首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Previous studies with overexpressing wild-type or dominant negative nonvisual arrestins have established a role for these proteins in beta2-adrenergic receptor (beta2AR) internalization, desensitization, and resensitization. To validate and extend such findings, we employed an antisense strategy to target the nonvisual arrestins, arrestin-2 and arrestin-3, and determined the associated effects on the regulation of G protein-coupled receptor (GPCR) signaling. HEK293 cells stably expressing antisense constructs targeting arrestin-2 exhibited a selective reduction (approximately 50%) in arrestin-2 levels, while arrestin-3 antisense constructs resulted in reductions (>/=50%) in both arrestin-2 and arrestin-3 levels. Initial analysis of these cells demonstrated that a reduced level of arrestin expression resulted in a significant decrease in the extent of agonist-induced internalization of exogenously expressed beta2ARs, but had no effect on internalization of either m2 or m3 muscarinic acetylcholine receptors. Additional characterization involved assessing the role of arrestins in the regulation of endogenous GPCRs in these cells. Reduced arrestin levels significantly decreased the rate of endogenous beta2AR internalization, desensitization, and resensitization. Further analysis demonstrated that the desensitization of endogenous A2b adenosine and prostaglandin E2-stimulated receptors was also attenuated in cells with reduced arrestin levels. The effects on the beta2-adrenergic, A2b adenosine, and PGE2-stimulated receptors were similar among cell lines that exhibited either a selective reduction in arrestin-2 levels or a reduction in both arrestin-2 and -3 levels. These findings establish the utility of antisense approaches in the examination of arrestin-mediated GPCR regulation.  相似文献   

2.
Arrestins play an important role in regulating desensitization and trafficking of G protein-coupled receptors (GPCRs). However, limited insight into the specificity of arrestin-mediated regulation of GPCRs is currently available. Recently, we used an antisense strategy to reduce arrestin levels in HEK293 cells and characterize the role of arrestins on endogenous G(s)-coupled receptors (Mundell, S. J., Loudon, R. B., and Benovic, J. L. (1999) Biochemistry 38, 8723-8732). Here, we characterized GPCRs coupled to either G(q) (M(1) muscarinic acetylcholine receptor (M(1)AchR) and P2y(1) and P2y(2) purinergic receptors) or G(i) (somatostatin and AT1 angiotensin receptors) in wild type and arrestin antisense HEK293 cells. The agonist-specific desensitization of the M(1)Ach and somatostatin receptors was significantly attenuated in antisense-expressing cells, whereas desensitization of P2y(1) and P2y(2) purinergic and AT1 angiotensin receptors was unaffected by reduced arrestin levels. To further examine arrestin/GPCR specificity, we studied the effects of endogenous GPCR activation on the redistribution of arrestin-2 epitope tagged with the green fluorescent protein (arrestin-2-GFP). These studies revealed a receptor-specific movement of arrestin-2-GFP that mirrored the arrestin-receptor specificity observed in the antisense cells. Thus, agonist-induced activation of endogenous beta(2)-adrenergic, prostaglandin E(2), M(1)Ach, and somatostatin receptors induced arrestin-2-GFP redistribution to early endosomes, whereas P2y(1) and P2y(2) purinergic and AT1 angiotensin receptor activation did not. Thus, endogenous arrestins mediate the regulation of selective G(q)- and G(i)-coupled receptors in HEK293 cells.  相似文献   

