首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-dimensional structure of a membrane-microtubule complex   总被引:4,自引:3,他引:1       下载免费PDF全文
The unicellular algae Distigma proteus contain a group of aligned microtubules associated with their cell membrane. The association is maintained in isolated membrane fragments. The membrane-microtubule complex also includes a crystalline array of membrane particles. The major peptide component of this array was identified by labeling whole cells with radioiodine. The entire complex of membrane, particles, and microtubules is sufficiently well ordered to permit reconstruction from electron micrographs by Fourier techniques. A three-dimensional model of the membrane array at a nominal resolution of 2.5 nm has been calculated. Some similarities were apparent between lattice spacings in the membrane array and in microtubules. Analysis of these lattice correlations suggests a way in which the array of membrane particles may serve as scaffolding for microtubule attachment.  相似文献   

2.
The cytoskeleton of Crithidia fasciculata consists of a corset of parallel microtubules enclosing the cell body and closely underlying the plasma membrane. Distinct sets of crosslinks appear to connect tubules to each other and to membrane. Our objective is to determine the composition of these crosslinks and to elucidate the basis of this spectacular example of membrane-microtubule interaction. We purified three proteins (designated COP-33, -41, and -61 by their subunit Mr), which were consistently abundant in highly purified cytoskeletons. All three bound strongly to microtubules in vitro, and the first two induced bundles through periodic crosslinking. Polyclonal antibodies against each have been used to try to localize these proteins in thin sections of cells or whole mounts of cytoskeletons. Antibodies to COP-41 bound specifically to glycosomes, organelles that encapsulate many glycolytic enzymes in these protozoa, and COP-41 has been identified as glyceraldehyde 3-P dehydrogenase.  相似文献   

3.
THE CILIARY NECKLACE : A Ciliary Membrane Specialization   总被引:30,自引:19,他引:11       下载免费PDF全文
Cilia, primarily of the lamellibranch gill (Elliptio and Mytilus), have been examined in freeze-etch replicas. Without etching, cross fractures rarely reveal the 9 + 2 pattern, although suggestions of ninefold symmetry are present. In etched preparations, longitudinal fractures through the matrix show a triplet spoke alignment corresponding to the spoke periodicity seen in thin sections. Dynein rows can be visualized along the peripheral microtubules in some preparations. Fracture faces of the ciliary membrane are smooth with few membrane particles, except in the regions adjacent to the basal plate. In the transition region below the plate, a unique particle arrangement, the ciliary necklace, is found. In the Elliptio gill, on fracture face A the necklace is comprised of three well-defined rows or strands of membrane particles that encircle the ciliary shaft. The rows are scalloped and each scallop corresponds to a peripheral doublet microtubule. In thin sections at the level of these particles, a series of champagne-glass structures link the microtubular doublets to the ciliary membrane. The ciliary necklace and this "membrane-microtubule" complex may be involved in energy transduction or the timing of ciliary beat. Comparative studies show that these features are present in all somatic cilia examined including those of the ameboflagellate Tetramitus, sea urchin embryos, rat trachea, and nonmotile cilia of cultured chick embryo fibroblasts. The number of necklace strands differs with each species. The necklace has not been found in rat or sea urchin sperm.  相似文献   

4.
The microtubule cytoskeleton plays a fundamental role in cell organization and membrane traffic in higher eukaryotes. It is well established that molecular motors are involved in membrane-microtubule interactions, but it has also been proposed that nonmotor microtubule-binding (MTB) proteins known as CLIPs (cytoplasmic linker proteins) have basic roles in these processes. We report here the characterization of CLIPR-59, a CLIP-170-related protein localized to the trans-most part of the Golgi apparatus. CLIPR-59 contains an acidic region followed by three ankyrin-like repeats and two CLIP-170-related MTB motifs. We show that the 60-amino acid-long carboxy-terminal domain of CLIPR-59 is necessary and sufficient to achieve Golgi targeting, which represents the first identification of a membrane targeting domain in a CLIP-170-related protein. The MTB domain of CLIPR-59 is functional because it localizes to microtubules when expressed as a fragment in HeLa cells. However, our results suggest that this domain is normally inhibited by the presence of adjacent domains, because neither full-length CLIPR-59 nor a CLIPR-59 mutant missing its membrane-targeting region localize to microtubules. Consistent with this observation, overexpression of CLIPR-59 does not affect the microtubule network. However, CLIPR-59 overexpression strongly perturbs early/recycling endosome-TGN dynamics, implicating CLIPR-59 in the regulation of this pathway.  相似文献   

