首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To determine if diesel exhaust (DE) exposure modifies the antioxidant defense network within the respiratory tract lining fluids, a randomized, single blinded, crossover control study using nasal lavage and flexible video bronchoscopy with bronchial and broncho-alveolar lavage was performed. Fifteen healthy, nonsmoking, asymptomatic subjects were exposed to filtered air or diluted diesel exhaust (300mg m-3 partic-ulates, l.6ppm nitrogen dioxide) for one hour on 2 separate occasions, at least three weeks apart. To examine the kinetics of any DE-induced antioxidant reactions, nasal lavage fluid and blood samples were collected prior to, immediately after, and 51/2 hours post exposure. Bronchoscopy was performed 6 hours after the end of DE exposure. Ascorbic acid, uric acid and reduced glutathone (GSH) concentrations were determined in nasal, bronchial, bronchoalveolar lavage and plasma samples. Malondialdehyde (MDA) and protein carbonyl concentrations were determined in plasma and bronchoalveolar lavage samples. Nasal lavage ascorbic acid concentration increased 10-fold during DE exposure [1.02 (0.26-2.09) Vs 7.13 (4.66-10.79) μmol/L-1, but returned to basal levels 5.5 hours post-exposure [0.75 (0.26-1.51) μmol/L-']. There was no significant effect of DE exposure on nasal lavage uric acid or GSH concentration. DE exposure did not influence plasma, bronchial wash, or bronchoalveolar lavage antioxidant concentrations and no change in MDA or protein carbonyl concentrations were found. The physiological response to acute DE exposure is an increase in the level of ascorbic acid in the nasal cavity. This response appears to be sufficient to prevent further oxidant stress in the respiratory tract of normal individuals.  相似文献   

2.
Objective: Urate forms a coordination complex with Fe3+ which does not support electron transport. The only enzymatic source of urate is xanthine oxidoreductase. If a major purpose of xanthine oxidoreductase is the production of urate to function as an iron chelator and antioxidant, a system for coupling the activity of this enzyme to the availability of catalytically-active metal would be required. We tested the hypothesis that there is an association between iron availability and urate production in healthy humans by correlating serum concentrations of ferritin with uric acid levels.

Materials and methods: The study population included 4932 females and 4794 males in the National Health and Nutrition Examination Survey III. They were 20 years of age or older and in good health.

Results: Serum concentrations of ferritin correlated positively with uric acid levels in healthy individuals (R2=0.41, p<0.001). This association was independent of an effect of gender, age, race/ethnic group, body mass, and alcohol consumption.

Conclusions: The relationship between serum ferritin and uric acid predicts hyperuricemia and gout in groups with iron accumulation. This elevation in the production of uric acid with increased concentrations of iron could possibly reflect a response of the host to diminish the oxidative stress presented by available metal as the uric acid assumes the empty or loosely bound coordination sites of the iron to diminish electron transport and subsequent oxidant generation.  相似文献   

3.
To examine local and systemic oxidative status of lung cancer (LC) and oxidant effects of radiotherapy (RT), this study evaluated antioxidants and markers of oxidative and nitrosative stress in bronchoalveolar lavage (BAL) fluid and in the blood of 36 LC patients and 36 non-cancer controls at baseline and during and after RT for LC. LC patients had higher baseline serum urate, plasma nitrite and lower serum oxidized proteins than controls (p=0.016, p<0.001 and p=0.027, respectively), but BAL fluid oxidative stress markers were similar. RT tended to raise some antioxidants, however, significant increases were seen in serum urate, conjugated dienes and TBARS (p=0.044, p=0.034 and p=0.004, respectively) 3 months after RT. High urate at baseline may compensate against the oxidative stress caused by LC. RT shifts the oxidant/antioxidant balance towards lipid peroxidation, although the antioxidant defense mechanisms of the body appear to counteract the increased oxidative stress rather effectively.  相似文献   

