetized rats, we investigated the relative contribution of ventral tegmental area (VTA) and nucleus accumbens shell (NAc) 5-HT(2C)Rs in the phasic/tonic control of accumbal DA release, to specifically identify the nature (inhibition/excitation) of the control, and the role of the 5-HT(2C)R CA. Intra-VTA injections of the selective 5-HT(2C)R antagonists SB 242084 and/or SB 243213 (0.1-0.5 microg/0.2 microL) prevented the decrease in accumbal DA outflow induced by the 5-HT(2C)R agonist Ro 60-0175 (3 mg/kg, i.p), but did not affect the increase in DA outflow induced by the 5-HT(2C)R inverse agonist SB 206553 (5 mg/kg, i.p). Intra-NAc infusions of SB 242084 (0.1-1 microM) blocked Ro 60-0175- and SB 206553-induced changes of DA outflow. Intra-NAc, but not intra-VTA administration of SB 206553 increased basal DA outflow. These findings demonstrate that both VTA and NAc 5-HT(2C)Rs participate in the inhibitory control exerted by 5-HT(2C)Rs on accumbal DA release, and that the NAc shell may represent a primary action site for the CA of 5-HT(2C)Rs.  相似文献   

3.
This study investigates, using in vivo microdialysis, the role of serotonin2A (5-HT2A) and 5-HT(2B/2C) receptors in the effect of dorsal raphe nucleus (DRN) electrical stimulation on dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) extracellular levels monitored in the nucleus accumbens (NAC) and the striatum of halothane-anesthetized rats. Following DRN stimulation (300 microA, 1 ms, 20 Hz, 15 min) DA release was enhanced in the NAC and reduced in the striatum. The 5-HT2A antagonist SR 46349B (0.5 mg/kg) and the mixed 5-HT(2A/2B/2C) antagonist ritanserin (0.63 mg/kg) significantly reduced the effect of DRN stimulation on DA release in the NAC but not in the striatum. DA responses to DRN stimulation were not affected by the 5-HT(2B/2C) antagonist SB 206553 (5 mg/kg) in either region. None of these compounds was able to modify the enhancement of DOPAC and 5-HIAA outflow induced by DRN stimulation in either the NAC or the striatum. Finally, in both brain regions basal DA release was significantly increased only by SB 206553. These results indicate that 5-HT2A but not 5-HT(2B/2C) receptors participate in the facilitatory control exerted by endogenous 5-HT on accumbal DA release. Conversely, 5-HT(2B/2C) receptors tonically inhibit basal DA release in both brain regions.  相似文献   

4.
This study investigated, using in vivo microdialysis in the striatum of freely moving rats, the role of striatal serotonin2A (5-HT2A) and 5-HT2C receptor subtypes in the modulation of dopamine (DA) and 3, 4-dihydroxyphenylacetic acid (DOPAC) outflow, both in basal conditions and under activation induced by subcutaneous administration of 0.01 mg/kg haloperidol. The different 5-HT2 agents used were applied intrastriatally at a 1 microM concentration through the microdialysis probe. Basal DA efflux was enhanced (27%) by the 5-HT2A/2B/2C agonist 1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane (DOI) and reduced (-30%) by the 5-HT2B/2C antagonist SB 206553. It was unaffected by infusion of the 5-HT2A antagonist SR 46349B. The effect of DOI was abolished by SB 206553 but not modified by SR 46349B. Haloperidol-stimulated DA efflux (65-70%) was reduced by both SR 46349B (-32%) and the 5-HT2A/2B/2C antagonist ritanserin (-30%) but not affected by SB 206553. Conversely, the effect of haloperidol was potentiated (22%) when DOI was coperfused with SB 206553. Also, haloperidol-stimulated DOPAC outflow (40-45%) was reduced (-20%) by SR 46349B and potentiated (25%) by the combination of SB 206553 with DOI. These results indicate that striatal 5-HT2A receptors, probably through activation of DA synthesis, positively modulate DA outflow only under activated conditions. In contrast, striatal 5-HT2C receptors exert a facilitatory control on basal DA efflux, which appears to be both tonic and phasic.  相似文献   

