首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Intracellular copper routing in Enterococcus hirae is accomplished by the CopZ copper chaperone. Under copper stress, CopZ donates Cu+ to the CopY repressor, thereby releasing its bound zinc and abolishing repressor–DNA interaction. This in turn induces the expression of the cop operon, which encodes CopY and CopZ, in addition to two copper ATPases, CopA and CopB. To gain further insight into the function of CopZ, the yeast two-hybrid system was used to screen for proteins interacting with the copper chaperone. This led to the identification of Gls24, a member of a family of stress response proteins. Gls24 is part of an operon containing eight genes. The operon was induced by a range of stress conditions, but most notably by copper. Gls24 was overexpressed and purified, and was shown by surface plasmon resonance analysis to also interact with CopZ in vitro . Circular dichroism measurements revealed that Gls24 is partially unstructured. The current findings establish a novel link between Gls24 and copper homeostasis.  相似文献   

3.
4.
5.
The resistance to detergents and detergent-induced tolerance of a gastrointestinal organism, Enterococcus faecalis ATCC 19433, were examined. The most remarkable observation was the rapid response of cells in contact with bile salts and sodium dodecyl sulfate (SDS). The killing by high concentrations of detergents was nearly instantaneous. A 5-s adaptation with moderate sublethal concentrations of bile salts or SDS (0.08 or 0.01%, respectively) was sufficient to induce significant adaptation against homologous lethal conditions (0.3% bile salts or 0.017% SDS). However, resistance to a subsequent lethal challenge progressively increased further to a maximum reached after 30 min of adaptation. Furthermore, extremely strong cross-resistances were observed with bile salts- and SDS-adapted cells. However, no relationship seems to exist between levels of tolerance and de novo-synthesized proteins, since blockage of protein synthesis during adaptation had no effect on induction of resistance to bile salts and SDS. We conclude that this induced tolerance to detergent stress is independent of protein synthesis. Nevertheless, the stress-induced protein patterns of E. faecalis ATCC 19433 showed significant modifications. The rates of synthesis of 45 and 34 proteins were enhanced after treatments with bile salts and SDS, respectively. In spite of the overlap of 12 polypeptides, the protein profiles induced by the two detergents were different, suggesting that these detergents trigger different responses in E. faecalis. Therefore, bile salts cannot be substituted for SDS in biochemical detergent shock experiments with bacteria.  相似文献   

6.
Abstract Stress tolerance and cross-protection in Enterococcus faecalis ATCC19433 were examined after exposure to bile salts, acid or heat shock. Bile salts and heat adapted cells demonstrated induced homologous tolerance and cross-resistance. No cross-protection of heat adapted cells against acid stress is observed and pretreatment with bile salts even sensitized the cells to this challenge. Whole-cell protein extract analysis revealed that each treatment induced a battery of stress proteins. Some of these polypeptides are induced by more than one treatment. The greatest overlap is observed between bile salts and heat treatments. Eighteen stress proteins, including DnaK and GroEL, are common between these stresses.  相似文献   

7.
8.
An approach to broaden the product range of the ethanologenic, gram-negative bacterium Zymomonas mobilis by means of genetic engineering is presented. Gene alaD for L-alanine dehydrogenase (EC 1.4.1.1.) from Bacillus sphaericus was cloned and introduced into Z. mobilis. Under the control of the strong promoter of the pyruvate decarboxylase (pdc) gene, the enzyme was expressed up to a specific activity of nearly 1 mu mol . min -1 . mg of protein -1 in recombinant cells. As a results of this high L-alanine dehydrogenase activity, growing cells excreted up to 10 mmol of alanine per 280 mmol of glucose utilized into a mineral salts medium. By the addition of 85 mM NH4+ to the medium, growth of the recombinant cells stopped, and up to 41 mmol alanine was secreted. As alanine dehydrogenase competed with pyruvate decarboxylase (PDC) (EC 4.1.1.1.) for the same substrate (pyruvate), PDC activity was reduced by starvation for the essential PDC cofactor thiamine PPi. A thiamine auxotrophy mutant of Z. mobilis which carried the alaD gene was starved for 40 h in glucose-supplemented mineral salts medium and then shifted to mineral salts medium with 85 mM NH4+ and 280 mmol of glucose. The recombinants excreted up to 84 mmol of alanine (7.5 g/liter) over 25 h. Alanine excretion proceeded at an initial velocity of 238 nmol . min-1 . mg [dry weight]-1. Despite this high activity, the excretion rate seemed to be a limiting factor, as the intracellular concentration of alanine was as high as 260 mM at the beginning of the excretion phase and decreased to 80 to 90 mM over 24 h.  相似文献   