4.
The association between serum ferritin and uric acid in humans   总被引:2,自引:0,他引:2  
OBJECTIVE: Urate forms a coordination complex with Fe(3+) which does not support electron transport. The only enzymatic source of urate is xanthine oxidoreductase. If a major purpose of xanthine oxidoreductase is the production of urate to function as an iron chelator and antioxidant, a system for coupling the activity of this enzyme to the availability of catalytically-active metal would be required. We tested the hypothesis that there is an association between iron availability and urate production in healthy humans by correlating serum concentrations of ferritin with uric acid levels. MATERIALS AND METHODS: The study population included 4932 females and 4794 males in the National Health and Nutrition Examination Survey III. They were 20 years of age or older and in good health. RESULTS: Serum concentrations of ferritin correlated positively with uric acid levels in healthy individuals (R(2) = 0.41, p<0.001). This association was independent of an effect of gender, age, race/ethnic group, body mass, and alcohol consumption. CONCLUSIONS: The relationship between serum ferritin and uric acid predicts hyperuricemia and gout in groups with iron accumulation. This elevation in the production of uric acid with increased concentrations of iron could possibly reflect a response of the host to diminish the oxidative stress presented by available metal as the uric acid assumes the empty or loosely bound coordination sites of the iron to diminish electron transport and subsequent oxidant generation.  相似文献   

5.
Oxidative stress may be a key feature, and hence important determinant, of tissue injury and allograft rejection in lung transplant recipients. To investigate this, we determined the antioxidant status (urate, ascorbate, thiols and α-tocopherol) and lipid peroxidation status (malondialdehyde) in bronchoalveolar lavage (BAL) fluid and blood serum of 19 consecutive lung transplant recipients 2 weeks and 1, 2, 3, 6, and 12 months post-surgery. BAL fluid and blood samples from 23 control subjects and blood from 8 patients two days before transplantation were obtained for comparison. Before surgery, the antioxidant status of patients was poor as serum ascorbate and total thiol concentrations were significantly (p < 0.05) lower than control subjects. Two weeks post-surgery, ascorbate and total thiol concentrations were still low and urate concentrations had fallen compared to control subjects (p < 0.01). At this time, BAL fluid urate concentration was higher (p < 0.01), ascorbate concentration was lower (p < 0.01) and reduced glutathione concentrations were similar to control subjects. MDA, a product of lipid peroxidation, was higher (p < 0.01) in both BAL fluid and serum obtained from transplant patients compared to control subjects. During the first 12 months post-surgery, little improvement in antioxidant status or extent of lipid peroxidation was seen in transplant recipients. Regression analysis indicated no difference in serum or BAL fluid antioxidant status in patients with acute rejection compared to those without. In conclusion, lung transplant recipients have a compromised antioxidant status before surgery and it remains poor for at least the first year following the operation. In addition, these patients have elevated MDA concentrations in both their lung lining fluid and blood over most of this time. Oxidative stress is not, however, a sufficiently sensitive endpoint to predict tissue rejection in this group.  相似文献   

6.
Uric acid is the main nitrogenous waste product in birds but it is also known to be a potent antioxidant. Hominoid primates and birds lack the enzyme urate oxidase, which oxidizes uric acid to allantoin. Consequently, the presence of allantoin in their plasma results from non-enzymatic oxidation. In humans, the allantoin to uric acid ratio in plasma increases during oxidative stress, thus this ratio has been suggested to be an in vivo marker for oxidative stress in humans. We measured the concentrations of uric acid and allantoin in the plasma and ureteral urine of white-crowned sparrows (Zonotrichia leucophrys gambelii) at rest, immediately after 30 min of exercise in a hop/hover wheel, and after 1 h of recovery. The plasma allantoin concentration and the allantoin to uric acid ratio did not increase during exercise but we found a positive relationship between the concentrations of uric acid and allantoin in the plasma and in the ureteral urine in the three activity phases. In the plasma, the slope of the regression describing the above positive relationships was significantly higher immediately after activity. We suggest that the slope indicates the rate of uric acid oxidation and that during activity this rate increases as a result of higher production of free radicals. The present study demonstrates that allantoin is present in the plasma and in the ureteral urine of white-crowned sparrows and therefore might be useful as an indicator of oxidative stress in birds.  相似文献   