5.
Abstract: Efficacies of the 5-hydroxytryptamine (serotonin) 5-HT3 receptor (5-HT3R) agonists 2-methyl-5-HT, dopamine, and m -chlorophenylbiguanide on 5-HT3R native to N1E-115 cells and on homopentameric 5-HT3R expressed in Xenopus oocytes were determined relative to that of 5-HT. Efficacies of 2-methyl-5-HT and dopamine on 5-HT3R native to differentiated N1E-115 cells are high (54 and 36%) as compared with their efficacies on homopentameric 5-HT3R-AL and 5-HT3R-As receptors expressed in oocytes (4–8%). m -Chlorophenylbiguanide does not distinguish between 5-HT3R in N1E-115 cells and in oocytes. The distinct pharmacological profile of 5-HT3R native to differentiated N1E-115 cells is conserved when poly(A)+ mRNA from these cells is expressed in oocytes. The results indicate that, apart from the known 5-HT3R subunits, N1E-115 cells express additional proteins involved in 5-HT3R function.  相似文献   

6.
The effects of acute and repeated nicotine administration on the extracellular levels of dopamine (DA) in the corpus striatum and the nucleus accumbens were studied in conscious, freely moving rats by in vivo microdialysis. Acute intraperitoneal (i.p.) injection of nicotine (1 mg/kg) increased DA outflow both in the corpus striatum and the nucleus accumbens. Repeated daily injection of nicotine (1 mg/kg, i.p.) for 10 consecutive days caused a significant increase in basal DA outflow both in the corpus striatum and the nucleus accumbens. Acute challenge with nicotine (1 mg/kg, i.p.) in animals treated repeatedly with this drug enhanced DA extracellular levels in both brain areas. However, the effect of nicotine was potentiated in the nucleus accumbens, but not in the corpus striatum. To test the hypothesis that stimulation of 5-HT (5-hydroxytryptamine, serotonin)(2C) receptors could affect nicotine-induced DA release, the selective 5-HT(2C) receptor agonist RO 60-0175 was used. Pretreatment with RO 60-0175 (1 and 3 mg/kg, i.p.) dose-dependently prevented the enhancement in DA release elicited by acute nicotine in the corpus striatum, but was devoid of any significant effect in the nucleus accumbens. RO 60-0175 (1 and 3 mg/kg, i.p.) dose-dependently reduced the stimulatory effect on striatal and accumbal DA release induced by an acute challenge with nicotine (1 mg/kg, i.p.) in rats treated repeatedly with this alkaloid. However, only the effect of 3 mg/kg RO 60-0175 reached statistical significance. The inhibitory effect of RO 60-0175 on DA release induced by nicotine in the corpus striatum and the nucleus accumbens was completely prevented by SB 242084 (0.5 mg/kg, i.p.) and SB 243213 (0.5 mg/kg, i.p.), two selective antagonists of 5-HT(2C) receptors. It is concluded that selective activation of 5-HT(2C) receptors can block the stimulatory action of nicotine on central DA function, an effect that might be relevant for the reported antiaddictive properties of RO 60-0175.  相似文献   

7.
Adenosine A2A, cannabinoid CB1 and metabotropic glutamate 5 (mGlu5) receptors are all highly expressed in the striatum. The aim of the present work was to investigate whether, and by which mechanisms, the above receptors interact in the regulation of striatal synaptic transmission. By extracellular field potentials (FPs) recordings in corticostriatal slices, we demonstrated that the ability of the selective type 1 cannabinoid receptor (CB1R) agonist WIN55,212-2 to depress synaptic transmission was prevented by the pharmacological blockade or the genetic inactivation of A2ARs. Such a permissive effect of A2ARs towards CB1Rs does not seem to occur pre-synaptically as the ability of WIN55,212-2 to increase the R2/R1 ratio under a protocol of paired-pulse stimulation was not modified by ZM241385. Furthermore, the effects of WIN55,212-2 were reduced in slices from mice lacking post-synaptic striatal A2ARs. The selective mGlu5R agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) potentiated the synaptic effects of WIN55,212-2, and such a potentiation was abolished by A2AR blockade. Unlike the synaptic effects, the ability of WIN55,212-2 to prevent NMDA-induced toxicity was not influenced by ZM241385. Altogether, these results show that the state of activation of A2ARs regulates the synaptic effects of CB1Rs and that A2ARs may control CB1 effects also indirectly, namely through mGlu5Rs.  相似文献   

