首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The N-linked oligosaccharides were released from purified human intercellular adhesion molecule (ICAM)-3 by hydrazinolysis. Approximately 6 mol of oligosaccharides were released from 1 mol of ICAM-3. The oligosaccharides reduced with NaB[3H]4 were separated into neutral and acidic fractions by paper electrophoresis. Most of the acidic oligosaccharides were converted to neutral ones by digestion with sialidase, indicating that they are sialyl derivatives. The neutral and sialidase-treated acidic oligosaccharides were fractionated by serial lectin column chromatography followed by Bio-Gel P-4 column chromatography. Structural studies of each oligosaccharide by sequential exo- and endo-glycosidase digestion and by methylation analysis revealed that N-linked oligosaccharides of ICAM-3 are mainly of tri- and tetra-antennary complex-type, about 60% of which contain two to three poly N-acetyllactosamine chains terminated with the type 1 structure and those without the type 1 structure per oligosaccharide. In addition, a small amount of the high mannose-type oligosaccharide with six alpha-mannose residues, which could act as a ligand for the dendritic cell-specific ICAM-3 grabbing nonintegrin, was detected.  相似文献   

2.
Leu-CAMs (CD11/CD18) consisting of LFA-1, Mac-1, and p150/95 are leukocyte cell surface glycoproteins that are involved in various leukocyte functions. The asparagine-linked sugar chains were released as oligosaccharides from Leu-CAMs by hydrazinolysis. About 12 mol of sugar chains was released from 1 mol of Leu-CAMs. These sugar chains were converted to radioactive oligosaccharides by reduction with sodium borotritide and separated into neutral and acidic fractions by paper electrophoresis. All of the acidic oligosaccharides were converted to neutral ones by digestion with sialidase, indicating that they are sialyl derivatives. The neutral and sialdase-treated acidic oligosaccharides were fractionated by chromatography on lectin columns followed by Bio-Gel P-4 column chromatography. Structural studies of each oligosaccharide by sequential exo- and endoglycosidase digestion and by methylation analysis revealed that Leu-CAMs contain mainly high mannose type and high molecular weight complex type sugar chains. The latter sugar chains were of bi-, tri-, and tetraantennary complex types with the Gal beta 1----4(Fuc alpha 1----3)GlcNAc beta 1----and/or the Gal beta 1----3GlcNAc beta 1----groups together with the Gal beta 1----4GlcNAc group in their outer-chain moieties. In addition to these sugar chains, a small amount of monoantennary complex type and hybrid type sugar chains was found in Leu-CAMs. Furthermore, analysis of the asparagine-linked sugar chains released from the beta-subunit of Leu-CAMs by a series of lectin chromatography showed that subunit-specific glycosylation is not observed between the alpha- and beta-subunits of Leu-CAMs.  相似文献   

3.
We have examined and compared the host-cell-dependent glycosylation of the G glycoprotein of vesicular-stomatitis virus (Hazelhurst strain) and the E1 and E2 glycoproteins of Sindbis virus replicated by baby-hamster kidney, chicken-embryo fibroblast and mouse L929 monolayer cell cultures. The results of endo-beta-N-acetylglucosaminidase H digestion of viral proteins labelled with [3H]mannose or leucine and Pronase-digested glycopeptides labelled with [3H]mannose indicated that both the G protein and the E1 protein contained a similar mixture of endoglycosidase-resistant oligosaccharides of the complex acidic type and less extensively processed endoglycosidase-sensitive oligosaccharides of the neutral or hybrid type, with a relatively greater content of the endoglycosidase-sensitive oligosaccharides for virus replicated in the chicken as against hamster or mouse cells. A large fraction of the G protein and the majority of the E1 proteins from the mammalian host cells contained acidic-type oligosaccharides at both glycosylation sites, whereas most of the G and E1 glycoproteins from the avian host cells and essentially all of the E2 protein from all three host-cell types contained an acidic-type oligosaccharide at one site and neutral- or hybrid-type oligosaccharide at the other site. The relative increase in neutral- and hybrid-type oligosaccharides with five-mannose core structures observed for the G and E1 proteins of virus released from the avian host cells suggested that two specific steps in oligosaccharide processing (mediated by alpha-mannoside II and N-acetylglucosaminyltransferase I) were less efficient at one of the glycosylation sites of the vesicular-stomatitis-virus G protein and Sindbis-virus E1 protein in the avian as against mammalian host cells.  相似文献   