7.
Oxidative stress may be a key feature, and hence important determinant, of tissue injury and allograft rejection in lung transplant recipients. To investigate this, we determined the antioxidant status (urate, ascorbate, thiols and alpha-tocopherol) and lipid peroxidation status (malondialdehyde) in bronchoalveolar lavage (BAL) fluid and blood serum of 19 consecutive lung transplant recipients 2 weeks and 1, 2, 3, 6, and 12 months post-surgery. BAL fluid and blood samples from 23 control subjects and blood from 8 patients two days before transplantation were obtained for comparison. Before surgery, the antioxidant status of patients was poor as serum ascorbate and total thiol concentrations were significantly (p < 0.05) lower than control subjects. Two weeks post-surgery, ascorbate and total thiol concentrations were still low and urate concentrations had fallen compared to control subjects (p < 0.01). At this time, BAL fluid urate concentration was higher (p < 0.01), ascorbate concentration was lower (p < 0.01) and reduced glutathione concentrations were similar to control subjects. MDA, a product of lipid peroxidation, was higher (p < 0.01) in both BAL fluid and serum obtained from transplant patients compared to control subjects. During the first 12 months post-surgery, little improvement in antioxidant status or extent of lipid peroxidation was seen in transplant recipients. Regression analysis indicated no difference in serum or BAL fluid antioxidant status in patients with acute rejection compared to those without. In conclusion, lung transplant recipients have a compromised antioxidant status before surgery and it remains poor for at least the first year following the operation. In addition, these patients have elevated MDA concentrations in both their lung lining fluid and blood over most of this time. Oxidative stress is not, however, a sufficiently sensitive endpoint to predict tissue rejection in this group.  相似文献   

8.
Vitamin C (ascorbic acid) is a non-enzymatic antioxidant important in protecting the lung against oxidative damage and is decreased in lung lining fluid of horses with airway inflammation. To examine possible therapeutic regimens in a species with ascorbate-synthesising capacity, we studied the effects of oral supplementation of two forms of ascorbic acid, (each equivalent to 20 mg ascorbic acid per kg body weight) on the pulmonary and systemic antioxidant status of six healthy ponies in a 3 x 3 Latin square design. Two weeks supplementation with ascorbyl palmitate significantly increased mean plasma ascorbic acid concentrations compared to control (29 +/- 5 and 18 +/- 7 micromol/l, respectively; p < 0.05). Calcium ascorbyl-2-monophosphate, a more stable form of ascorbic acid, also increased mean plasma ascorbic acid concentrations, but not significantly (23 +/- 1 micromol/l; p = 0.07). The concentration of ascorbic acid in bronchoalveolar lavage fluid increased in five out of six ponies following supplementation with either ascorbyl palmitate or calcium ascorbyl-2-monophosphate compared with control (30 +/- 10, 25 +/- 4 and 18 +/- 8 micromol/l, respectively; p < 0.01). Neither supplement altered the concentration of glutathione, uric acid or alpha-tocopherol in plasma or bronchoalveolar lavage fluid. In conclusion, the concentration of lung lining fluid ascorbic acid is increased following ascorbic acid supplementation (20 mg/kg body weight) in an ascorbate-synthesising species.  相似文献   