8.
Abstract: Serotonin (5-HT) applied at 1, 3, and 10 µ M into the striatum of halothane-anesthetized rats by in vivo microdialysis enhanced dopamine (DA) outflow up to 173, 283, and 584% of baseline values, respectively. The 5-HT effect was partially reduced by 1 or 10 µ M GR 125,487, a 5-HT4 antagonist, and by 100 µ M DAU 6285, a 5-HT3/4 antagonist, whereas the 5-HT1/2/6 antagonist methiothepin (50 µ M ) was ineffective. In the presence of tetrodotoxin the effect of 1 µ M 5-HT was not affected by 5-HT4 antagonists. In addition, tetrodotoxin abolished the increase in DA release induced by the 5-HT4 agonist ( S )-zacopride (100 µ M ). In striatal synaptosomes, 1 and 10 µ M 5-HT increased the outflow of newly synthesized [3H]DA up to 163 and 635% of control values, respectively. The 5-HT4 agonists BIMU 8 and ( S )-zacopride (1 and 10 µ M ) failed to modify [3H]DA outflow, whereas 5-methoxytryptamine (5-MeOT) at 10 µ M increased it (62%). In prelabeled [3H]DA synaptosomes, 1 µ M 5-HT, but not ( S )-zacopride (1 and 10 µ M ), increased [3H]DA outflow. DAU 6285 (10 µ M ) failed to modify the enhancement of newly synthesized [3H]DA outflow induced by 5-MeOT or 5-HT (1 µ M ), whereas the effect of 5-HT was reduced to the same extent by the DA reuptake inhibitor nomifensine (1 µ M ) alone or in the presence of DAU 6285. These results show that striatal 5-HT4 receptors are involved in the 5-HT-induced enhancement of striatal DA release in vivo and that they are not located on striatal DA terminals.  相似文献   

9.
Abstract: The serotonin (5-HT) releaser d -fenfluramine and its active metabolite d -norfenfluramine, or the 5-HT-uptake inhibitor citalopram, by increasing synaptic 5-HT availability, facilitated in vivo release of acetylcholine (ACh) from dorsal hippocampi of freely moving rats as determined by the microdialysis technique. The effects of d -norfenfluramine (7.5 mg/kg i.p.) and citalopram (10 μ M , applied by reverse dialysis) were prevented by a 14-day chemical lesion of the raphe nuclei, suggesting mediation by the 5-HT system in the cholinergic action of the drugs. The increase in extracellular ACh content induced by d -norfenfluramine (5 mg/kg i.p.) was antagonized by the 5-HT3 receptor antagonists tropisetron (0.5 mg/kg i.p.) and DAU 6215 (60 μg/kg i.p.), but not by the mixed 5-HT1 and 5-HT2 receptor antagonist metergoline (2 mg/kg s.c.). In accordance with an involvement of the 5-HT3 receptor in the ACh facilitation induced by d-norfenfluramine is the finding that the selective 5-HT3 receptor agonist 2-methyl-serotonin (250 μg i.c.v., or 10 μ M applied by reverse dialysis) raised ACh release. The effect of the intracerebroventricular drug was prevented by the 5-HT3 antagonists DAU 6215 (60 μg/kg i.p.) and ondansetron (60 μg/kg s.c.). These antagonists by themselves did not modify the basal ACh release, indicating that 5-HT does not tonically activate the 5-HT3 receptors involved. In conclusion, the overall regulatory control exerted by 5-HT in vivo is to facilitate hippocampal ACh release. This is mediated by 5-HT3 receptors probably located in the dorsal hippocampi.  相似文献   

