首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The F plasmid-carried bacterial toxin, the CcdB protein, is known to act on DNA gyrase in two different ways. CcdB poisons the gyrase-DNA complex, blocking the passage of polymerases and leading to double-strand breakage of the DNA. Alternatively, in cells that overexpress CcdB, the A subunit of DNA gyrase (GyrA) has been found as an inactive complex with CcdB. We have reconstituted the inactive GyrA-CcdB complex by denaturation and renaturation of the purified GyrA dimer in the presence of CcdB. This inactivating interaction involves the N-terminal domain of GyrA, because similar inactive complexes were formed by denaturing and renaturing N-terminal fragments of the GyrA protein in the presence of CcdB. Single amino acid mutations, both in GyrA and in CcdB, that prevent CcdB-induced DNA cleavage also prevent formation of the inactive complexes, indicating that some essential interaction sites of GyrA and of CcdB are common to both the poisoning and the inactivation processes. Whereas the lethal effect of CcdB is most probably due to poisoning of the gyrase-DNA complex, the inactivation pathway may prevent cell death through formation of a toxin-antitoxin-like complex between CcdB and newly translated GyrA subunits. Both poisoning and inactivation can be prevented and reversed in the presence of the F plasmid-encoded antidote, the CcdA protein. The products of treating the inactive GyrA-CcdB complex with CcdA are free GyrA and a CcdB-CcdA complex of approximately 44 kDa, which may correspond to a (CcdB)2(CcdA)2 heterotetramer.  相似文献   

4.
5.
Control of the ccd operon in plasmid F.   总被引:5,自引:0,他引:5       下载免费PDF全文
  相似文献   

6.
7.
Regulation of biological processes by proteins often involves the formation of transient, multimeric complexes whose characterization is mechanistically important but challenging. The bacterial toxin CcdB binds and poisons DNA Gyrase. The corresponding antitoxin CcdA extracts CcdB from its complex with Gyrase through the formation of a transient ternary complex, thus rejuvenating Gyrase. We describe a high throughput methodology called Ter-Seq to stabilize probable ternary complexes and measure associated kinetics using the CcdA-CcdB-GyrA14 ternary complex as a model system. The method involves screening a yeast surface display (YSD) saturation mutagenesis library of one partner (CcdB) for mutants that show enhanced ternary complex formation. We also isolated CcdB mutants that were either resistant or sensitive to rejuvenation, and used surface plasmon resonance (SPR) with purified proteins to validate the kinetics measured using the surface display. Positions, where CcdB mutations lead to slower rejuvenation rates, are largely involved in CcdA-binding, though there were several notable exceptions suggesting allostery. Mutations at these positions reduce the affinity towards CcdA, thereby slowing down the rejuvenation process. Mutations at GyrA14-interacting positions significantly enhanced rejuvenation rates, either due to reduced affinity or complete loss of CcdB binding to GyrA14. We examined the effect of different parameters (CcdA affinity, GyrA14 affinity, surface accessibilities, evolutionary conservation) on the rate of rejuvenation. Finally, we further validated the Ter-Seq results by monitoring the kinetics of ternary complex formation for individual CcdB mutants in solution by fluorescence resonance energy transfer (FRET) studies.  相似文献   

8.
Summary The ccd operon of plasmid F encodes two genes, ccdA and ccdB, which contribute to the high stability of the plasmid by post-segregational killing of plasmid-free bacteria. The CcdB protein is lethal to bacteria and the CcdA protein is an antagonist of this lethal action. A 520 by fragment containing the terminal part of the ccdA gene and the entire ccdB gene of plasmid F was cloned downstream of the tac promoter. Although the CcdB protein was expressed from this fragment, no killing of host bacteria was observed. We found that the absence of killing was due to the presence of a small polypeptide, CcdA41, composed of the 41 C-terminal residues of the CcdA protein. This polypeptide has retained the ability to regulate negatively the lethal activity of the CcdB protein.  相似文献   