9.
Type I diabetes in rodents is associated with a spectrum of liver mitochondrial abnormalities ranging from evidence of oxidative stress and altered antioxidant defenses to frank defects in respiration rates and respiratory control ratios. To better address the myriad changes in redox metabolism in these mitochondria, we have applied new chromatographic techniques that enable simultaneous analysis of multiple components of pathways of interest (e.g., purine catabolites and oxidation by-products). We report here a portion of these results, which, in conjunction with other reported data, suggest that purine catabolism may contribute to mitochondrial antioxidant defenses by producing the antioxidant urate. In liver mitochondria from diabetic rats, increases in uric acid (threefold) and its direct precursor xanthine (sixfold) were observed in moderate diabetes, but levels fell essentially to normal in severe disease. Failure to maintain elevated xanthine and uric acid occurred contemporaneously with progressive mitochondrial dysfunction. Regression analysis revealed altered precursor-product relationships between xanthine, its precursors, and uric acid. An independent set of studies in isolated rat liver mitochondria showed that mitochondrial respiration was associated with essentially uniform decreases (approximately 30%) in all purine catabolites measured (urate, xanthine, hypoxanthine, guanine, guanosine, and xanthosine). That result suggests the potential for steady production of urate. Taken together, the two studies raise the possibility that purine catabolism may be a previously unappreciated component of the homeostatic response of mitochondria to oxidant stress and may play a critical role in slowing progressive mitochondrial dysfunction in certain disease states.  相似文献   

10.
Vitamin supplements have been reported to reduce the magnitude of symptoms in subjects exposed to oxidant air pollution. To confirm whether supplementation with vitamins C and E could reduce lung function decrements, airway inflammation, and epithelial injury in subjects sensitive to ozone, a double-blinded, crossover control study was performed. Fourteen ozone-responsive subjects were randomly exposed to both air and ozone (0.2 ppm for 2 h) after 7 days of either placebo treatment or supplementation with vitamin C (500 mg/day) and E (100 mg/day). Lung function was assessed pre- and immediately postexposure and blood samples were taken at set intervals. Inflammatory, tissue injury, and antioxidant responses were examined in lavage fluid obtained by bronchoscopy 6 h postexposure. Exposure to ozone resulted in significant (P < 0.01) decrements in FEV1 with no protection observed following vitamin supplementation (-8.5%) versus placebo (-7.3%) treatment. Similarly, ozone-induced neutrophilia were of a similar magnitude after both treatments (P < 0.05). This lack of protection was observed despite elevated plasma vitamin C (+60.1%) and vitamin E (+51.4%) concentrations following supplementation, and increased vitamin C concentrations in the airways after supplementation following ozone exposure. These data do not therefore support the contention that acute ozone-induced symptoms can be attenuated through the use of dietary antioxidants in well-nourished individuals.  相似文献   

11.
BackgroundThe inflammatory processes in the upper and lower airways in allergic rhinitis and asthma are similar. Induced sputum and nasal lavage fluid provide a non-invasive way to examine proteins involved in airway inflammation in these conditions.ObjectivesWe conducted proteomic analyses of sputum and nasal lavage fluid samples to reveal differences in protein abundances and compositions between the asthma and rhinitis patients and to investigate potential underlying mechanisms.MethodsInduced sputum and nasal lavage fluid samples were collected from 172 subjects with 1) allergic rhinitis, 2) asthma combined with allergic rhinitis, 3) nonallergic rhinitis and 4) healthy controls. Proteome changes in 21 sputum samples were analysed with two-dimensional difference gel electrophoresis (2D-DIGE), and the found differentially regulated proteins identified with mass spectrometry. Immunological validation of identified proteins in the sputum and nasal lavage fluid samples was performed with Western blot and ELISA.ResultsAltogether 31 different proteins were identified in the sputum proteome analysis, most of these were found also in the nasal lavage fluid. Fatty acid binding protein 5 (FABP5) was up-regulated in the sputum of asthmatics. Immunological validation in the whole study population confirmed the higher abundance levels of FABP5 in asthmatic subjects in both the sputum and nasal lavage fluid samples. In addition, the vascular endothelial growth factor (VEGF) level was increased in the nasal lavage fluid of asthmatics and there were positive correlations between FABP5 and VEGF levels (r=0.660, p<0.001) and concentrations of FABP5 and cysteinyl leukotriene (CysLT) (r=0.535, p<0.001) in the nasal lavage fluid.ConclusionsFABP5 may contribute to the airway remodeling and inflammation in asthma by fine-tuning the levels of CysLTs, which induce VEGF production.  相似文献   