10.
11.
Abstract: The rat 5-hydroxytryptamine2C (5-HT2C) receptor was identified as N -glycosylated polypeptide of 60-kDa apparent molecular mass using antibodies against its putative third and fourth (C-terminal) cytoplasmic domain. To show that the polypeptides detected on western blots and by immunoprecipitation represent the 5-HT2C receptor, binding studies of the 5-HT2C ligand [3H]-mesulergine to immunoprecipitates from extracts of pig choroid plexus were performed. We demonstrate the presence of a signal sequence that was cleaved off during membrane insertion resulting in a 38-kDa polypeptide. During further maturation, the receptor was N -glycosylated at two sites via a 48-kDa intermediate. This intermediate was far more abundant in choroid plexus than in hippocampus and may represent an intracellular receptor reserve. After transfection of 5-HT2C cDNAs into cultured cells, polypeptides were observed that differed from the ones found in vivo due to abnormal N -glycosylation and possibly other alterations depending on the system used. Thus the 5-HT2C receptor expressed in cell lines may also differ in function from the receptor in its native tissue.  相似文献   

12.
Abstract: Previous studies have shown that 5-hydroxytryptamine (5-HT) can potently inhibit glutamatergic transmission in rat cerebellum through the activation of multiple 5-HT receptors. The aim of this study was to subclassify the 5-HT2 receptor mediating inhibition of the cyclic GMP response elicited by N -methyl- d -aspartate in adult rat cerebellar slices. Seven receptor antagonists, endowed with relative selectivities for the 5-HT2A, 5-HT2B, and 5-HT2C subtypes, differentially affected the inhibition by (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane of the cyclic GMP response, suggesting that the receptor involved belongs to the 5-HT2C subtype.  相似文献   

13.
Brain-derived neurotrophic factor (BDNF), a member of neurotrophin family, enhances synaptic transmission and regulates neuronal proliferation and survival. Both BDNF and its tyrosine kinase receptors (TrkB) are highly expressed in the hippocampus, where an interaction with adenosine A2A receptors (A2ARs) has been recently reported. In the present paper, we evaluated the role of A2ARs in mediating functional effects of BDNF in hippocampus using A2AR knock-out (KO) mice. In hippocampal slices from WT mice, application of BDNF (10 ng/mL) increased the slope of excitatory post-synaptic field potentials (fEPSPs), an index of synaptic facilitation. This increase of fEPSP slope was abolished by the selective A2A antagonist ZM 241385. Similarly, genetic deletion of the A2ARs abolished BDNF-induced increase of the fEPSP slope in slices from A2AR KO mice The reduced functional ability of BDNF in A2AR KO mice was correlated with the reduction in hippocampal BDNF levels. In agreement, the pharmacological blockade of A2Rs by systemic ZM 241385 significantly reduced BDNF levels in the hippocampus of normal mice. These results indicate that the tonic activation of A2ARs is required for BDNF-induced potentiation of synaptic transmission and for sustaining a normal BDNF tone in the hippocampus.  相似文献   

14.
15.
Abstract: We have assessed the ability of the serotonergic antagonist mianserin to modulate the number and functional activity of human 5-hydroxytryptamine2A (5-HT2A) and 5-HT2C receptors stably expressed in the human neuroblastoma cell line SH-SY5Y. Incubation of cells expressing the 5-HT2A receptor with mianserin (100 n M ) for 24 h caused a significant decrease (48%) in the binding capacity of [3H]ketanserin. This receptor down-regulation was associated with a corresponding decrease in the maximal production of inositol phosphates induced by 5-HT but not by carbachol. Exposure of cells expressing the 5-HT2C receptor to mianserin (100 n M ) for 72 h but not for 24 h similarly resulted in a significant reduction (44%) in [3H]mesulergine binding. Corresponding analysis of inositol phosphate production by 5-HT at the 5-HT2C receptor after incubation with mianserin showed no change in maximal response after 24 h. No change in the binding capacity of either radioligand was seen after incubation with mianserin for 1 h. A decrease in the binding affinity of both radioligands was also observed after mianserin treatment, but this decrease was similar after 1 h of incubation to that seen after 24 or 72 h, and was probably due to the retention of mianserin within the tissue. We conclude that antagonist down-regulation is evident at human 5-HT2A and 5-HT2C receptors stably expressed in a human neuroblastoma cell line and is probably mediated by a direct action of mianserin at the receptor.  相似文献   

