共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Chromosomal regions can adopt stable and heritable alternative states resulting in bistable gene expression without changes to the DNA sequence. Such epigenetic control is often associated with alternative covalent modifications of histones. The stability and heritability of the states are thought to involve positive feedback where modified nucleosomes recruit enzymes that similarly modify nearby nucleosomes. We developed a simplified stochastic model for dynamic nucleosome modification based on the silent mating-type region of the yeast Schizosaccharomyces pombe. We show that the mechanism can give strong bistability that is resistant both to high noise due to random gain or loss of nucleosome modifications and to random partitioning upon DNA replication. However, robust bistability required: (1) cooperativity, the activity of more than one modified nucleosome, in the modification reactions and (2) that nucleosomes occasionally stimulate modification beyond their neighbor nucleosomes, arguing against a simple continuous spreading of nucleosome modification. 相似文献
3.
4.
Austin L. Hughes Meredith Yeager 《BioEssays : news and reviews in molecular, cellular and developmental biology》1997,19(9):777-786
Adaptive immunity is unique to the vertebrates, and the molecules involved (including immunoglobulins, T cell receptors and the major histocompatibility complex molecules) seem to have diversified very rapidly early in vertebrate history. Reconstruction of gene phylogenies has yielded insights into the evolutionary origin of a number of molecular systems, including the complement system and the major histocompatibility complex (MHC). These analyses have indicated that the C5 component of complement arose by gene duplication prior to the divergence of C3 and C4, which suggests that the alternative complement pathway was the first to evolve. In the case of the MHC, phylogenetic analysis supports the hypothesis that MHC class II molecules evolved before class I molecules. The fact that the MHC-linked proteasome components that specifically produce peptides for presentation by class I MHC appear to have originated before the separation of jawed and jawless vertebrates suggests that the MHC itself may have been present at this time. Immmune system gene families have evolved by gene duplication, interlocus recombination and (in some cases) positive Darwinian selection favoring diversity at the amino acid level. 相似文献
5.
Danilova N 《Journal of experimental zoology. Part B. Molecular and developmental evolution》2006,306(6):496-520
From early on in evolution, organisms have had to protect themselves from pathogens. Mechanisms for discriminating "self" from "non-self" evolved to accomplish this task, launching a long history of host-pathogen co-evolution. Evolution of mechanisms of immune defense has resulted in a variety of strategies. Even unicellular organisms have rich arsenals of mechanisms for protection, such as restriction endonucleases, antimicrobial peptides, and RNA interference.In multicellular organisms, specialized immune cells have evolved, capable of recognition, phagocytosis, and killing of foreign cells as well as removing their own cells changed by damage, senescence, infection, or cancer. Additional humoral factors, such as the complement cascade, have developed that co-operate with cellular immunity in fighting infection and maintaining homeostasis. Defensive mechanisms based on germline-encoded receptors constitute a system known as innate immunity. In jaw vertebrates, this system is supplemented with a second system, adaptive immunity, which in contrast to innate immunity is based on diversification of immune receptors and on immunological memory in each individual.Usually, each newly evolved defense mechanism did not replace the previous one, but supplemented it, resulting in a layered structure of the immune system. The immune system is not one system but rather a sophisticated network of various defensive mechanisms operating on different levels, ranging from mechanisms common for every cell in the body to specialized immune cells and responses at the level of the whole organism. Adaptive changes in pathogens have shaped the evolution of the immune system at all levels. 相似文献
6.
Immune memory has traditionally been the domain of the adaptive immune system, present only in antigen‐specific T and B cells. The purpose of this review is to summarize the evidence for immunological memory in lower organisms (which are not thought to possess adaptive immunity) and within specific cell subsets of the innate immune system. A special focus will be given to recent findings in both mouse and humans for specificity and memory in natural killer (NK) cells, which have resided under the umbrella of innate immunity for decades. The surprising longevity and enhanced responses of previously primed NK cells will be discussed in the context of several immunization settings. 相似文献
7.
In human body, the acquired protection against illness is a biological property known as immunological memory. Different mechanisms for immunological memory are proposed and modeled. The first mechanism is the persisting antigen (Ag) where parts of the Ag are anticipated to persist on some Ag presenting cells. A novel application of the Hsu et al.'s model allows stable low Ag density equilibrium state. This state will correspond to the persisting Ag mechanism for the immune memory. The second is idiotypic and extremal mechanisms where mathematical models showed that a memory state could arise in this case. Finally, a simple model is given which shows that competition between effectors may contribute to the memory state. 相似文献
8.