12.
Due to elevated ozone concentrations at high altitudes, the adverse effect of ozone on air quality, human perception and health may be more pronounced in aircraft cabins. The association between ozone and passenger-reported symptoms has not been investigated under real conditions since smoking was banned on aircraft and ozone converters became more common. Indoor environmental parameters were measured at cruising altitude on 83 US domestic and international flights. Passengers completed a questionnaire about symptoms and satisfaction with the indoor air quality. Average ozone concentrations were relatively low (median: 9.5 ppb). On thirteen flights (16%) ozone levels exceeded 60 ppb, while the highest peak level reached 256 ppb for a single flight. The most commonly reported symptoms were dry mouth or lips (26%), dry eyes (22.1%) and nasal stuffiness (18.9%). 46% of passengers reported at least one symptom related to the eyes or mouth. A third of the passengers reported at least one upper respiratory symptom. Using multivariate logistic (individual symptoms) and linear (aggregated continuous symptom variables) regression, ozone was consistently associated with symptoms related to the eyes and certain upper respiratory endpoints. A concentration-response relationship was observed for nasal stuffiness and eye and upper respiratory symptom indicators. Average ozone levels, as opposed to peak concentrations, exhibited slightly weaker associations. Medium and long duration flights were significantly associated with more symptoms compared to short flights. The relationship between ultrafine particles and ozone on flights without meal service was indicative of ozone-initiated chemistry.  相似文献   

13.
Two species found in temperate calcareous and mesotrophic grasslands (Dactylis glomerata and Leontodon hispidus) were exposed to eight ozone treatments spanning preindustrial to post‐2100 regimes, and late‐season effects on stomatal functioning were investigated. The plants were grown as a mixed community in 14 L containers and were exposed to ozone in ventilated solardomes (dome‐shaped greenhouses) for 20 weeks from early May to late September 2007. Ozone exposures were based on O3 concentrations from a nearby upland area, and provided the following seasonal 24 h means: 21.4, 39.9 (simulated ambient), 50.2, 59.4, 74.9, 83.3, 101.3 and 102.5 ppb. In both species, stomatal conductance of undamaged inner canopy leaves developing since a midseason cutback increased linearly with increasing background ozone concentration. Imposition of severe water stress by leaf excision indicated that increasing background ozone concentration decreased the ability of leaves to limit water loss, implying impaired stomatal control. The threshold ozone concentrations for these effects were 15–40 ppb above current ambient in upland UK, and were within the range of ozone concentrations anticipated for much of Europe by the latter part of this century. The potential mechanism behind the impaired stomatal functioning was investigated using a transpiration assay. Unlike for lower ozone treatments, apparently healthy green leaves of L. hispidus that had developed in the 101.3 ppb treatment did not close their stomata in response to 1.5 μm abscisic acid (ABA); indeed stomatal opening initially occurred in this treatment. Thus, ozone appears to be disrupting the ABA‐induced signal transduction pathway for stomatal control thereby reducing the ability of plants to respond to drought. These results have potentially wide‐reaching implications for the functioning of communities under global warming where periods of soil drying and episodes of high vapour pressure deficit are likely to be more severe.  相似文献   

14.
Blood flow interruption is associated with oxygen depletion and loss of factors for function and survival in downstream tissues or cells. Hypoxia and absence of gonadotropins trigger apoptosis and atresia in the ovary. We studied the antioxidant response of follicular cells to plasma deprivation in ovaries dissected from water buffalo. Aliquots of follicular fluid were aspirated from each antral follicle, before and during incubation of the ovaries at 39°C. Urate, ascorbate, retinol and α-tocopherol in the fluid were, titrated by High Performance Liquid Chromatography (HPLC) with spectrophotometric or spectrofluorimetric detection. The total antioxidant capacity of follicular fluid was determined as absorbance decrease, following addition of a source of radical chromophores. The more the incubation progressed, the higher levels of urate, ascorbate and total antioxidant capacity were found. Conversely, changes in concentration of the liposoluble antioxidants were not observed. Ascorbate synthesizing activity in the follicle was demonstrated by detecting the enzyme L-gulono-γ-lactone oxidase in microsomes prepared from granulosa cells. These cells were also analyzed for the expression of the enzyme CPP32. The enzyme level, measured as DEVD-p-nitroanilide cleaving activity, was found related with the immunoreactivity to anti-CPP32 antibodies. Negative correlation between the enzyme activity (which is known to be induced by peroxynitrite) and the follicular level of urate (which scavenges peroxynitrite) was also observed. The amount of nitrotyrosine, a product of peroxynitrite attack on proteins, was measured in follicular fluids by Enzyme Linked ImmunoSorbent Assay (ELISA). This amount was found positively correlated with the CPP32 activity, and negatively correlated with the urate level in follicular fluid. Alterations in concentrations of ascorbate or urate may be associated with oxidative stress during follicular atresia.  相似文献   