4.
Among the four acidic oligosaccharide fractions obtained by paper electrophoresis of the hydrazinolysate of the plasma membrane glycoproteins of rat erythrocytes, one was further separated into two by prolonged paper electrophoresis using 120-cm paper. Three fractions were mixtures of monosialyl oligosaccharides and two of disialyl oligosaccharides. After desialylation, their neutral portions were fractionated by Bio-Gel P-4 column chromatography and by affinity chromatography using a Con A-Sepharose column. Structural studies of the neutral oligosaccharides, thus obtained, indicated that at least 26 different complex-type oligosaccharides are present as a neutral portion of the acid oligosaccharides. Structurally they can be classified into bi-, tri-, and tetraantennary oligosaccharides with Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4(±Fucα1 → 6)GlcNAcOT as their common cores. Galβ1 → 3Galβ1 → 4GlcNAc, Siaα2 → 3Galβ1 → 4GlcNAc, Siaα2 → 6Galβ1 → 4GlcNAc, and a series of Siaα2 → (Galβ1 → 4GlcNAcβ1 → 3)n · Galβ1 → 4GlcNAc were found as their outer chains. Their structures together with the structures of neutral oligosaccharides reported in the preceding paper indicated that the outer chain moieties of the asparagine-linked sugar chains of rat erythrocyte membrane glycoproteins are formed not by random concerted action of glycosyl transferases in Golgi membrane but by the mechanism in which the formation of one outer chain will regulate the elongation of others.  相似文献   

5.
A method was developed for obtaining detailed oligosaccharide profiles from [2-3H]mannose- or [6-3H]fucose-labeled cellular glycoproteins. The oligosaccharides were segregated first according to class, using endo-beta-N-acetylglucosaminidase H (Endo H) to release the high mannose species, and then with peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase (PNGase F), which provided a complete array of complex oligosaccharide chains. The high mannose and complex oligosaccharides were fractionated subsequently according to net negative charge on QAE-Sephadex. High resolution gel filtration on TSK HW-40(S) resolved the neutral high mannose population into species of the type Man9-5 N-acetylglucosamine. Desialylation of the complex chains with neuraminidase allowed resolution of these oligosaccharides into their corresponding asialo bi-, tri-, and tetraantennary species. Fibroblasts from normal and cystic fibrosis cells were analyzed for differences in their glycosylation patterns using these techniques. Over 95% of the [2-3H]mannose-labeled glycoproteins were susceptible to the combined glycosidase digestions, but no difference in either the high mannose or complex oligosaccharides were observed. Nonetheless, the methodology developed in this study provides an important new approach for investigating oligosaccharides of different cell types and variants of the same type. Metabolic changes induced in cellular glycoproteins, as illustrated by use of the processing inhibitor swainsonine, demonstrated the versatility of this procedure for investigating questions relating to glycoprotein structure and enzyme specificity. Thus, by employing a variation of this method, it was possible to confirm the location of fucose in the core of PNGase F-released hybrid oligosaccharides by the subsequent release with Endo H of the disaccharide, fucosyl-N-acetylglucosamine.  相似文献   

6.
The major exoglucanase (1,3-beta-D-glucan glucanohydrolase, EC 3.2.1.39) secreted by Saccharomyces cerevisiae contains protein, mannose and phosphate in a molar ratio of 1:27:1. When digested with endo-beta-N-acetylglucosaminidase H (EC 3.2.1.96) it sequentially released two asparagine-linked oligosaccharide chains. Oligosaccharides were fractionated into a neutral and acidic component, each one accounting for 50% of the total carbohydrate. The neutral oligosaccharide consisted of a mixture of three homologues ranging from GlcNAc-(Man)12 to GlcNAc-(Man)14. The acidic carbohydrate was, in turn, split into two components. The major one (45% of the initial material) contained a phosphodiester bond and released only mannose when subjected to mild acid hydrolysis. From the filtration pattern, it was shown to be a mixture of oligosaccharides ranging from GlcNAc-(Man)11-P to GlcNAC-(Man)13-P. The minor phosphorylated component, which represented the residual carbohydrate (5%), contained a phosphomonoester bond. It was also heterogeneous in size, the several homologues having one mannose less than their counterparts from the phosphodiester oligosaccharide. These results clearly indicate that the addition of an outer chain of carbohydrate is not a requirement for the externalization of yeast glycoproteins.  相似文献   