Olivier Restif William Amos 《Proceedings. Biological sciences / The Royal Society》2010,277(1691):2247-2255
Why do males and females often differ in their ability to cope with infection? Beyond physiological mechanisms, it has recently been proposed that life-history theory could explain immune differences from an adaptive point of view in relation to sex-specific reproductive strategies. However, a point often overlooked is that the benefits of immunity, and possibly the costs, depend not only on the host genotype but also on the presence and the phenotype of pathogens. To address this issue we developed an adaptive dynamic model that includes host–pathogen population dynamics and host sexual reproduction. Our model predicts that, although different reproductive strategies, following Bateman''s principle, are not enough to select for different levels of immunity, males and females respond differently to further changes in the characteristics of either sex. For example, if males are more exposed to infection than females (e.g. for behavioural reasons), it is possible to see them evolve lower immunocompetence than females. This and other counterintuitive results highlight the importance of ecological feedbacks in the evolution of immune defences. While this study focuses on sex-specific natural selection, it could easily be extended to include sexual selection and thus help to understand the interplay between the two processes. 相似文献
9.
The evolution of adaptive immune systems 总被引:11,自引:0,他引:11
A clonally diverse anticipatory repertoire in which each lymphocyte bears a unique antigen receptor is the central feature of the adaptive immune system that evolved in our vertebrate ancestors. The survival advantage gained through adding this type of adaptive immune system to a pre-existing innate immune system led to the evolution of alternative ways for lymphocytes to generate diverse antigen receptors for use in recognizing and repelling pathogen invaders. All jawed vertebrates assemble their antigen-receptor genes through recombinatorial rearrangement of different immunoglobulin or T cell receptor gene segments. The surviving jawless vertebrates, lampreys and hagfish, instead solved the receptor diversification problem by the recombinatorial assembly of leucine-rich-repeat genetic modules to encode variable lymphocyte receptors. The convergent evolution of these remarkably different adaptive immune systems involved innovative genetic modification of innate-immune-system components. 相似文献
10.
Comparative analysis of brain function in invertebrates with sophisticated behaviors, such as the octopus, may advance our understanding of the evolution of the neural processes that mediate complex behaviors. Until the last few years, this approach was infeasible due to the lack of neurophysiological tools for testing the neural circuits mediating learning and memory in the brains of octopus and other cephalopods. Now, for the first time, the adaptation of modern neurophysiological methods to the study of the central nervous system of the octopus allows this avenue of research. The emerging results suggest that a convergent evolutionary process has led to the selection of vertebrate-like neural organization and activity-dependent long-term synaptic plasticity. As octopuses and vertebrates are very remote phylogenetically, this convergence suggests the importance of the shared properties for the mediation of learning and memory. 相似文献
11.
Pathogens face a hostile and often novel environment when infecting a new host, and adaptation is likely to be an important determinant of the success in colonization and establishment. We hypothesized that resistant hosts will impose stronger selection on pathogens than susceptible hosts, which should accelerate pathogen evolution through selection biased toward effector genes. To test this hypothesis, we conducted an experimental evolution study on Xanthomonas citri subsp. citri (Xcc) in a susceptible plant species and a resistant plant species. We performed 55 rounds of repeated reinoculation of Xcc through susceptible host grapefruit (isolates G1, G2, G3) and resistant host kumquat (isolates K1, K2, K3). Consequently, only K1 and K3 isolates lost their ability to elicit a hypersensitive response (HR) in kumquat. Illumina sequencing of the parental and descendant strains P, G1, G2, G3, K1, K2 and K3 revealed that fixed mutations were biased toward type three secretion system effectors in isolates K1 and K3. Parallel evolution was observed in the K1 and K3 strains, suggesting that the mutations result from selection rather than by random drift. Our results support our hypothesis and suggest that repeated infection of resistant hosts by pathogens should be prevented to avoid selecting for adaptive pathogens. 相似文献
12.
Background
Antibody, the primary effector molecule of the immune system, evolves after initial encounter with the antigen from a precursor form to a mature one to effectively deal with the antigen. Antibodies of a lineage diverge through antigen-directed isolated pathways of maturation to exhibit distinct recognition potential. In the context of evolution in immune recognition, diversity of antigen cannot be ignored. While there are reports on antibody lineage, structural perspective with respect to diverse recognition potential in a lineage has never been studied. Hence, it is crucial to evaluate how maturation leads to topological tailoring within a lineage enabling them to interact with significantly distinct antigens.Results
A data-driven approach was undertaken for the study. Global experimental mouse and human antibody-antigen complex structures from PDB were compiled into a coherent database of germline-linked antibodies bound with distinct antigens. Structural analysis of all lineages showed variations in CDRs of both H and L chains. Observations of conformational adaptation made from analysis of static structures were further evaluated by characterizing dynamics of interaction in two lineages, mouse VH1–84 and human VH5–51. Sequence and structure analysis of the lineages explained that somatic mutations altered the geometries of individual antibodies with common structural constraints in some CDRs. Additionally, conformational landscape obtained from molecular dynamics simulations revealed that incoming pathogen led to further conformational divergence in the paratope (as observed across datasets) even while maintaining similar overall backbone topology. MM-GB/SA analysis showed binding energies to be in physiological range. Results of the study are coherent with experimental observations.Conclusions
The findings of this study highlight basic structural principles shaping the molecular evolution of a lineage for significantly diverse antigens. Antibodies of a lineage follow different developmental pathways while preserving the imprint of the germline. From the study, it can be generalized that structural diversification of the paratope is an outcome of natural selection of a conformation from an available ensemble, which is further optimized for antigen interaction. The study establishes that starting from a common lineage, antibodies can mature to recognize a wide range of antigens. This hypothesis can be further tested and validated experimentally.13.