15.
Background The expression of fungal allergens is increased by the germination of conidia. We assessed the state of germination of fungal conidia recovered by nasal lavage after environmental exposure. Methods Nasal lavage was performed on twenty adults at three stages: the start of the experiment, after 1 h indoors, and after 1 h outdoors. One half of the lavage liquid was immediately treated to prevent in-vitro germination and stained with periodic acid Schiff (PAS) to enable identification of germinated and ungerminated conidia. The untreated half of the lavage liquid was cultured on nutrient agar plates to enumerate and identify viable fungi. Results PAS staining showed that both ungerminated and germinated conidia, and hyphal fragments, were present in the nasal cavity. The most prevalent fungi recovered were Aspergillus, Alternaria, Cladosporium, Epicoccum, Penicillium, and Yeast species. The number of viable fungi recovered after 1 h indoors was significantly less than after 1 h outdoors (P < 0.01). Conclusions Viable fungi and germinating conidia, in addition to ungerminated conidia and hyphal fragments, were present in the nasal cavity after both indoor and outdoor exposure. This provides novel insight into the pathogenicity of exposure to fungal aeroallergens.  相似文献   

16.
《Free radical research》2013,47(6):417-425
The antioxidant activity of saliva has been investigated in 28 apparently healthy individuals and seven dental patients with periodontal disease. The results show that the major aqueous antioxidant component of whole saliva is uric acid, with lesser contributions from ascorbic acid and albumin. All are present at lower concentrations than those found in the plasma water. The total antioxidant activity (TAA) of saliva correlates (r2 = 0.972) with the concentration of uric acid, which contributes more than 70% of the TAA. Stimulation of salivary flow is associated with increased production of antioxidants. The antioxidant potential of saliva does not appear to be compromised in patients with periodontal disease but this may relate to the antioxidant flow from the gingival crevicular fluid.  相似文献   

17.
The physiological ability to estivate is relevant for the maintenance of population size in the invasive Pomacea canaliculata. However, tissue reoxygenation during arousal from estivation poses the problem of acute oxidative stress. Uric acid is a potent antioxidant in several systems and it is stored in specialized tissues of P. canaliculata. Changes in tissue concentration of thiobarbituric acid reactive substances (TBARS), uric acid and allantoin were measured during estivation and arousal in P. canaliculata. Both TBARS and uric acid increased two-fold during 45 days estivation, probably as a consequence of concomitant oxyradical production during uric acid synthesis by xanthine oxidase. However, after arousal was induced, uric acid and TBARS dropped to or near baseline levels within 20 min and remained low up to 24h after arousal induction, while the urate oxidation product allantoin continuously rose to a maximum at 24h after induction, indicating the participation of uric acid as an antioxidant during reoxygenation. Neither uric acid nor allantoin was detected in the excreta during this 24h period. Urate oxidase activity was also found in organs of active snails, but activity shut down during estivation and only a partial and sustained recovery was observed in the midgut gland.  相似文献   