3.
Nonvisual arrestins (arrestin-2 and -3) serve as adaptors to link agonist-activated G protein-coupled receptors to the endocytic machinery. Although many G protein-coupled receptors bind arrestins, the molecular determinants involved in binding remain largely unknown. Because arrestins selectively promote the internalization of the alpha(2b)- and alpha(2c)-adrenergic receptors (ARs) while having no effect on the alpha(2a)AR, here we used alpha(2)ARs to identify molecular determinants involved in arrestin binding. Initially, we assessed the ability of purified arrestins to bind glutathione S-transferase fusions containing the third intracellular loops of the alpha(2a)AR, alpha(2b)AR, or alpha(2c)AR. These studies revealed that arrestin-3 directly binds to the alpha(2b)AR and alpha(2c)AR but not the alpha(2a)AR, whereas arrestin-2 only binds to the alpha(2b)AR. Truncation mutagenesis of the alpha(2b)AR identified two arrestin-3 binding domains in the third intracellular loop, one at the N-terminal end (residues 194-214) and the other at the C-terminal end (residues 344-368). Site-directed mutagenesis further revealed a critical role for several basic residues in arrestin-3 binding to the alpha(2b)AR third intracellular loop. Mutation of these residues in the holo-alpha(2b)AR and subsequent expression in HEK 293 cells revealed that the mutations had no effect on the ability of the receptor to activate ERK1/2. However, agonist-promoted internalization of the mutant alpha(2b)AR was significantly attenuated as compared with wild type receptor. These results demonstrate that arrestin-3 binds to two discrete regions within the alpha(2b)AR third intracellular loop and that disruption of arrestin binding selectively abrogates agonist-promoted receptor internalization.  相似文献   

4.
At present, little is known regarding the mechanism of metabotropic glutamate receptor (mGluR) trafficking. To facilitate this characterization we inserted a haemagglutinin (HA) epitope tag in the extracellular N-terminal domain of the rat mGluR1a. In human embryonic kidney cells (HEK293), transiently transfected with HA-mGluR1a, the epitope-tagged receptor was primarily localized to the cell surface prior to agonist stimulation. Following stimulation with glutamate (10 microM; 30 min) the HA-mGluR1a underwent internalization to endosomes. Further quantification of receptor internalization was provided by ELISA experiments which showed rapid agonist-induced internalization of the HA-mGluR1a. To determine whether agonist-induced mGluR1a internalization is an arrestin- and dynamin-dependent process, cells were cotransfected with HA-mGluR1a and either of these dynamin-K44A or arrestin-2 (319-418). Expression of either dominant negative mutant constructs with receptor strongly inhibited glutamate-induced (10 microM; 30 min) HA-mGluR1a internalization. In addition, wild-type arrestin-2-green fluorescent protein (arrestin-2-GFP) or arrestin-3-GFP underwent agonist-induced translocation from cytosol to membrane in HEK293 cells coexpressing HA-mGluR1a. Taken together our observations demonstrate that agonist-induced internalization of mGluR1a is an arrestin- and dynamin-dependent process.  相似文献   

5.
As with most G-protein-coupled receptors, repeated agonist stimulation of the platelet-activating factor receptor (PAFR) results in its desensitization, sequestration, and internalization. In this report, we show that agonist-induced PAFR internalization is independent of G-protein activation but is dependent on arrestins and involves the interaction of arrestins with a limited region of the PAFR C terminus. In cotransfected COS-7 cells, both arrestin-2 and arrestin-3 could be coimmunoprecipitated with PAFR, and agonist stimulation of PAFR induced the translocation of both arrestin-2 and arrestin-3. Furthermore, coexpression of arrestin-2 with PAFR potentiated receptor internalization, whereas agonist-induced PAFR internalization was inhibited by a dominant negative mutant of arrestin-2. The coexpression of a minigene encoding the C-terminal segment of the receptor abolished PAF-induced arrestin translocation and inhibited PAFR internalization. Using C terminus deletion mutants, we determined that the association of arrestin-2 with the receptor was dependent on the region between threonine 305 and valine 330 because arrestin-2 could be immunoprecipitated with the mutant PAFRstop330 but not PAFRstop305. Consistently, stop330 could mediate agonist-induced arrestin-2 translocation, whereas stop305 could not. Two other deletion mutants with slightly longer regions of the C terminus, PAFRstop311 and PAFRstop317, also failed to induce arrestin-2 translocation. Finally, the PAFR mutant Y293A, containing a single substitution in the putative internalization motif DPXXY in the seventh transmembrane domain (which we had shown to be able to internalize but not to couple to G-proteins) could efficiently induce arrestin translocation. Taken together, our results indicate that ligand-induced PAFR internalization is dependent on arrestins, that PAFR can associate with both arrestin-2 and -3, and that their translocation involves interaction with the region of residues 318-330 in the PAFR C terminus but is independent of G-protein activation.  相似文献   