Molecular population genetic studies are providing new perspectives on the evolution of genes that confer resistance to pathogens and herbivores. Here, we compare the evolutionary history of different components of the defense response (detection, signaling and response) and of genes with parallel function in plants and Drosophila. A review of the literature indicates that the dominant form of selection acting on defense genes (balancing, positive and purifying) differs among components of defense. Sampling of particular classes of genes and genes from non-model organisms, however, remains limited. Future studies combining molecular evolutionary analyses with ecological genetic and functional analyses should better reveal how natural selection has shaped defense gene evolution. 相似文献
14.
NK cells and immune "memory" 总被引:1,自引:0,他引:1
Sun JC Lopez-Verges S Kim CC DeRisi JL Lanier LL 《Journal of immunology (Baltimore, Md. : 1950)》2011,186(4):1891-1897
Immunological memory is a hallmark of the adaptive immune system. However, the ability to remember and respond more robustly against a second encounter with the same pathogen has been described in organisms lacking T and B cells. Recently, NK cells have been shown to mediate Ag-specific recall responses in several different model systems. Although NK cells do not rearrange the genes encoding their activating receptors, NK cells experience a selective education process during development, undergo a clonal-like expansion during virus infection, generate long-lived progeny (i.e., memory cells), and mediate more efficacious secondary responses against previously encountered pathogens--all characteristics previously ascribed only to T and B cells in mammals. This review describes past findings leading up to these new discoveries, summarizes the evidence for and characteristics of NK cell memory, and discusses the attempts and future challenges to identify these long-lived memory NK cell populations in humans. 相似文献
15.
In order to address the nature of genetic variation in learning performance, we investigated the response to classical olfactory conditioning in "high-learning" Drosophila melanogaster lines previously subject to selection for the ability to learn an association between the flavor of an oviposition medium and bitter taste. In a T-maze choice test, the seven high-learning lines were better at avoiding an odor previously associated with aversive mechanical shock than were five unselected "low-learning" lines originating from the same natural population. Thus, the evolved improvement in learning ability of high-learning lines generalized to another aversion learning task involving a different aversive stimulus (shock instead of bitter taste) and a different behavioral context than that used to impose selection. In this olfactory shock task, the high-learning lines showed improvements in the learning rate as well as in two forms of consolidated memory: anesthesia-resistant memory and long-term memory. Thus, genetic variation underlying the experimental evolution of learning performance in the high-learning lines affected several phases of memory formation in the course of olfactory aversive learning. However, the two forms of consolidated memory were negatively correlated among replicate high-learning lines, which is consistent with a recent hypothesis that these two forms of consolidated memory are antagonistic. 相似文献
16.
Fryer HR Frater J Duda A Roberts MG;SPARTAC Trial Investigators Phillips RE McLean AR 《PLoS pathogens》2010,6(11):e1001196
During infection with human immunodeficiency virus (HIV), immune pressure from cytotoxic T-lymphocytes (CTLs) selects for viral mutants that confer escape from CTL recognition. These escape variants can be transmitted between individuals where, depending upon their cost to viral fitness and the CTL responses made by the recipient, they may revert. The rates of within-host evolution and their concordant impact upon the rate of spread of escape mutants at the population level are uncertain. Here we present a mathematical model of within-host evolution of escape mutants, transmission of these variants between hosts and subsequent reversion in new hosts. The model is an extension of the well-known SI model of disease transmission and includes three further parameters that describe host immunogenetic heterogeneity and rates of within host viral evolution. We use the model to explain why some escape mutants appear to have stable prevalence whilst others are spreading through the population. Further, we use it to compare diverse datasets on CTL escape, highlighting where different sources agree or disagree on within-host evolutionary rates. The several dozen CTL epitopes we survey from HIV-1 gag, RT and nef reveal a relatively sedate rate of evolution with average rates of escape measured in years and reversion in decades. For many epitopes in HIV, occasional rapid within-host evolution is not reflected in fast evolution at the population level. 相似文献
17.