9.
In Escherichia coli, the miniF plasmid CcdB protein is responsible for cell death when its action is not prevented by polypeptide CcdA. We report the isolation, localization, sequencing and properties of a bacterial mutant resistant to the cytotoxic activity of the CcdB protein. This mutation is located in the gene encoding the A subunit of topoisomerase II and produces an Arg462----Cys substitution in the amino acid sequence of the GyrA polypeptide. Hence, the mutation was called gyrA462. We show that in the wild-type strain, the CcdB protein promotes plasmid linearization; in the gyrA462 strain, this double-stranded DNA cleavage is suppressed. This indicates that the CcdB protein is responsible for gyrase-mediated double-stranded DNA breakage. CcdB, in the absence of CcdA, induces the SOS pathway. SOS induction is a biological response to DNA-damaging agents. We show that the gyrA462 mutation suppresses this SOS activation, indicating that SOS induction is a consequence of DNA damages promoted by the CcdB protein on gyrase-DNA complexes. In addition, we observe that the CcdBS sensitive phenotype dominates over the resistant phenotype. This is better explained by the conversion, in gyrA+/gyrA462 merodiploid strains, of the wild-type gyrase into a DNA-damaging agent. These results strongly suggest that the CcdB protein, like quinolone antibiotics and a variety of antitumoral drugs, is a DNA topoisomerase II poison. This is the first proteinic poison-antipoison mechanism that has been found to act via the DNA topoisomerase II.  相似文献   

10.
The letA (ccdA) and letD (ccdB) genes of F plasmid contribute to stable maintenance of the plasmid in Escherichia coli cells; a product of the latter has a lethal effect on the host cell and that of the former neutralizes functions of the letD. In cells that overproduce the LetD (CcdB) protein, the plasmid DNA is extensively relaxed. Correspondingly, DNA supercoiling activity in a cell-free extract of the overproducing strain decreases to a level of less than 1% of that seen in normal cells. However, the extract does not inhibit DNA gyrase reconstituted from purified subunits, thereby indicating that the intrinsic DNA gyrase is inactivated in the overproducing strain. Upon addition of purified LetA (CcdA) protein to the extract of LetD overproducing cells, the DNA supercoiling activity was fully restored. Using this rejuvenation as an assay, we purified the "inactivated gyrase" and obtained evidence that the LetD protein formed an isolable complex with the A subunit of DNA gyrase. Thus, the LetD and the LetA proteins constitute an opposing pair in modulating the DNA supercoiling activity of gyrase, probably by direct interaction.  相似文献   

11.
Bacterial toxin-antitoxin (TA) systems encode two proteins, a potent inhibitor of cell proliferation (toxin) and its specific antidote (antitoxin). Structural data has revealed striking similarities between the two model TA toxins CcdB, a DNA gyrase inhibitor encoded by the ccd system of plasmid F, and Kid, a site-specific endoribonuclease encoded by the parD system of plasmid R1. While a common structural fold seemed at odds with the two clearly different modes of action of these toxins, the possibility of functional crosstalk between the parD and ccd systems, which would further point to their common evolutionary origin, has not been documented. Here, we show that the cleavage of RNA and the inhibition of protein synthesis by the Kid toxin, two activities that are specifically counteracted by its cognate Kis antitoxin, are altered, but not inhibited, by the CcdA antitoxin. In addition, Kis was able to inhibit the stimulation of DNA gyrase-mediated cleavage of DNA by CcdB, albeit less efficiently than CcdA. We further show that physical interactions between the toxins and antitoxins of the different systems do occur and define the stoichiometry of the complexes formed. We found that CcdB did not degrade RNA nor did Kid have any reproducible effect on the tested DNA gyrase activities, suggesting that these toxins evolved to reach different, rather than common, cellular targets.  相似文献   

12.
The two opponents, toxin (CcdB, LetB or LetD, protein G, LynB) and antidote (CcdA, LetA, protein H, LynA), in the plasmid addiction system ccd of the F plasmid were studied by different biophysical methods. The thermodynamic stability was measured at different temperatures combining denaturant and thermally induced unfolding. It was found that both proteins denature in a two-state equilibrium (native dimer versus unfolded monomer) and that CcdA has a significantly lower thermodynamic stability. Using a numerical model, which was developed earlier by us, and on the basis of the determined thermodynamic parameters the concentration dependence of the denaturation transition temperature was obtained for both proteins. This concentration dependence may be of physiological significance, as the concentration of both ccd addiction proteins cannot exceed a certain limit because their expression is controlled by autoregulation.The influence of DNA on the thermal stability of the two proteins was probed. It was found that cognate DNA increases the melting temperature of CcdA. In the presence of non-specific DNA the thermal stability was not changed. The melting temperature of CcdB was not influenced by the applied double-stranded oligonucleotides, neither cognate nor unspecific.  相似文献   