7.
gamma-Glutamyltranspeptidase purified from human kidneys contains 4-5 asparagine-linked sugar chains in each molecule. The sugar chains were released from the polypeptide portion of the enzyme by hydrazinolysis as oligosaccharides and separated by paper electrophoresis into one neutral and two acidic fractions. By sequential exoglycosidase digestion and methylation analysis, the neutral fraction, which comprised 69% of total oligosaccharides, was shown to be a mixture of bisected bi- and triantennary complex-type sugar chains with and without a fucose on the proximal N-acetylglucosamine residue and with Gal beta 1----4GlcNAc and/or Gal beta 1----4(Fuc alpha 1----3)GlcNAc groups in their outer chain moieties. The acidic oligosaccharide fractions were mixtures of mono- and disialyl derivatives of bisected triantennary complex-type oligosaccharides with Gal beta 1----4GlcNAc and/or Gal beta 1----4(Fuc alpha 1----3)GlcNAc group in their outer chain moieties. Some of the outer chains of the acidic oligosaccharides were considered to be sialylated X-antigenic structures.  相似文献   

8.
The carbohydrate moieties of gamma-glutamyltranspeptidase purified from rat kidney were released as oligosaccharides by hydrazinolysis. Fractionation of the oligosaccharide mixture by paper electrophoresis and Bi-Gel P-4 column chromatography and structural study of each component by sequential exoglycosidase digestion in combination with methylation analysis and periodate oxidation have revealed that it is composed of 23 neutral oligosaccharides, monosialyl derivatives of 67 oligosaccharides, disialyl derivatives of 62 oligosaccharides, and trisialyl derivatives of 5 oligosaccharides. The neutral oligosaccharides are either high mannose type or biantennary complex type, and the acidic oligosaccharides are bi-, tri-, and tetranntennary complex type sugar chains. Most of the complex type sugar chains contain an N-acetylglucosamine residue at the C-4 position of the beta-mannosyl residue of their trimannosyl core. Another characteristic feature of these complex type sugar chains is that they are enriched with nonreducing terminal beta-N-acetylglucosamine residues.  相似文献   

9.
Human platelet membrane glycoproteins IIb (GPIIb) and IIIa (GPIIIa), which have been proposed to be subunits of a receptor for fibrinogen, were purified from Triton X-100-solubilized platelet membranes by affinity chromatography on a concanavalin A (Con A)-Sepharose column followed by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Compositional analyses of the purified glycoproteins showed that GPIIb and GPIIIa contain 15% and 18% carbohydrate by weight, respectively, which consists of galactose, mannose, glucosamine, fucose, and sialic acid. This suggested that these glycoproteins contained N-linked carbohydrate chains. The carbohydrate chains were released from each glycoprotein by hydrazinolysis and then fractionated by ion-exchange chromatography on a Mono Q column. From each glycoprotein, mono-, di-, and trisialylated and neutral oligosaccharide fractions were obtained. The structures of these oligosaccharides were investigated by means of compositional and methylation analyses and digestion by exoglycosidase, and their reactivities to immobilized lectins were also examined. The neutral oligosaccharides, which comprised about 14% of the total oligosaccharides released from GPIIb and about 52% of that from GPIIIa, were found to be of the high mannose-type, in that they contained 5 or 6 mannose residues. On the other hand, a major part of the acidic oligosaccharides was found to consist of typical bi- and triantennary complex-type sugar chains, and much smaller amounts of tetraantennary complex-type sugar chains, and complex-type sugar chains with a fucosyl residue at a N-acetylglucosamine residue in the peripheral portion or a bisecting N-acetylglucosamine at a beta-mannosyl residue in the core portion were also detected. In conclusion, we found that GPIIb contained mainly complex-type sugar chains, whereas high mannose-type sugar chains were the predominant carbohydrate units in GPIIIa, and that the detected differences in the carbohydrate moieties of GPIIb and GPIIIa were quantitative but not qualitative.  相似文献   

10.
Structural study of the sugar chains of human platelet thrombospondin   总被引:2,自引:0,他引:2  
The asparagine-linked sugar chains of human platelet thrombospondin were released as oligosaccharides by hydrazinolysis. About 12 mol of sugar chains was released from one thrombospondin molecule. This was converted to radioactive oligosaccharides by sodium borotritide reduction after N-acetylation, and separated into one neutral and four acidic fractions by paper electrophoresis. More than 90% of the oligosaccharides were recovered in the acidic fraction. The acidic oligosaccharides were mostly converted to neutral oligosaccharides by sialidase treatment, indicating that they are sialyl derivatives. The neutral and sialidase-treated acidic oligosaccharides were further fractionated by Bio-Gel P-4 column chromatography. Structural study of each oligosaccharide by sequential exoglycosidase digestion and methylation analysis revealed that the thrombospondin contains mono-, bi-, tri-, and tetraantennary complex-type sugar chains in addition to a small amount of high-mannose type. Approximately 70% of the complex-type sugar chains was fucosylated at asparagine-linked N-acetylglucosamine residue and 19% of the biantennary complex-type sugar chains was bisected.  相似文献   