By means of phylogenetic comparison of main immunoglobulin-like multigene families (MF) and of different C-domain sequences representing them, the order of divergences of these MF in the process of evolution of the system was analysed. The order proved to be in good agreement with the ordered fashion of MF's involvement into recombinational rearrangements during the immune cell development. Indeed, according to topology of the tree for 34 C-domains, all MHC antigens are separated from the rest of Ig-like sequences, at first. Secondly, beta-chain of T-receptor is branched off the main stem of divergences, then there is a serium of divergences of CH-domains for different Ig-classes, and at last, kappa- and lambda-chains are separated. It is mu-chain of IgM which first of all branched off within an each group of isofunctional CH-sequences in the tree (CH1, CH2, CH3, CH4). The same order of events could be seen in ontogeny of the immune system. The results suggest that the appearance of a new MF of Ig-like type (or a new cluster of genetic segments within the MF) in the course of evolution could mean the addition of a new step in the regulatory system of immunologic gene expression already involved. In other words, this is unique example of recapitulation at the molecular-genetical level. 相似文献
18.
Saino Nicola; Martinelli Roberta; Biard Clotilde; Gil Diego; Spottiswoode Claire N.; Rubolini Diego; Surai Peter F.; Moller Anders P. 《Behavioral ecology》2007,18(3):513-520
Secondary sexual characters have been hypothesized to revealthe ability of males to resist debilitating parasites. Althoughsuch reliable signaling of parasite resistance may be maintainedby parasitehost coevolution, maternal effects potentiallyprovide a previously neglected factor that could affect thelevel of genetic variation in resistance to parasites. Thatcould be the case because maternal effects have an entirelyenvironmental basis, or because they can maintain considerableamounts of genetic variation through epistatic effects, evenin the presence of strong directional selection. Maternal effectshave been shown to occur as maternal allocation of immune factorsto offspring, and such allocation may depend on the mating prospectsof sons, causing mothers to differentially allocate maternaleffects to eggs in species subject to intense sexual selection.Here we show that a maternal effect through innate antibacterialimmune defense, lysozyme, which is transferred from the motherto the egg in birds, is positively associated with the evolutionof secondary sexual characters. Previous studies have shownthat females differentially allocate lysozyme to their eggswhen mated to attractive males, and elevated levels of lysozymeare associated with reduced hatching failure and superior healthamong neonates and adults. In this study, comparative analysesof lysozyme from eggs of 85 species of birds showed a strongpositive relationship between brightness of male plumage andegg lysozyme, even when controlling for potentially confoundingvariables. These findings suggest that maternal immune factorsmay play a role in the evolution of secondary sexual characters. 相似文献
19.
Unraveling the "code" of genome structure is an important goal of genomics research. Colocalization of genes in eukaryotic genomes may facilitate preservation of favorable allele combinations between epistasic loci or coregulation of functionally related genes. However, the presence of interacting gene clusters in the human genome has remained unclear. We systematically searched the human genome for evidence of closely linked genes whose protein products interact. We find 83 pairs of interacting genes that are located within 1 Mbp in the human genome or 37 if we exclude hub proteins. This number of interacting gene clusters is significantly more than expected by chance and is not the result of tandem duplications. Furthermore, we find that these clusters are significantly more conserved across vertebrate (but not chordate) genomes than other pairs of genes located within 1 Mbp in the human genome. In many cases, the genes are both present but not clustered in older vertebrate lineages. These results suggest gene cluster creation along the human lineage. These clusters are not enriched for housekeeping genes, but we find a significant contribution from genes involved in "response to stimulus." Many of these genes are involved in the immune response, including, but not limited to, known clusters such as the major histocompatibility complex. That these clusters were formed contemporaneously with the origin of adaptive immunity within the vertebrate lineage suggests that novel evolutionary and regulatory constraints were associated with the operation of the immune system. 相似文献
20.
The evolution of the plant immune response has culminated in a highly effective defense system that is able to resist potential attack by microbial pathogens. The primary immune response is referred to as PAMP-triggered immunity (PTI) and has evolved to recognize common features of microbial pathogens. In the coevolution of host-microbe interactions, pathogens acquired the ability to deliver effector proteins to the plant cell to suppress PTI, allowing pathogen growth and disease. In response to the delivery of pathogen effector proteins, plants acquired surveillance proteins (R proteins) to either directly or indirectly monitor the presence of the pathogen effector proteins. In this review, taking an evolutionary perspective, we highlight important discoveries over the last decade about the plant immune response. 相似文献