16.
Abstract: In this study, we examined the influence of blockade of serotonin (5-HT)1A and/or 5-HT1B autoreceptors on the fluoxetine-induced increase in dialysate levels of 5-HT as compared with dopamine (DA) and noradrenaline (NAD) in single samples of the frontal cortex (FCx) of freely moving rats. Fluoxetine (10.0 mg/kg, s.c.) elicited a twofold increase in dialysate levels of 5-HT relative to baseline values. The selective 5-HT1A antagonist WAY 100,635 (0.16 mg/kg, s.c.) did not influence 5-HT release alone but doubled the influence of fluoxetine on basal levels. Similarly, the selective 5-HT1B/1D antagonist GR 127,935 (2.5 mg/kg, s.c.) did not alter basal 5-HT levels alone and doubled the fluoxetine-induced increase in 5-HT levels. Combined administration of WAY 100,635 and GR 127,935 elicited an (at least) additive rise in the fluoxetine-induced increase in 5-HT levels to eightfold basal values, without modifying resting 5-HT levels. These changes were selective for 5-HT inasmuch as the parallel (twofold) increase in DA and NAD levels provoked by fluoxetine was not potentiated. The present data demonstrate that combined blockade of 5-HT1A and 5-HT1B autoreceptors markedly and selectively potentiates the fluoxetine-induced increase in dialysate levels of 5-HT versus DA and NAD in the FCx of freely moving rats. These observations suggest that 5-HT1A/1B antagonism may represent a novel strategy for the improvement in the therapeutic profile of 5-HT reuptake inhibitor antidepressant agents and that 5-HT may be primarily involved in such interactions.  相似文献   

17.
The mode of action of antidepressant drugs may be related to mechanisms of monoamines receptor adaptation, including serotonin 5-HT4 receptor subtypes. Here we investigated the effects of repeated treatment with the selective serotonin reuptake inhibitor fluoxetine for 21 days (5 and 10 mg/kg, p.o., once daily) on the sensitivity of 5-HT4 receptors by using receptor autoradiography, adenylate cyclase assays and extracellular recording techniques in rat brain. Fluoxetine treatment decreased the density of 5-HT4 receptor binding in the CA1 field of hippocampus as well as in several areas of the striatum over the doses of 5–10 mg/kg. In a similar way, we found a significant lower response to zacopride-stimulated adenylate cyclase activity in the fluoxetine 10 mg/kg/day treated group. Furthermore, post-synaptic 5-HT4 receptor activity in hippocampus-measured as the excitatory action of zacopride in the pyramidal cells of CA1 evoked by Schaffer collateral stimulation was attenuated in rats treated with both doses of fluoxetine. Taken together, these results support the concept that a net decrease in the signalization pathway of 5-HT4 receptors occurs after chronic selective serotonin reuptake inhibitor treatment: this effect may underlie the therapeutic efficacy of these drugs.  相似文献   