11.
The asparagine-linked sugar chains of human apolipoprotein B-100 were liberated from the polypeptide portion by hydrazinolysis followed by N-acetylation and NaB3H4 reduction. Their structures were elucidated by sequential exoglycosidase digestion in combination with methylation analysis after fractionation by paper electrophoresis and gel permeation chromatography. One neutral and two acidic fractions were obtained by paper electrophoresis in a molar ratio of 7:8:5. The neutral fraction contained high-mannose type oligosaccharides consisting of Man5GlcNAc2 to Man9GlcNAc2. The acidic fractions contained monosialylated and disialylated biantennary complex type oligosaccharides. As minor components in the monosialylated fraction, biantennary complex-type oligosaccharides which were absent one terminal galactose residue, monoantennary complex type, and hybrid type oligosaccharides were detected. Apolipoprotein B-100 was calculated to contain 5-6 mol of high-mannose type and 8-10 mol of complex type oligosaccharides per mole protein.  相似文献   

12.
A V Le  D Doyle 《Biochemistry》1985,24(22):6238-6245
The H-2K and H-2D proteins encoded by the K and D region of the major histocompatibility complex of the mouse were isolated by immunoprecipitation with specific antisera and resolved by two-dimensional gel electrophoresis. Of these two polypeptides, the H-2Dk glycoproteins isolated from macrophages of C3H/HeHa mice exhibit distinct cell surface and cytoplasmic forms although they share a strong degree of homology in the polypeptide backbone. Structurally they differ in their oligosaccharide structures. The structure of the oligosaccharides on the intracellular forms is of the high mannose type while the same structures on the cell surface forms are of the complex type. In the absence of all three oligosaccharide side chains, the unglycosylated polypeptides are expressed on the cell surface. In contrast, polypeptides containing one, two, or all three oligosaccharide side chains of the high mannose type are not transported to the cell surface. Cell surface expression of these glycoproteins requires processing of the oligosaccharide side chains from the high mannose form to the complex type. However, not all oligosaccharide antennae have to be terminally modified since H-2Dk glycoproteins synthesized in the presence of oligosaccharide-processing enzyme inhibitors such as swainsonine or monensin are also transported to the cell surface. H-2Dk glycoproteins containing oligosaccharide structures of the complex type but lacking terminal sialic acids are found on the cell surface, suggesting that sialylation is not required for transport. These results indicate that the oligosaccharide structures of the H-2Dk glycoproteins act to influence their cellular distribution.  相似文献   

13.
Cathepsins B and H from rat liver contain one asparagine-linked sugar chain in each molecule. The sugar chains were liberated from the polypeptide portions by hydrazinolysis followed by N-acetylation and NaB3H4 reduction. Paper electrophoresis of the radioactive oligosaccharide fractions revealed that they were mixtures of neutral oligosaccharides only. After fractionation by gel filtration the structure of each oligosaccharide was studied by sequential exoglycosidase digestion in combination with methylation analysis. The sugar chain of cathepsin H was a high mannose type oligosaccharide which varied in size from 5 to 9 mannose residues; on the other hand the major oligosaccharide of cathepsin B was a tetrasaccharide whose structure was Manalpha 1----6Manbeta 1----4GlcNAcbeta 1----4GlcNAc.  相似文献   

14.
The asparagine-linked sugar chains of the plasma membrane glycoproteins of rat erythrocytes were released as oligosaccharides by hydrazinolysis and labeled by NaB3H4 reduction. The radioactive oligosaccharides were separated into a neutral and at least four acidic fractions by paper electrophoresis. The neutral oligosaccharide fraction was separated into at least 11 peaks upon Bio-Gel P-4 column chromatography. Structural studies of them by sequential exoglycosidase digestion in combination with methylation analysis revealed that they were a mixture of three high mannose-type oligosaccharides and at least 11 complex type oligosaccharides with Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4(±Fucα1 → 6)GlcNAc as their cores and Galβ1 → 4GlcNAc, Galβ1 → 3Galβ1 → 4GlcNAc, and various lengths of Galβ1 → 4GlcNAc repeating chains in their outer chain moieties. Most of the complex-type Oligosaccharides were biantennary, and the tri- and tetraantennary Oligosaccharides contain only the Galβ1 → 3Galβ1 → 4GlcNAc group in their outer chain moieties.  相似文献   