13.
14.
The ccd locus contributes to the stability of plasmid F by post-segregational killing of plasmid-free bacteria. The ccdB gene product is a potent cell-killing protein and its activity is negatively regulated by the CcdA protein, in this paper, we show that the CcdA protein is unstable and that the degradation of CcdA is dependent on the Lon protease. Differences in the stability of the killer CcdB protein and its antidote CcdA are the key to post-segregational killing. Because the half-life of active CcdA protein is shorter than that of active CcdB protein, persistence of the CcdB protein leads to the death of plasmid-free bacterial segregants.  相似文献   

15.
16.
Recombineering, which is the use of homologous recombination for DNA engineering in Escherichia coli, usually uses antibiotic selection to identify the intended recombinant. When combined in a second step with counterselection using a small molecule toxin, seamless products can be obtained. Here, we report the advantages of a genetic strategy using CcdB as the counterselectable agent. Expression of CcdB is toxic to E. coli in the absence of the CcdA antidote so counterselection is initiated by the removal of CcdA expression. CcdB counterselection is robust and does not require titrations or experiment-to-experiment optimization. Because counterselection strategies necessarily differ according to the copy number of the target, we describe two variations. For multi-copy targets, we use two E. coli hosts so that counterselection is exerted by the transformation step that is needed to separate the recombined and unrecombined plasmids. For single copy targets, we put the ccdA gene onto the temperature-sensitive pSC101 Red expression plasmid so that counterselection is exerted by the standard temperature shift to remove the expression plasmid. To reduce unwanted intramolecular recombination, we also combined CcdB counterselection with Redα omission. These options improve the use of counterselection in recombineering with BACs, plasmids and the E. coli chromosome.  相似文献   

17.
Microcin B17 (MccB17) is a peptide antibiotic produced by Escherichia coli strains carrying the pMccB17 plasmid. MccB17 is synthesized as a precursor containing an amino-terminal leader peptide that is cleaved during maturation. Maturation requires the product of the chromosomal tldE (pmbA) gene. Mature microcin is exported across the cytoplasmic membrane by a dedicated ABC transporter. In sensitive cells, MccB17 targets the essential topoisomerase II DNA gyrase. Independently, tldE as well as tldD mutants were isolated as being resistant to CcdB, another natural poison of gyrase encoded by the ccd poison-antidote system of plasmid F. This led to the idea that TldD and TldE could regulate gyrase function. We present in vivo evidence supporting the hypothesis that TldD and TldE have proteolytic activity. We show that in bacterial mutants devoid of either TldD or TldE activity, the MccB17 precursor accumulates and is not exported. Similarly, in the ccd system, we found that TldD and TldE are involved in CcdA and CcdA41 antidote degradation rather than being involved in the CcdB resistance mechanism. Interestingly, sequence database comparisons revealed that these two proteins have homologues in eubacteria and archaebacteria, suggesting a broader physiological role.  相似文献   

18.
Bacteriophage Mu repressor, which is stable in its wildtype form, can mutate to become sensitive to its Escherichia coli host ATP-dependent ClpXP protease. We further investigated the determinants of the mutant repressor's sensitivity to Clp. We show the crucial importance of a C-terminal, seven amino acid long sequence in which a single change is sufficient to decrease the rate of degradation of the protein. The sequence was fused at the C-terminal end of the CcdB and CcdA proteins encoded by plasmid F. CcdB, which is naturally stable, was unaffected, while CcdA, which is normally degraded by the Lon protease, became a substrate for ClpXP while remaining a substrate for Lon. In agreement with the current hypothesis on the mechanism of recognition of their substrates by energy- dependent proteases, these results support the existence, on the substrate polypeptides, of separate motifs responsible for recognition and cleavage by the protease.  相似文献   

19.
20.
Summary The stability determined by the systems ParD of plasmid R1 and Ccd of plasmid F is due to the concerted action of two proteins, a cytotoxin and an antagonist of this function. In this paper we report that CcdA and Kis proteins, the antagonists of the Ccd and ParD systems respectively, share significant sequence homologies at both ends. In Kis, these regions seem to correspond to two different domains. Despite the structural similarities, Kis and CcdA are not interchangeable. In addition we have shown that the cytotoxins of these systems, the Kid and CcdB proteins, do not share structural homologies. In contrast to CcdB, the Kid protein of the ParD system induces RecA-dependent cleavage of the cl repressor of bacteriophage very inefficiently or not at all. The functional implications of these results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号