6.
The non-visual arrestins, arrestin-2 and arrestin-3, play a critical role in regulating the signaling and trafficking of many G protein-coupled receptors (GPCRs). Molecular insight into the role of arrestins in GPCR trafficking has suggested that arrestin interaction with clathrin, beta(2)-adaptin (the beta-subunit of the adaptor protein AP2), and phosphoinositides contributes to this process. In the present study, we have attempted to better define the molecular basis and functional role of arrestin-2 interaction with clathrin and beta(2)-adaptin. Site-directed mutagenesis revealed that the C-terminal region of arrestin-2 mediated beta(2)-adaptin and clathrin interaction with Phe-391 and Arg-395 having an essential role in beta(2)-adaptin binding and LIELD (residues 376-380) having an essential role in clathrin binding. Interestingly, arrestin-2-R169E, an activated form of arrestin that binds to GPCRs in a phosphorylation-independent manner, has significantly enhanced binding to beta(2)-adaptin and clathrin. This suggests that receptor-induced conformational changes in the C-terminal tail of arrestin-2 will likely play a major role in mediating arrestin interaction with clathrin-coated pits. In an effort to clarify the role of these interactions in GPCR trafficking we generated arrestin mutants that were completely and selectively defective in either clathrin (arrestin-2-DeltaLIELD) or beta(2)-adaptin (arrestin-2-F391A) interaction. Analysis of these mutants in COS-1 cells revealed that arrestin/clathrin interaction was essential for agonist-promoted internalization of the beta(2)-adrenergic receptor, while arrestin/beta(2)-adaptin interaction appeared less critical. Arrestin-2 mutants defective in both clathrin and beta(2)-adaptin binding functioned as effective dominant negatives in HEK293 cells and significantly attenuated beta(2)-adrenergic receptor internalization. These mutants should prove useful in better defining the role of arrestins in mediating receptor trafficking.  相似文献   

7.
Nonvisual arrestins are regulated by direct post-translational modifications, such as phosphorylation, ubiquitination, and nitrosylation. However, whether arrestins are regulated by other post-translational modifications remains unknown. Here we show that nonvisual arrestins are modified by small ubiquitin-like modifier 1 (SUMO-1) upon activation of β(2)-adrenergic receptor (β(2)AR). Lysine residues 295 and 400 in arrestin-3 fall within canonical SUMO consensus sites, and mutagenic analysis reveals that Lys-400 represents the main SUMOylation site. Depletion of the SUMO E2 modifying enzyme Ubc9 blocks arrestin-3 SUMOylation and attenuates β(2)AR internalization, suggesting that arrestin SUMOylation mediates G protein-coupled receptor endocytosis. Consistent with this, expression of a SUMO-deficient arrestin mutant failed to promote β(2)AR internalization as compared with wild-type arrestin-3. Our data reveal an unprecedented role for SUMOylation in mediating GPCR endocytosis and provide novel mechanistic insight into arrestin function and regulation.  相似文献   

8.
Despite a widely accepted role of arrestins as "uncouplers" of G protein-coupled receptor (GPCR) signaling, few studies have demonstrated the ability of arrestins to affect second messenger generation by endogenously expressed receptors in intact cells. In this study we demonstrate arrestin specificity for endogenous GPCRs in primary cultures of human airway smooth muscle (HASM). Expression of arrestin-green fluorescent protein (ARR2-GFP or ARR3-GFP) chimeras in HASM significantly attenuated isoproterenol (beta(2)-adrenergic receptor (beta(2)AR)-mediated)- and 5'-(N-ethylcarboxamido)adenosine (A2b adenosine receptor-mediated)-stimulated cAMP production, with fluorescent microscopy demonstrating agonist-promoted redistribution of cellular ARR2-GFP into a punctate formation. Conversely, prostaglandin E(2) (PGE(2))-mediated cAMP production was unaffected by arrestin-GFP, and PGE(2) had little effect on arrestin-GFP distribution. The pharmacological profile of various selective EP receptor ligands suggested a predominantly EP2 receptor population in HASM. Further analysis in COS-1 cells revealed that ARR2-GFP expression increased agonist-promoted internalization of wild type beta(2)AR and EP4 receptors, whereas EP2 receptors remained resistant to internalization. However, expression of an arrestin whose binding to GPCRs is largely independent of receptor phosphorylation (ARR2(R169E)-GFP) enabled substantial agonist-promoted EP2 receptor internalization, increased beta(2)AR internalization to a greater extent than did ARR2-GFP, yet promoted EP4 receptor internalization to the same degree as did ARR2-GFP. Signaling via endogenous EP4 receptors in CHO-K1 cells was attenuated by ARR2-GFP expression, whereas ARR2(R169E)-GFP expression in HASM inhibited EP2 receptor-mediated cAMP production. These findings demonstrate differential effects of arrestins in altering endogenous GPCR signaling in a physiologically relevant cell type and reveal a variable dependence on receptor phosphorylation in dictating arrestin-receptor interaction.  相似文献   