15.
The carbohydrate moieties of human urinary ribonuclease UL   总被引:2,自引:0,他引:2  
Ribonuclease UL purified from pooled human urine contains approximately 20.7% of neutral sugar and 7.8% of aminosugar. All sugars were quantitatively released as oligosaccharides on hydrazinolysis. The oligosaccharides were converted to tritium-labeled oligosaccharides on reduction with NaB3H4. The radioactive oligosaccharide fraction was separated into a neutral and an acidic fraction on paper electrophoresis. All oligosaccharides in the acidic fraction could be converted to neutral oligosaccharides with the release of one sialic acid residue by sialidase digestion. Both fractions were shown to be mixtures of more than fourteen oligosaccharides by gel permeation chromatography. Structural studies on these oligosaccharides involving sequential exoglycosidase digestion in combination with methylation analysis revealed that ribonuclease UL contains sialylated and non-sialylated mono, bi-, tri-, and tetraantennary complex type sugar chains with N-acetyllactosamine outer chains, and tri- and tetraantennary complex type sugar chains with various numbers of Gal beta 1----4GlcNAc beta 1----3Gal beta 1----4GlcNAc beta 1----outer chains. An important finding was that all sialic acid residues in the acidic oligosaccharides only occur as the Sia alpha 2----6Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3 group. Both fucosylated and non-fucosylated trimannosyl cores were found among the asparagine-linked sugar chains of ribonuclease UL.  相似文献   

16.
Biosynthesis of alpha-galactosidase A in cultured Chang liver cells   总被引:4,自引:0,他引:4  
An investigation of the structure and biosynthesis of alpha-galactosidase A (alpha-D-galactoside glycohydrolase, EC 3.2.1.22) and its N-linked oligosaccharide chains was undertaken by metabolic labeling of Chang liver cells with [2-3H]mannose, immunoprecipitation of the activity, and examination of the resulting immunoprecipitates. From cells pulse labeled for 3 h, two radioactive bands with Mr = 58,000 and 49,000 were detected by SDS-gel electrophoresis; following a 20-h chase, only the Mr = 49,000 band was observed. Examination of the oligosaccharide fraction derived from pulse-labeled enzyme revealed that 18% of the asparagine-linked oligosaccharides were complex and 82% were high-mannose type. After a 20-h chase, 48% of the oligosaccharides were complex and 52% were high mannose. The high-mannose oligosaccharides of alpha-galactosidase A immunoprecipitated from both pulsed and pulse-chased cells had the same mobilities as Man8-9GlcNAc on thin-layer chromatography and Bio-Gel P-4. Two fractions of complex glycopeptides derived from the alpha-galactosidase A of pulsed and pulse-chased cells had the same migration on Bio-Gel P-4 as glucose oligomers containing 14 and 19-39 glucose units. Based on their apparent size and their behavior on concanavalin A-Sepharose, the complex oligosaccharides are believed to be composed of tri- and/or tetraantennary structures.  相似文献   

17.
A sensitive and quantitative method for the structural analysis of oligosaccharide was established for the glycoform analysis of glycoproteins. In this study,N-linked oligosaccharides of human IgG and bovine transferrin were analyzed for the evaluation of the method. Carbohydrate moiety of glycoprotein was released by hydrazinolysis and purified by paper chromatography. The oligosaccharides were labeled with a fluorescent dye, 2-aminobenzamide, for the enhancement of detection sensitivity. Sialylated (acidic) oligosaccharides were separated from neutral oligosaccharide by employing a strong anion-exchange column (MonoO) followed by the treatment with sialidase. Enzymatically desialyated fractions and neutral fractions of oligosaccharides were applied to normal-phase HPLC to resolve the peaks according to glucose unit (GU). The structure of separated molecules was further determined by sequential digestion with exoglycosidases. As a result, disialylated biantennary complextype oligo saccharide was found to be a major sugar chain in bovine transferrin (63%). In human IgG, core fucosylated asialobiantennary complex oligosaccharides were dominant. These results coincided well with reported results.  相似文献   