18.
Plants are exposed to increasing levels of tropospheric ozone concentrations. This pollutant penetrates in leaves through stomata and quickly reacts inside leaves, thus making plants valuable ozone sinks, but at the same time triggers oxidation processes which lead to leaf injuries. To counteract these negative effects, plants produce an array of antioxidants which react with ozone and reactive molecules which ozone generates in the leaf tissues. In this study, we measured the effect of an ozone concentration which is likely to be attained in many areas of the world in the near future (80 ppb) on leaves of the vertical profile of the widespread agroforestry species Populus nigra. Changes in (1) physiological parameters (photosynthesis and stomatal conductance), (2) ozone uptake, (3) emission of volatile organic compounds (VOCs, i.e. isoprene, methanol and other oxygenated compounds), (4) concentration of antioxidant surface compounds, and (5) concentration of phenolic compounds were assessed. The aim was to assess whether the defensive pathways leading to isoprenoids and phenolics formation were induced when a moderate and chronic increment of ozone is not able to damage photosynthesis. No visual injuries and minor changes in physiology and ozone uptake were observed. The emission of isoprene and oxygenated six-carbon (C6) volatiles were inhibited by ozone, whereas methanol emission was increased, especially in developing leaves. We interpret these results as suggesting an ontogenetic shift in ozone-treated leaves, leading to a slower development and a faster senescence. Most surface and phenolic compounds showed a declining trend in concentration from the youngest to the fully expanded leaves. Ozone reduced the concentrations of chlorogenic acid derivatives at the leaf surface, whereas in total leaf extracts a metabolic shift towards few phenolics with higher antioxidant capacity was observed.  相似文献   

19.
Abuja PM 《FEBS letters》1999,446(2-3):305-308
Uric acid and ascorbic acid are important low molecular weight antioxidants in plasma. Their interactions and combined effect on Cu(2+)-catalysed oxidation of human low density lipoprotein were studied in vitro. It was found that uric acid alone becomes strongly prooxidant whenever it is added to low density lipoprotein shortly after the start of oxidation (conditional prooxidant). Ascorbic acid, which is present in human plasma at much lower concentrations (20-60 microM) than urate (300-400 microM), is in itself not a conditional prooxidant. Moreover, ascorbate prevents prooxidant effects of urate, when added to oxidising low density lipoprotein simultaneously with urate, even at a 60-fold molar excess of urate over ascorbate. Ascorbate appears to have the same anti-prooxidant effect with other aqueous reductants, which, besides their antioxidant properties, were reported to be conditionally prooxidant. Such interactions between ascorbate and urate may be important in preventing oxidative modification of lipoproteins in the circulation and in other biological fluids.  相似文献   

20.
Children chronically exposed to high levels of ozone (O(3)), the principal oxidant pollutant in photochemical smog, are more vulnerable to respiratory illness and infections. The specific factors underlying this differential susceptibility are unknown but may be related to air pollutant-induced nasal alterations during postnatal development that impair the normal physiological functions (e.g., filtration and mucociliary clearance) serving to protect the more distal airways from inhaled xenobiotics. In adult animal models, chronic ozone exposure is associated with adaptations leading to a decrease in airway injury. The purpose of our study was to determine whether cyclic ozone exposure induces persistent morphological and biochemical effects on the developing nasal airways of infant monkeys early in life. Infant (180-day-old) rhesus macaques were exposed to 5 consecutive days of O(3) [0.5 parts per million (ppm), 8 h/day; "1-cycle"] or filtered air (FA) or 11 biweekly cycles of O(3) (FA days 1-9; 0.5 ppm, 8 h/day on days 10-14; "11-cycle"). The left nasal passage was processed for light microscopy and morphometric analysis. Mucosal samples from the right nasal passage were processed for GSH, GSSG, ascorbate (AH(2)), and uric acid (UA) concentration. Eleven-cycle O(3) induced persistent rhinitis, squamous metaplasia, and epithelial hyperplasia in the anterior nasal airways of infant monkeys, resulting in a 39% increase in the numeric density of epithelial cells. Eleven-cycle O(3) also induced a 65% increase in GSH concentrations at this site. The persistence of epithelial hyperplasia was positively correlated with changes in GSH. These results indicate that early life ozone exposure causes persistent nasal epithelial alterations in infant monkeys and provide a potential mechanism for the increased susceptibility to respiratory illness exhibited by children in polluted environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号