5.
Phacus trypanon Pochmann is a photosynthetic euglenoid that is known to have typical characteristics of the Euglenales. The ultrastructure of P. trypanon was examined with particular attention being given to the striated fibers of both the basal body complex and feeding apparatus and microtubule arrangement. As in other euglenoids, the basal body complex was associated with the striated and fibrous fibers. The singlet microtubules at the reservoir level were arranged into doublets by a successive linkage of the existing adjacent microtubules at the transition level, and doublets were rearranged into a three-over-two pattern of cytoskeletal microtubules that were continuous with the subpellicular microtubules. The most striking feature of the feeding apparatus of P. trypanon was the prominent striated fiber that originated from the reservoir membrane and became arc shaped with electron-opaque bands at the lower canal level. The reinforcing microtubular band (MTR)/pocket of P. trypanon was associated with a prominent striated fiber that may act as a nucleating site for the semicircular microtubules, which surround the canal. The striated fiber and MTR/pocket are usually only found in those taxa that have a well-developed feeding apparatus and lack plastids; therefore, we speculate that the ingestion apparatus is functional in P. trypanon , which likely diverged in the early history of the photosynthetic green euglenoids.  相似文献   

6.
Calmodulin-microtubule association in cultured mammalian cells   总被引:11,自引:5,他引:6       下载免费PDF全文
A Triton X-100-lysed cell system has been used to identify calmodulin on the cytoskeleton of 3T3 and transformed SV3T3 cells. By indirect immunofluorescence, calmodulin was found to be associated with both the cytoplasmic microtubule complex and the centrosomes. A number of cytoplasmic microtubules more resistant to disassembly upon either cold (0-4 degrees C) or hypotonic treatment, as well as following dilution have been identified. Most of the stable microtubules appeared to be associated with the centrosome at one end and with the plasma membrane at the other end. These microtubules could be induced to depolymerize, however, by micromolar Ca++ concentrations. These data suggest that, by interacting directly with the microtubule, calmodulin may influence microtubule assembly and ensure the Ca++-sensitivity of both mitotic and cytoplasmic microtubules.  相似文献   

7.
东方扁虾精子的超微结构   总被引:1,自引:0,他引:1  
利用电镜研究了东方扁虾(Thenus orientalis)精子的形态和结构。精子由核、膜复合物区和顶体区3部分组成。核内含非浓缩的染色质、微管及细纤维丝,外被核膜;5~6条辐射臂自核部位伸出,臂内充满微管。膜复合物区位于核与顶体之间,由许多膜片层结构及其衍生的囊泡共同组成。顶体区由顶体囊和围顶体物质组成,顶体结构复杂,由顶体帽、内顶体物质和外顶体物质等构成;围顶体物质呈细颗粒状,主要分布于顶体囊  相似文献   