18.
Chromatographic methods were developed for the separation and characterization of acidic (sialylated) and neutral (asialo-complex and high-mannose) oligosaccharides released from glycoproteins with peptide N-glycosidase F. endo-beta-N-acetylglucosaminidase F and endo-beta-N-acetylglucosaminidase H using a carbohydrate analyzer (Dionex BioLC). All the carbohydrate separations were carried out on a polymeric pellicular anion-exchange column HPIC-AS6/CarboPac PA-1 (Dionex) using only two eluants namely, 0.5 M NaOH and 3% acetic acid/NaOH pH 5.5, which were mixed with water to generate various gradients. Developed conditions for quantitative detection of carbohydrates with pulsed amperometry were necessary to obtain steady baselines at 0.1-0.3 microA output with suitable sensitivity (less than 5 pmol) in separations employing a variety of acidic and alkaline sodium acetate gradients. Oligosaccharides released from heat-denatured and trypsin-treated glycoproteins were purified initially from large-scale digestion (greater than 0.1 g) by extraction of peptide material into phenol/chloroform and finally by ion-exchange chromatography of the acqueous phase. Oligosaccharides isolated from the peptide N-glycosidase digests of bovine fetuin, human transferrin and alpha 1-acid glycoprotein gave multiple peaks in each charge group in separations based on the charge content at pH 5.5. Alkaline sodium acetate gradients were developed to obtain oligosaccharide maps of the glycoproteins within 60 min, in which separated oligosaccharides eluted in the order of neutral, mono-, di-, tri- and tetra-sialylated species based on both charge, size and structure. Baseline separations were obtained with neutral oligosaccharide types but mixtures of high-mannose and complex types were poorly resolved. The high-mannose peaks were eliminated specifically from complex oligosaccharides by digesting with alpha-mannosidase. Treatment with beta-galactosidase, beta-N-acetylglucosaminidase and alpha-mannosidase resulted in a decrease of the oligosaccharide elution times corresponding to the number of sugar residues lost, the profile of changes was highly reproducible. In contrast, treatment with alpha-L-fucosidase, endo-beta-N-acetylglucosaminidase F and endo-beta-N-acetylglucosaminidase H resulted in an increase in their corresponding oligosaccharide retention times similar to the presence of an additional sugar residue. Conditions developed for separation of the reduced oligosaccharides and also a mixture of monosaccharide to oligosaccharide containing about 15 sugar residues within 30 min were useful in determining the effect of endo- and exo-glycosidases on porcine thyroglobulin oligosaccharides. Changes in elution time of the oligosaccharides following specific glycosidase digestions combined with methylation analysis provided a rapid and sensitive tool for confirmation of the carbohydrate primary structures present in thyroglobulin.  相似文献   

19.
Oligosaccharides containing terminal non-reducing alpha(1 leads to 2)-, alpha(1 leads to 3)-, and alpha(1 leads to 6)-linked mannose residues, isolated from human and bovine mannosidosis urines were used as substrates to test the specificities of acidic alpha-mannosidases isolated from human and bovine liver. The enzymes released all the alpha-linked mannose residues from each oligosaccharide and were most effective on the smallest substrate. Enzyme A in each case was less active on the oligosaccharides than alpha-mannosidase B2, even though the apparent Km value for the substrates was the same with each enzyme. The human acidic alpha-mannosidases were also found to be more active on substrates isolated from human rather than bovine mannosidosis urine. Human alpha-mannosidase C, which has a neutral pH optimum when assayed with a synthetic substrate, did not hydrolyse any of the oligosaccharides at neutral pH, but was found to be active at an acidic pH.  相似文献   

20.
Alkaline phosphatase purified from human placenta contains a single asparagine-linked sugar chain in one molecule. The sugar chain was quantitatively liberated as radioactive oligosaccharides from the polypeptide moiety by hydrazinolysis followed by N-acetylation and NaB3H4 reduction, and separated by paper electrophoresis into one neutral and two acidic fractions. By a combination of sequential exoglycosidase digestion and methylation analysis, the structures of oligosaccharides in the neutral fraction were confirmed to be as follows: Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6(Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAc. The acidic oligosaccharide fractions were mixtures of mono- and disialyl derivatives of the neutral fraction. All the sialic acid residues of the sugar chains occur as the NeuAc alpha 2----3Gal group. In the case of monosialyl derivatives, the N-acetylneuraminic acid was exclusively linked to the Man alpha 1----3 arm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号