9.
The G(s)-coupled rat A(2B) adenosine receptor (A(2B)-AR) was epitope-tagged at the NH(2) terminus with hemagglutinin (HA) and subjected to progressive deletions or point mutations of the COOH terminus in order to determine regions of the receptor that contribute to agonist-induced desensitization and internalization. When expressed stably in Chinese hamster ovary cells, a mutant receptor in which the final 2 amino acids were deleted, the Leu(330)-stop mutant, underwent rapid agonist-induced desensitization and internalization as did the wild type (WT) receptor. However, the Phe(328) and the Gln(325)-stop mutants were resistant to rapid agonist-induced desensitization and internalization. Co-expression of arrestin-2-green fluorescent protein (arrestin-2-GFP) with WT receptor or Leu(330)-stop mutant resulted in rapid translocation of arrestin-2-GFP from cytosol to membrane upon agonist addition. On the other hand, agonist activation of the Phe(328)-stop or Gln(325)-stop mutant did not result in translocation of arrestin-2-GFP from cytosol. A COOH terminus point mutant, S329G, was also unable to undergo rapid agonist-induced desensitization and internalization, indicating that Ser(329) is a critical residue for these processes. A further deletion mutant (Ser(326)-stop) unexpectedly underwent rapid agonist-induced desensitization and internalization. However, activation of this mutant did not promote translocation of arrestin-2-GFP from cytosol to membrane. In addition, whereas WT receptor internalization was markedly inhibited by co-expression of dominant negative mutants of arrestin-2 (arrestin-2-(319-418)), dynamin (dynamin K44A), or Eps-15 (EDelta95-295), Ser(326)-stop receptor internalization was only inhibited by dominant negative mutant dynamin. Taken together these results indicate that Ser(329), close to the COOH terminus of the rat A(2B)-AR, is critical for the rapid agonist-induced desensitization and internalization of the receptor. However, deletion of the COOH terminus also uncovers a motif that is able to redirect internalization of the receptor to an arrestin- and clathrin-independent pathway.  相似文献   

10.
Recent studies have highlighted the emergence of a class of G protein-coupled receptors that are internalized in an arrestin-independent manner. In addition to demonstrating that the N-formyl peptide receptor belongs in this family, we have recently shown that recycling of the receptor requires the presence of arrestins. To further elucidate mechanisms of arrestin-dependent regulation of G protein-coupled receptor processing, we examined the effects of altering the receptor-arrestin complex on ternary complex formation and cellular trafficking of the N-formyl peptide receptor by studying two active arrestin-2 mutants (truncated arrestin-2 [1-382], and arrestin-2 I386A, V387A, F388A). Complexes between the N-formyl peptide receptor and active arrestins exhibited higher affinity in vitro than the complex between the N-formyl peptide receptor and wild-type arrestin and furthermore were observed in vivo by colocalization studies using confocal microscopy. To assess the effects of these altered interactions on receptor trafficking, we demonstrated that active, but not wild-type, arrestin expression retards N-formyl peptide receptor internalization. Furthermore, expression of arrestin-2 I386A/V387A/F388A but not arrestin-2 [1-382] inhibited recycling of the N-formyl peptide receptor, reflecting an expanded role for arrestins in G protein-coupled receptor processing and trafficking. Whereas the extent of N-formyl peptide receptor phosphorylation had no effect on the inhibition of internalization, N-formyl peptide receptor recycling was restored when the receptor was only partially phosphorylated. These results indicate not only that a functional interaction between receptor and arrestin is required for recycling of certain G protein-coupled receptors, such as the N-formyl peptide receptor, but that the pattern of receptor phosphorylation further regulates this process.  相似文献   