8.
Summary We have studied the organization of the cortex in fertilized eggs ofNassarius reticulatus by examining rotary-shadowed whole mounts of isolated cortices in the transmission electron microscope. The following components were distinguished: (a) the plasma membrane, with clathrin-coated areas and coated pits, (b) microfilaments and microtubules, and (c) a tubulovesicular network of endoplasmic reticulum. Microfilaments were identified by labeling with heavy meromyosin, and microtubules with a monoclonal anti-tubulin antibody, using both immunofluorescence microscopy and immunogold labeling for transmission electron microscopy. The microfilaments are organized in a network parallel to and closely associated with the plasma membrane, with typical Y- and X-shaped intersections. The endoplasmic reticulum is associated with this microfilamentous lattice. The microtubules also run parallel to the plasma membrane, but they are located at a greater distance, as can be inferred from stereo images. In the uncleaved egg, numerous microtubules are present in the egg cortex. Shortly before polar lobe formation, at the onset of mitosis, the microtubules disappear almost entirely. They reappear again at the end of first cleavage, as the polar lobe is being resorbed. The synthesis of cortical microtubules at this stage appears to depend on the presence of microtubule-organizing centers in the animal hemisphere of the egg, since microtubules do not reappear in isolated polar lobes. Clathrin-coated areas are present in both the animal and vegetal hemisphere before polar lobe formation. During mitosis, the clathrin-coated plaques and pits are found almost exclusively in the animal hemisphere. After resorption of the polar lobe, at the two-cell stage, no clathrin-coated areas were found at all.  相似文献   

9.
Campellone KG  Webb NJ  Znameroski EA  Welch MD 《Cell》2008,134(1):148-161
The Arp2/3 complex is an actin nucleator that plays a critical role in many cellular processes. Its activities are regulated by nucleation-promoting factors (NPFs) that function primarily during plasma membrane dynamics. Here we identify a mammalian NPF called WHAMM (WASP homolog associated with actin, membranes, and microtubules) that localizes to the cis-Golgi apparatus and tubulo-vesicular membrane transport intermediates. The modular organization of WHAMM includes an N-terminal domain that mediates Golgi membrane association, a coiled-coil region that binds microtubules, and a WCA segment that stimulates Arp2/3-mediated actin polymerization. Overexpression and depletion studies indicate that WHAMM is important for maintaining Golgi structure and facilitating anterograde membrane transport. The ability of WHAMM to interact with microtubules plays a role in membrane tubulation, while its capacity to induce actin assembly promotes tubule elongation. Thus, WHAMM is an important regulator of membrane dynamics functioning at the interface of the microtubule and actin cytoskeletons.  相似文献   

10.
Membranous organelles interact with a wide variety of cytoskeletal proteins that allow them to be organized into dynamic, yet stable, structures with distinct subcellular addresses. This review provides an up-to-date summary of the motor enzymes and membrane-microtubule crosslinking proteins that have been implicated in this process, and discusses the potential impact membrane anchoring may have on cellular architecture.  相似文献   

11.
Summary During an earlier investigation, microtubules were observed at the periphery of invasion processes in the developing syncytial tapetum ofTradescantia virginiana L. They were also associated with membranous sacs that accumulate adjacent to tetrads, with putative fusion sites where the tapetal plasmodium is initiated, and, in postmeiotic stages, with the perispore membrane that encloses the developing spore cells. Colchicine was administered to developing flower buds to investigate the roles of these microtubules. The results indicate that microtubules neither initiate nor guide the tapetal invasion of the loculus. The treatments, however, resulted in absence of cell coat from invasion processes and prevention of cell fusion. They also inhibited polarized migration of membrane sacs and removed the associated microtubules. The development of an organized secretory apparatus at the perispore membrane was disrupted, with subsequent disordered deposition of sporopollenin in the extracellular spaces of the partially-fused plasmodium. The results suggest that microtubules participate in the formation and internal spatial organization of the tapetal plasmodium, and establishment of a secretory surface that normally produces sporopollenin at the tapetum-microspore interface.  相似文献   

12.
Summary The structure and organization of the cytoskeleton in the vegetative cell of germinated pollen grains and pollen tubes ofPyrus communis was examined at the ultrastructural level via chemical fixation and freeze substitution, and at the light microscopic level with the aid of immunofluorescence of tubulin and rhodamine-phalloidin.Results indicate that cortical microtubules and microfilaments, together with the plasma membrane, form a structurally integrated cytoskeletal complex. Axially aligned microtubules are present in cortical and cytoplasmic regions of the pollen grain portion of the cell and the distal region of the pollen tube portion. Cytoplasmic bundles of microfilaments are found in association with elements of endoplasmic reticulum and vacuoles. Axially aligned microfilaments are also found in this region, associated with and independent of the microtubules. Microtubules are lacking in the subapical region where short, axially aligned microfilaments are found in the cell cortex. In the apical region, which also lacks microtubules, a 3-dimensional network of short microfilaments occurs. Microfilaments, but not microtubules, appear to be associated with the vegetative nucleus.  相似文献   