9.
An approach to broaden the product range of the ethanologenic, gram-negative bacterium Zymomonas mobilis by means of genetic engineering is presented. Gene alaD for L-alanine dehydrogenase (EC 1.4.1.1.) from Bacillus sphaericus was cloned and introduced into Z. mobilis. Under the control of the strong promoter of the pyruvate decarboxylase (pdc) gene, the enzyme was expressed up to a specific activity of nearly 1 mu mol . min -1 . mg of protein -1 in recombinant cells. As a results of this high L-alanine dehydrogenase activity, growing cells excreted up to 10 mmol of alanine per 280 mmol of glucose utilized into a mineral salts medium. By the addition of 85 mM NH4+ to the medium, growth of the recombinant cells stopped, and up to 41 mmol alanine was secreted. As alanine dehydrogenase competed with pyruvate decarboxylase (PDC) (EC 4.1.1.1.) for the same substrate (pyruvate), PDC activity was reduced by starvation for the essential PDC cofactor thiamine PPi. A thiamine auxotrophy mutant of Z. mobilis which carried the alaD gene was starved for 40 h in glucose-supplemented mineral salts medium and then shifted to mineral salts medium with 85 mM NH4+ and 280 mmol of glucose. The recombinants excreted up to 84 mmol of alanine (7.5 g/liter) over 25 h. Alanine excretion proceeded at an initial velocity of 238 nmol . min-1 . mg [dry weight]-1. Despite this high activity, the excretion rate seemed to be a limiting factor, as the intracellular concentration of alanine was as high as 260 mM at the beginning of the excretion phase and decreased to 80 to 90 mM over 24 h.  相似文献   

10.
Abstract era is an essential gene in E. coli , encoding a GTP-binding protein of unknown function. In the present work, a mutant designated Era-dE, for deletion of effector region is described. This is the first and only known era allele that confers a dominant-negative phenotype. Phenotypic analysis of the mutant showed that overproduction of Era-dE caused a dominant inhibition of growth when TCA cycle intermediates such as succinate, pyruvate, malate, α-ketoglutarate, and fumarate were provided as the sole carbon source. Examination of the macromolecular composition of cells overexpressing the mutant showed protein, DNA, and ATP levels expected for cells growing at slow rates. The response of cells expressing Era-dE to different stress conditions was studied by examining the rates of synthesis of stress-inducible proteins. Interestingly, when subjected to succinate starvation, cells expressing Era-dE showed a defective carbon starvation response, whereas response to glucose starvation was similar to that seen in control cells. Taken together with previous results, these studies indicate that Era is perhaps involved in multiple cellular processes and Era-dE disrupts more than one of these functions. Furthermore, it appears that some possible functions of Era include regulation of the TCA cycle and response to carbon starvation.  相似文献   

11.
12.
13.
14.
Using two-dimensional gel electrophoresis and N-terminal amino acid sequencing analysis, we demonstrate that a mutant of the global regulatory protein ArcA fails to decrease the synthesis of the TCA cycle enzymes malate dehydrogenase, isocitrate dehydrogenase, lipoamide dehydrogenase E3 and succinate dehydrogenase in response to stasis, while the increased production of the glycolysis enzymes phosphoglycerate mutase and pyruvate kinase is unaffected. Microcalorimetric and respiratory measurements show that the continued production of TCA cycle enzymes in the (delta)arcA mutant is manifested as an elevated rate of respiration and total metabolic activity during starvation. The (delta)arcA mutant is severely impaired in surviving prolonged periods of exogenous carbon starvation, a phenotype that can be alleviated by overproducing the superoxide dismutase SodA. In addition, flow cytometry demonstrates that starving (delta)arcA mutant cells, in contrast to wild-type cells, fail to perform reductive division, remain large and contain multiple chromosomal copies. We suggest that the ArcA-dependent reduced production of electron donors and the decreased level and activity of the aerobic respiratory apparatus during growth arrest is an integral part of a defense system aimed at avoiding the damaging effects of oxygen radicals and controlling the rate of utilization of endogenous reserves.  相似文献   

15.
A complex of four proteins was previously isolated from Staphylococcus aureus. The complex had a strong interaction with membrane bound ribosomes, which suggested that it may be involved in protein secretion. However, the complex was identified as pyruvate dehydrogenase (PDH), which disproved the direct role of the complex in protein secretion. Here we report the nucleotide sequence of the last gene of the S. aureus pyruvate dehydrogenase operon, pdhD, which encodes lipoamide dehydrogenase (LPD). The pdhD gene encodes a protein of 468 amino acids, with a molecular mass of 49.5 kDa. The protein is closely related to other lipoamide dehydrogenases from bacteria and eukaryotes. The possible role of membrane bound lipoamide dehydrogenase is briefly discussed.  相似文献   