11.
We investigated the role of arrestins in the trafficking of human alpha2-adrenergic receptors (alpha2-ARs) and the effect of receptor trafficking on p42/p44 MAP kinase activation. alpha2-ARs expressed in COS-1 cells demonstrated a modest level of agonist-mediated internalization, with alpha2c > alpha2b > alpha2a. However, upon coexpression of arrestin-2 (beta-arrestin-1) or arrestin-3 (beta-arrestin-2), internalization of the alpha2b AR was dramatically enhanced and redistribution of receptors to clathrin coated vesicles and endosomes was observed. Internalization of the alpha2c AR was selectively promoted by coexpression of arrestin-3, while alpha2a AR internalization was only slightly stimulated by coexpression of either arrestin. Coexpression of GRK2 had no effect on the internalization of any alpha2-AR subtype, either in the presence or absence of arrestins. Internalization of the alpha2b and alpha2c ARs was inhibited by coexpression of dominant negative dynamin-K44A. However, alpha2-AR-mediated activation of either endogenous or cotransfected p42/p44 mitogen-activated protein (MAP) kinase was not affected by either dynamin-K44A or arrestin-3. Moreover, activation of p42/p44 MAP kinase by endogenous epidermal growth factor, lysophosphatidic acid, and beta2-adrenergic receptors was also unaltered by dynamin-K44A. In summary, our data suggest that internalization of the alpha2b, alpha2c, and to a lesser extent alpha2a ARs, is both arrestin- and dynamin-dependent. However, endocytosis does not appear to be required for alpha2-adrenergic, epidermal growth factor, lysophosphatidic acid, or beta2-adrenergic receptor-mediated p42/p44 MAP kinase activation in COS-1 cells.  相似文献   

12.
Thromboxane A2 (TXA2) potently stimulates platelet aggregation and smooth muscle constriction and is thought to play a role in myocardial infarction, atherosclerosis, and bronchial asthma. The TXA2 receptor (TXA2R) is a member of the G protein-coupled receptor family and is found as two alternatively spliced isoforms, alpha (343 residues) and beta (407 residues), which share the first 328 residues. In the present report, we demonstrate by enzyme-linked immunosorbent assay and immunofluorescence microscopy that the TXA2Rbeta, but not the TXA2Ralpha, undergoes agonist-induced internalization when expressed in HEK293 cells as well as several other cell types. Various dominant negative mutants were used to demonstrate that the internalization of the TXA2Rbeta is dynamin-, GRK-, and arrestin-dependent in HEK293 cells, suggesting the involvement of receptor phosphorylation and clathrin-coated pits in this process. Interestingly, the agonist-stimulated internalization of both the alpha and beta isoforms, but not of a mutant truncated after residue 328, can be promoted by overexpression of arrestin-3, identifying the C-tails of both receptors as necessary in arrestin-3 interaction. Simultaneous mutation of two dileucine motifs in the C-tail of TXA2Rbeta did not affect agonist-promoted internalization. Analysis of various C-tail deletion mutants revealed that a region between residues 355 and 366 of the TXA2Rbeta is essential for agonist-promoted internalization. These data demonstrate that alternative splicing of the TXA2R plays a critical role in regulating arrestin binding and subsequent receptor internalization.  相似文献   