13.
Despite the absence of a conspicuous microtubule-organizing centre, microtubules in plant cells at interphase are present in the cell cortex as a well oriented array. A recent report suggests that microtubule nucleation sites for the array are capable of associating with and dissociating from the cortex. Here, we show that nucleation requires extant cortical microtubules, onto which cytosolic gamma-tubulin is recruited. In both living cells and the cell-free system, microtubules are nucleated as branches on the extant cortical microtubules. The branch points contain gamma-tubulin, which is abundant in the cytoplasm, and microtubule nucleation in the cell-free system is prevented by inhibiting gamma-tubulin function with a specific antibody. When isolated plasma membrane with microtubules is exposed to purified neuro-tubulin, no microtubules are nucleated. However, when the membrane is exposed to a cytosolic extract, gamma-tubulin binds microtubules on the membrane, and after a subsequent incubation in neuro-tubulin, microtubules are nucleated on the pre-existing microtubules. We propose that a cytoplasmic gamma-tubulin complex shuttles between the cytoplasm and the side of a cortical microtubule, and has nucleation activity only when bound to the microtubule.  相似文献   

14.
Abnormal manchette development in spermatids of azh/azh mutant mice   总被引:4,自引:0,他引:4  
A study of manchette development during spermiogenesis in azh/azh mutant mice was carried out by thin-section transmission electron microscopy with the goal of determining which of the initial steps in spermatid development are aberrant. In the homozygous mutant, spermatogenesis was quantitatively normal; but 100% of the sperm nuclei produced had abnormal shapes. The first defect, observed in steps 8-9, was the abnormal positioning of many manchette microtubules. These microtubules were directed towards regions of the plasma membrane not normally associated with manchette formation, in addition to being located at the caudal rim of the acrosome in the normal region of manchette formation. At steps 10-12, sheets of manchette microtubules were often in ectopic positions along the plasma membrane, rather than in association with the nuclear membrane as well. The fine structural appearance of the manchette was generally normal; the defect appeared to be in its positioning within the cell. In many step 8-10 spermatids nuclear invaginations and evaginations were observed, always associated with irregularities in the position of some of the manchette microtubules; these illustrate the capacity of manchette microtubules to deform nuclear shape. The nuclear irregularities remained throughout spermiogenesis. These observations are consistent with the hypothesis that the manchette is involved in at least some aspects of sperm nuclear shaping and that the improper positioning of manchette formation is a likely candidate for the primary abnormality resulting from a defective allele at the azh locus.  相似文献   

15.
Thin-section electron microscope analysis of rat and rabbit-cultured granulosa cells treated with concanavalin A (Con A) at 37 degrees C revealed coordinated changes in the cytoplasmic disposition of microfilaments, thick filaments, and microtubules during cap formation and internalization of lectin-receptor complexes. Con A-receptor clustering is accompanied by an accumulation of subplasmalemmal microfilaments which assemble into a loosely woven ring as patches of receptor move centrally on the cell surface. Periodic densities appear in the microfilament ring which becomes reduced in diameter as patches coalesce to form a single central cap. Microtubules and thick filaments emerge associated with the capped membrane. Capping is followed by endocytosis of the con A-receptor complexes. During this process, the microfilament ring is displaced basally into the cytoplasm and endocytic vesicles are transported to the paranuclear Golgi complex along microtubules and thick filaments. Eventually, these vesicles aggregate near the cell center where they are embedded in a dense meshwork of thick filaments. Freeze-fracture analysis of Con A-capped granulosa cells revealed no alteration in the arrangement of peripheral intramembrane particles but large, smooth domains were conspicuous in the capped region of the plasma membrane. The data are discussed with reference to the participation of microtubules and microfilaments in the capping process.  相似文献   