16.
Tolerance to digestive stresses is one of the main factors limiting the use of microorganisms as live probiotic agents. Susceptibility to bile salts and tolerance acquisition in the probiotic strain Propionibacterium freudenreichii SI41 were characterized. We showed that pretreatment with a moderate concentration of bile salts (0.2 g/liter) greatly increased its survival during a subsequent lethal challenge (1.0 g/liter, 60 s). Bile salts challenge led to drastic morphological changes, consistent with intracellular material leakage, for nonadapted cells but not for preexposed ones. Moreover, the physiological state of the cells during lethal treatment played an important role in the response to bile salts, as stationary-phase bacteria appeared much less sensitive than exponentially growing cells. Either thermal or detergent pretreatment conferred significantly increased protection toward bile salts challenge. In contrast, some other heterologous pretreatments (hypothermic and hyperosmotic) had no effect on tolerance to bile salts, while acid pretreatment even might have sensitized the cells. Two-dimensional electrophoresis experiments revealed that at least 24 proteins were induced during bile salts adaptation. Identification of these polypeptides suggested that the bile salts stress response involves signal sensing and transduction, a general stress response (also triggered by thermal denaturation, oxidative toxicity, and DNA damage), and an alternative sigma factor. Taken together, our results provide new insights into the tolerance of P. freudenreichii to bile salts, which must be taken into consideration for the use of probiotic strains and the improvement of technological processes.  相似文献   

17.
Analysis of the culture supernatant exoproteins produced by two PFGE clusters of high-level gentamicin and ciprofloxacin-resistant clinical isolates of Enterococcus faecalis from the UK and Ireland revealed two distinct protein profiles. This grouping distinguished OG1RF and GelE metalloprotease-expressing isolates from JH2-2 and other GelE-negative isolates. The integrity of the fsrABDC operon was found to determine the exoproteome composition, since an fsrB mutant of strain OG1RF appeared very similar to that of strain JH2-2, and complementation of the latter with the fsrABDC operon produced an OG1RF-like exoproteome. The proteins present in the supernatant fraction of OG1RF were separated using 2D gels and identified by mass spectrometry and comprised many mass and pI variants of the GelE and SprE proteases. In addition cell wall synthesis and cell division proteins were identified. An OG1RF fsrB mutant had a distinct exoprotein fraction with an absence of the Fsr-regulated proteases and was characterised by general stress and glycolytic proteins. The exoproteome of the OG1RF fsrB mutant resembles that of a divIVA mutant of E. faecalis, suggestive of a stress phenotype.  相似文献   

18.
19.
Tolerance to digestive stresses is one of the main factors limiting the use of microorganisms as live probiotic agents. Susceptibility to bile salts and tolerance acquisition in the probiotic strain Propionibacterium freudenreichii SI41 were characterized. We showed that pretreatment with a moderate concentration of bile salts (0.2 g/liter) greatly increased its survival during a subsequent lethal challenge (1.0 g/liter, 60 s). Bile salts challenge led to drastic morphological changes, consistent with intracellular material leakage, for nonadapted cells but not for preexposed ones. Moreover, the physiological state of the cells during lethal treatment played an important role in the response to bile salts, as stationary-phase bacteria appeared much less sensitive than exponentially growing cells. Either thermal or detergent pretreatment conferred significantly increased protection toward bile salts challenge. In contrast, some other heterologous pretreatments (hypothermic and hyperosmotic) had no effect on tolerance to bile salts, while acid pretreatment even might have sensitized the cells. Two-dimensional electrophoresis experiments revealed that at least 24 proteins were induced during bile salts adaptation. Identification of these polypeptides suggested that the bile salts stress response involves signal sensing and transduction, a general stress response (also triggered by thermal denaturation, oxidative toxicity, and DNA damage), and an alternative sigma factor. Taken together, our results provide new insights into the tolerance of P. freudenreichii to bile salts, which must be taken into consideration for the use of probiotic strains and the improvement of technological processes.  相似文献   

20.
The protein concentration in bile from several species is reported. The changes in output of protein, bile salts and several enzymes have been followed in rat bile over a 48 h cannulation period. Bile-salt concentration dropped rapidly owing to interruption of the enterohepatic circulation but the output of protein, lysosomal enzymes [acid phosphatase (EC 3.1.3.2) and beta-D-glucuronidase (EC 3.2.1.31)] and plasma-membrane enzymes [5'-nucleotidase (EC 3.1.3.5) and phosphodiesterase I (EC 3.1.4.1)] was maintained. Liver cell damage, monitored by output of lactate dehydrogenase, was very low throughout. Protein, lysosomal enzymes and plasma-membrane enzymes showed different patterns of output with time, but all showed a net increase between 12 and 24 h. The output of lysosomal and plasma-membrane enzymes was between 1 and 5% of the total liver complement over the first 24 h; if inhibition by biliary components is taken into account the output of some of these enzymes, particularly acid phosphatase, may be greater. Ultracentrifugation of bile showed that as the concentration of bile salts decreases the proportion of plasma-membrane enzymes in a sedimentable form increases. The results are discussed in relation to other studies of biliary proteins and to studies of the perturbation of membranes and cells with bile salts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号