13.
The role of actin in endocytosis of G protein-coupled receptors is poorly defined. In the present study, we demonstrate that agents that depolymerize (latrunculin B and cytochalasin D) or stabilize (jasplakinolide) the actin cytoskeleton blocked agonist-induced endocytosis of the beta isoform of the thromboxane A(2) receptor (TPbeta) in HEK293 cells. This suggests that endocytosis of TPbeta requires active remodeling of the actin cytoskeleton. On the other hand, disruption of microtubules with colchicine did not affect endocytosis of the receptor. Expression of wild-type and mutant forms of the small GTPases RhoA and Cdc42 potently inhibited endocytosis of TPbeta, further indicating a role for the dynamic regulation of the actin cytoskeleton in this pathway. Agonist treatment of TPbeta in HEK293 cells resulted in the formation of actin stress fibers through Galpha(q/11) signaling. Because we previously showed that endocytosis of TPbeta is dependent on arrestins, we decided to explore the relation between arrestin-2 and -3 and actin in endocytosis of this receptor. Interestingly, we show that the inhibition of TPbeta endocytosis by the actin toxins in HEK293 cells was overcome by the overexpression of arrestin-3, but not of arrestin-2. These results indicate that the actin cytoskeleton is not essential in arrestin-3-mediated endocytosis of TPbeta. However, arrestin-3 could not promote endocytosis of the TPbetaY339A and TPbetaI343A carboxyl-terminal mutants when the actin cytoskeleton was disrupted. Our data provide new evidence that the actin cytoskeleton plays an essential role in TPbeta endocytosis. Furthermore, our work suggests the existence of actin-dependent and -independent arrestin-mediated pathways of endocytosis.  相似文献   

14.
Arrestins mediate phosphorylation-dependent desensitization, internalization, and initiation of signaling cascades for the majority of G protein-coupled receptors (GPCRs). Many GPCRs undergo agonist-mediated internalization through arrestin-dependent mechanisms, wherein arrestin serves as an adapter between the receptor and endocytic proteins. To understand the role of arrestins in N-formyl peptide receptor (FPR) trafficking, we stably expressed the FPR in a mouse embryonic fibroblast cell line (MEF) that lacked endogenous arrestin 2 and arrestin 3 (arrestin-deficient). We compared FPR internalization and recycling kinetics in these cells to congenic wild type MEF cell lines. Internalization of the FPR was not altered in the absence of arrestins. Since the FPR remains associated with arrestins following internalization, we investigated whether the rate of FPR recycling was altered in arrestin-deficient cells. While the FPR was able to recycle in the wild type cells, receptor recycling was largely absent in the arrestin double knockout cells. Reconstitution of the arrestin-deficient line with either arrestin 2 or arrestin 3 restored receptor recycling. Confocal fluorescence microscopy studies demonstrated that in arrestin-deficient cells the FPR may become trapped in the perinuclear recycling compartment. These observations indicate that, although the FPR can internalize in the absence of arrestins, recycling of internalized receptors to the cell surface is prevented. Our results suggest a novel role for arrestins in the post-endocytic trafficking of GPCRs.  相似文献   

15.
The extent of agonist-induced down-regulation of the LH/CG receptor (LHR) in human kidney 293 cells transfected with the rat LHR (rLHR) is much lower than in two Leydig tumor cell lines (MA-10 and R2C) that express the rodent LHR endogenously. This difference can not be attributed to differences in the recycling of internalized receptors, or in the replenishment of new receptors at the cell surface. It can be correlated, however, with the half-life of internalization of the bound agonist, which is approximately 60 min in Leydig tumor cells and about 100 min in transfected 293 cells. To determine whether the rate of internalization of the bound agonist affects down-regulation, we compared these two parameters in 293 cells expressing four rLHR mutants that enhance internalization and three mutants that impair internalization. We show that all four mutations of the rLHR that enhanced internalization enhanced down-regulation, while only one of the three mutations that impaired internalization impaired down-regulation. In addition, cotransfections of 293 cells with the rLHR-wt and three constructs that enhanced internalization (G protein-coupled receptor kinase 2, beta-arrestin, and arrestin-3) increased down-regulation, while a related construct (visual arrestin) that had no effect on internalization also had no effect on down-regulation. We conclude that the rate of internalization of the agonist-LHR complex is the main determinant of the extent of down-regulation of the LHR.  相似文献   