16.
Cortical microtubule arrays are highly organized networks involved in directing cellulose microfibril deposition within the cell wall. Their organization results from complex interactions between individual microtubules and microtubule-associated proteins. The precise details of these interactions are often not evident using optical microscopy. Using high-resolution scanning electron microscopy, we analyzed extensive regions of cortical arrays and identified two spatially discrete microtubule subpopulations that exhibited different stabilities. Microtubules that lay adjacent to the plasma membrane were often bundled and more stable than the randomly aligned, discordant microtubules that lay deeper in the cytoplasm. Immunolabeling revealed katanin at microtubule ends, on curves, or at sites along microtubules in line with neighboring microtubule ends. End binding 1 protein also localized along microtubules, at microtubule ends or junctions between microtubules, and on the plasma membrane in direct line with microtubule ends. We show fine bands in vivo that traverse and may encircle microtubules. Comparing confocal and electron microscope images of fluorescently tagged arrays, we demonstrate that optical images are misleading, highlighting the fundamental importance of studying cortical microtubule arrays at high resolution.  相似文献   

17.
The synthesis of crystalline cellulose microfibrils in plants is a highly coordinated process that occurs at the interface of the cortex, plasma membrane, and cell wall. There is evidence that cellulose biogenesis is facilitated by the interaction of several proteins, but the details are just beginning to be understood. In particular, sucrose synthase, microtubules, and actin have been proposed to possibly associate with cellulose synthases (microfibril terminal complexes) in the plasma membrane. Differentiating tracheary elements of Zinnia elegans L. were used as a model system to determine the localization of sucrose synthase and actin in relation to the plasma membrane and its underlying microtubules during the deposition of patterned, cellulose-rich secondary walls. Cortical actin occurs with similar density both between and under secondary wall thickenings. In contrast, sucrose synthase is highly enriched near the plasma membrane and the microtubules under the secondary wall thickenings. Both actin and sucrose synthase lie closer to the plasma membrane than the microtubules. These results show that the preferential localization of sucrose synthase at sites of high-rate cellulose synthesis can be generalized beyond cotton fibers, and they establish a spatial context for further work on a multi-protein complex that may facilitate secondary wall cellulose synthesis.  相似文献   

18.
Summary Quantitative ultrastructural analysis of mid-lactation rat mammary gland demonstrated that cytoplasmic microtubules were present in nearly all secretory epithelial cells examined. Most microtubules were oriented perpendicular to the apical membrane and were found in the apical and medial portions of the cell cytoplasm. There was no statistical difference between the number of microtubules associated with vesicles and the number that were not. Most vesicles which were in contact with microtubules were small (50 to 150 nm), appeared electron lucent and were located in a supra-Golgi complex position. Many of these vesicles were seen to be aligned along the axis of longitudinally sectioned microtubules oriented perpendicular to the apical plasma membrane. As measured by a colchicine binding assay, the total tubulin content of mammary tissue from mid-lactation rats was about 107 g/100 mg wet weight. Approximately 19% of the total tubulin was in polymerized form. This study provides evidence that microtubules may be involved in guiding transport of small secretory vesicles to the apical regions of cells for exocytosis.  相似文献   

19.
SYNOPSIS. When heat-synchronized cultures of Tetrahymena pyriformis , amicronucleate strain GL, were examined by electron microscopy, intramacronuclear microtubules were observed in dividing cells. These tubules have a diameter of 180–230 A and occur either singly or packed together in bundles. They are predominantly associated with outpocketings and invaginations of the nucleus. Sections as well as negatively stained preparations of isolated macronuclear envelopes indicate that the microtubules are inserted at the inner nuclear membrane.
The findings suggest that microtubules of the spindle type participate in the process of macronuclear division.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号