18.
Abstract: In the current study we examined the effects of coadministration of a serotonin 5-HT1A antagonist, (±)-1-(1 H -indol-4-yloxy)-3-(cyclohexylamino)-2-propanol maleate (LY 206130), and a dual 5-HT and norepinephrine (NE) uptake inhibitor, duloxetine, on extracellular levels of NE, 5-HT, dopamine (DA), 5-hydroxyindoleacetic acid, and 3,4-dihydroxyphenylacetic acid in rat hypothalamus microdialysates. LY 206130 (3.0 mg/kg, s.c.) alone significantly increased NE and DA levels by 60 and 34%, respectively, without affecting 5-HT levels. Duloxetine administration at 4.0 mg/kg, i.p. alone produced no significant changes in levels of 5-HT, NE, or DA. In contrast, when LY 206130 and duloxetine were coadministered at 3.0 mg/kg, s.c. and 4.0 mg/kg, i.p., respectively, 5-HT, NE, and DA levels increased to 5.7-, 4.8-, and threefold over their respective basal levels. These data demonstrate that antagonism of somatodendritic 5-HT1A autoreceptors and concomitant inhibition of 5-HT and NE uptake with duloxetine may promote synergistic increases in levels of extracellular 5-HT, NE, and DA in hypothalamus of conscious, freely moving rats.  相似文献   

19.
Interaction between brain endocannabinoid (EC) and serotonin (5-HT) systems was investigated by examining 5-HT-dependent behavioral and biochemical responses in CB1 receptor knockout mice. CB1 knockout animals exhibited a significant reduction in the induction of head twitches and paw tremor by the 5-HT2A/C receptor selective agonist (±) DOI, as well as a reduced hypothermic response following administration of the 5-HT1A receptor agonist (±)-8-OH-DPAT. Additionally, exposure to the tail suspension test induced enhanced despair responses in CB1 knockout mice. However, the tricyclic antidepressant imipramine and the 5-HT selective reuptake inhibitor fluoxetine induced similar decreases in the time of immobility in the tail suspension test in CB1 receptor knockout and wild-type mice. No differences were found between both genotypes with regard to 5-HT2A receptor and 5-HT1A receptors levels, measured by autoradiography in different brain areas. However, a significant decrease in the ability of both, the 5-HT1A receptor agonist (±)-8-OH-DPAT and the 5-HT2A/C receptor agonist (−)DOI, to stimulate [35S]GTPγS binding was detected in the hippocampal CA1 area and fronto-parietal cortex of CB1 receptor knockout mice, respectively. This study provides evidence that CB1 receptors are involved in the regulation of serotonergic responses mediated by 5-HT2A/C and 5-HT1A receptors, and suggests that a reduced coupling of 5-HT1A and 5-HT2A receptors to G proteins might be involved in these effects.  相似文献   

20.
We previously reported that serotonin (5-HT) increased glial cell line-derived neurotrophic factor (GDNF) release in a 5-HT2 receptor (5-HT2R) and mitogen-activated protein kinase kinase/extracellular signal-related kinase (MEK/ERK)-dependent manner in rat C6 glioma cells (C6 cells), a model of astrocytes. We herein found that 5-HT-induced rapid ERK phosphorylation was blocked by 5-HT2R antagonists in C6 cells. We therefore examined 5-HT-induced ERK phosphorylation to reveal the mechanism of 5-HT-induced GDNF mRNA expression. As 5-HT-induced ERK phosphorylation was blocked by inhibitors for Gαq/11 and fibroblast growth factor receptor (FGFR), but not for second messengers downstream of Gαq/11, 5-HT2R-mediated FGFR transactivation was suggested to be involved in the ERK phosphorylation. Although FGFR1 and 2 were functionally expressed in C6 cells, 5-HT selectively phosphorylated FGFR2. Indeed, small interfering RNA for FGFR2, but not for FGFR1, blocked 5-HT-induced ERK phosphorylation. As Src family tyrosine kinase inhibitors and microtubule depolymerizing agents blocked 5-HT-induced FGFR2 phosphorylation, Src family tyrosine kinase and stabilized microtubules were suggested to act upstream of FGFR2. Finally, 5-HT-induced GDNF mRNA expression was also inhibited by the blockade of 5-HT2R, FGFR, and Src family tyrosine kinase. In conclusion, our findings suggest that 5-HT induces GDNF mRNA expression via 5-HT2R-mediated FGFR2 transactivation in C6 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号