16.
The phosphorylation-dependent binding of arrestins to cytoplasmic domains of G protein-coupled receptors (GPCRs) is thought to be a crucial step in receptor desensitization. In some GPCR systems, arrestins have also been demonstrated to be involved in receptor internalization, resensitization, and the activation of signaling cascades. The objective of the current study was to examine binding interactions of members of the arrestin family with the formyl peptide receptor (FPR), a member of the GPCR family of receptors. Peptides representing the unphosphorylated and phosphorylated carboxyl terminus of the FPR were synthesized and bound to polystyrene beads via a biotin/streptavidin interaction. Using fluorescein-conjugated arrestins, binding interactions between arrestins and the bead-bound FPR carboxyl terminus were analyzed by flow cytometry. Arrestin-2 and arrestin-3 bound to the FPR carboxyl-terminal peptide in a phosphorylation-dependent manner, with K(d) values in the micromolar range. Binding of visual arrestin, which binds rhodopsin with high selectivity, was not observed. Arrestin-2-(1--382) and arrestin-3-(1--393), truncated mutant forms of arrestin that display phosphorylation-independent binding to intact receptors, were also observed to bind the bead-bound FPR terminus in a phosphorylation-dependent manner, but with much greater affinity than the full-length arrestins, yielding K(d) values in the 5--50 nm range. Two additional arrestin mutants, which are full-length but display phosphorylation-independent binding to intact GPCRs, were evaluated for their binding affinity to the FPR carboxyl terminus. Whereas the single point mutant, arrestin-2 R169E, displayed an affinity similar to that of the full-length arrestins, the triple point mutant, arrestin-2 I386A/V387A/F388A, displayed an affinity more similar to that of the truncated forms of arrestin. The results suggest that the carboxyl terminus of arrestin is a critical determinant in regulating the binding affinity of arrestin for the phosphorylated domains of GPCRs.  相似文献   

17.
Internalization of ligand bound G protein-coupled receptors, an important cellular function that mediates receptor desensitization, takes place via distinct pathways, which are often unique for each receptor. The C-C chemokine receptor (CCR7) G protein-coupled receptor is expressed on naive T cells, dendritic cells, and NK cells and has two endogenous ligands, CCL19 and CCL21. Following binding of CCL21, 21 +/- 4% of CCR7 is internalized in the HuT 78 human T cell lymphoma line, while 76 +/- 8% of CCR7 is internalized upon binding to CCL19. To determine whether arrestins mediated differential internalization of CCR7/CCL19 vs CCR7/CCL21, we used small interfering RNA (siRNA) to knock down expression of arrestin 2 or arrestin 3 in HuT 78 cells. Independent of arrestin 2 or arrestin 3 expression, CCR7/CCL21 internalized. In contrast, following depletion of arrestin 3, CCR7/CCL19 failed to internalize. To examine the consequence of complete loss of both arrestin 2 and arrestin 3 on CCL19/CCR7 internalization, we examined CCR7 internalization in arrestin 2(-/-)/arrestin 3(-/-) murine embryonic fibroblasts. Only reconstitution with arrestin 3-GFP but not arrestin 2-GFP rescued internalization of CCR7/CCL19. Loss of arrestin 2 or arrestin 3 blocked migration to CCL19 but had no effect on migration to CCL21. Using immunofluorescence microscopy, we found that arrestins do not cluster at the membrane with CCR7 following ligand binding but cap with CCR7 during receptor internalization. These are the first studies that define a role for arrestin 3 in the internalization of a chemokine receptor following binding of one but not both endogenous ligands.  相似文献   

18.
Arrestins are a small family of proteins that regulate G protein-coupled receptors (GPCRs). Arrestins specifically bind to phosphorylated active receptors, terminating G protein coupling, targeting receptors to endocytic vesicles, and initiating G protein-independent signaling. The interaction of rhodopsin-attached phosphates with Lys-14 and Lys-15 in β-strand I was shown to disrupt the interaction of α-helix I, β-strand I, and the C-tail of visual arrestin-1, facilitating its transition into an active receptor-binding state. Here we tested the role of conserved lysines in homologous positions of non-visual arrestins by generating K2A mutants in which both lysines were replaced with alanines. K2A mutations in arrestin-1, -2, and -3 significantly reduced their binding to active phosphorhodopsin in vitro. The interaction of arrestins with several GPCRs in intact cells was monitored by a bioluminescence resonance energy transfer (BRET)-based assay. BRET data confirmed the role of Lys-14 and Lys-15 in arrestin-1 binding to non-cognate receptors. However, this was not the case for non-visual arrestins in which the K2A mutations had little effect on net BRET(max) values for the M2 muscarinic acetylcholine (M2R), β(2)-adrenergic (β(2)AR), or D2 dopamine receptors. Moreover, a phosphorylation-deficient mutant of M2R interacted with wild type non-visual arrestins normally, whereas phosphorylation-deficient β(2)AR mutants bound arrestins at 20-50% of the level of wild type β(2)AR. Thus, the contribution of receptor-attached phosphates to arrestin binding varies depending on the receptor-arrestin pair. Although arrestin-1 always depends on receptor phosphorylation, its role in the recruitment of arrestin-2 and -3 is much greater in the case of β(2)AR than M2R and D2 dopamine receptor.  相似文献   

19.
The functional role of neutrophils during acute inflammatory responses is regulated by two high affinity interleukin-8 receptors (CXCR1 and CXCR2) that are rapidly desensitized and internalized upon binding their cognate chemokine ligands. The efficient re-expression of CXCR1 on the surface of neutrophils following agonist-induced internalization suggests that CXCR1 surface receptor turnover may involve regulatory pathways and intracellular factors similar to those regulating beta2-adrenergic receptor internalization and re-expression. To examine the internalization pathway utilized by ligand-activated CXCR1, a CXCR1-GFP construct was transiently expressed in two different cell lines, HEK 293 and RBL-2H3 cells. While interleukin-8 stimulation promoted CXCR1 sequestration in RBL-2H3 cells, receptor internalization in HEK 293 cells required co-expression of G protein-coupled receptor kinase 2 and beta-arrestin proteins. The importance of beta-arrestins in CXCR1 internalization was confirmed by the ability of a dominant negative beta-arrestin 1-V53D mutant to block internalization of CXCR1 in RBL-2H3 cells. A role for dynamin was also demonstrated by the lack of CXCR1 internalization in dynamin I-K44A dominant negative mutant-transfected RBL-2H3 cells. Agonist-promoted co-localization of transferrin and CXCR1-GFP in endosomes of RBL-2H3 cells confirmed that receptor internalization occurs via clathrin-coated vesicles. Our data provides a direct link between agonist-induced internalization of CXCR1 and a requirement for G protein-coupled receptor kinase 2, beta-arrestins, and dynamin during this process.  相似文献   

20.
《Cellular signalling》2014,26(7):1523-1531
Based on the identification of residues that determine receptor selectivity in arrestins and the phylogenetic analysis of the arrestin (arr) family, we introduced fifteen mutations of receptor-discriminator residues in arr-3, which were identified previously using mutagenesis, in vitro binding, and BRET-based recruitment assay in intact cells. The effects of these mutations were tested using neuropeptide Y receptors Y1R and Y2R. NPY-elicited arr-3 recruitment to Y1R was not affected by these mutations, or even alanine substitution of all ten residues (arr-3-NCA), which prevented arr-3 binding to other receptors tested so far. However, NCA and two other mutations prevented agonist-independent arr-3 pre-docking to Y1R. In contrast, eight out of 15 mutations significantly reduced agonist-dependent arr-3 recruitment to Y2R. NCA eliminated arr-3 binding to active Y2R, whereas Tyr239Thr reduced it ~ 7-fold. Thus, manipulation of key residues on the receptor-binding surface generates arr-3 with high preference for Y1R over Y2R. Several mutations differentially affect arr-3 pre-docking and agonist-induced recruitment. Thus, arr-3 recruitment to the receptor involves several mechanistically distinct steps. Targeted mutagenesis can fine-tune arrestins directing them to specific receptors and particular activation states of the same receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号