首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Human immunodeficiency virus type 1 (HIV-1) may be studied by molecular or immunological approaches. Most analyses have been performed by genetic comparison of isolates and have led to the definition of clades or subtypes within the major (M) group of HIV-1. Five subtypes (A to E) were initially identified by comparison of genomic sequences. Four new subtypes (F to I) were identified more recently. Amino acid differences in the immunogenic V3 loop between isolates have also been studied, leading to a phenetic classification of at least 14 clusters (1 to 14) of sequences (B. T. M. Korber, K. McInnes, R. F. Smith, and G. Myers, J. Virol. 68:6730–6744, 1994). In this study, we compared the antigenicity of the V3 consensus sequences defined by phylogenetic analysis to the antigenicity of those defined by phenetic analysis. We used a recently developed subtype-specific enzyme immunoassay (SSEIA) that uses the principle of blocking with an excess of peptide in the liquid phase. Two SSEIAs were performed, the first with five V3 sequences defined by phylogenetic analysis and the second with 14 V3 sequences defined by phenetic analysis. A total of 168 HIV-1 sera taken from seropositive individuals from seven different countries or regions were studied. Experimental and statistical data, including correlation matrix and cluster analyses, demonstrated associations between the genetic subtypes and phenetically associated groups. Most of these were predicted by Korber et al. (J. Virol. 68:6730–6744, 1994) by theoretical analysis. We also found that V3 sequences can be grouped into between three and five antigenically unrelated categories. Residues that may be responsible for major antigenic differences were identified at the apex of the V3 loop, within the octapeptide xIGPGxxx, where x represents the critical positions. Our study provides evidence that there is a limited number of V3 serotypes which could be easily monitored by serological assays to study the diversity and dynamics of HIV-1 strains.The diversity of human immunodeficiency virus type 1 (HIV-1) is a major problem in the development of an effective vaccine against AIDS. Many HIV-1 sequences are now available, and phylogenetic analysis resulting in a continuously developing classification into subtypes or clades is possible (45). HIV-1 isolates are classified into the M group (for major) or O group (for outlier). The O group contains only a few variants, all from a limited area of Africa (19, 27, 50). The M group includes variants responsible for the present AIDS pandemic. It contains at least five subtypes (A to E), to which have been added more recently four other subtypes (F to I) (23, 28, 34, 36, 37). Subtypes A, C, D, G, and H are common in Africa (21, 35, 37, 38). Subtype B is the most common in America and Europe (24, 26, 51). Subtype E occurs mainly in Asia (25, 30, 41), and subtype F has been detected in Brazil and Romania (3, 28, 34). These distributions are not restrictive. Subtype C is also present in Asia (India and China), and subtype G is also present in Russia (7, 12, 29). The African subtypes (A, C, and D) and the Asian subtype (E) have also been identified in North America and in European countries (9, 13, 14, 32, 48). All the subtypes are present in Africa, including B (detected in West Africa), E (Central African Republic), and F (Cameroon) (1, 35, 38). Analysis of the genetic diversity of HIV-1 is becoming more difficult due to the increasing frequency of coinfections and recombinations (15, 20, 44).Phylogenetic trees have been generated with gag, env, or tat nucleotide sequences. Shorter DNA sequences encoding the functionally important V3 region of the envelope protein are most frequently used to provide reliable subtype designations (37). The diversity of the immunogenic V3 loop has also been studied by comparing the amino acids of different isolates, leading to a phenetic classification of at least 14 clusters of sequences, each one characterized by a consensus sequence based on the most common amino acid in a given position (22).The heterogeneity of HIV-1 strains is studied mostly by molecular characterization of genomic sequences. This involves sequencing fragments amplified by the PCR or the use of the heteroduplex mobility assay (10, 11). However, although these methods allow direct subtype classification, they are time-consuming and expensive and require highly trained workers. Serotyping of HIV-1 by antibody (Ab) binding to the V3 region has been suggested as an alternative approach (8, 40, 49, 51). Such an approach may make it possible to identify subtypes based on antigenic rather than genetic properties. This immunological information about antigenic diversity might be of value in vaccine development. We recently developed a subtype-specific enzyme immunoassay (SSEIA) which gave results consistent with those of genotyping (4, 48). This assay used V3 consensus sequences defined by genetic classification, so we wanted to compare the antigenicity of these V3 consensus sequences to the antigenicity of those defined by phenetic analysis. The phenetic clustering of V3 loop amino acid sequences is not always consistent with phylogenetic analysis. Our results suggested that a limited number of serotypes may exist and identified amino acids at the tip of the V3 loop that may be responsible for serological discrimination.  相似文献   

3.
4.
5.
Human immunodeficiency virus type 1 (HIV-1) uses a variety of chemokine receptors as coreceptors for virus entry, and the ability of the virus to be neutralized by antibody may depend on which coreceptors are used. In particular, laboratory-adapted variants of the virus that use CXCR4 as a coreceptor are highly sensitive to neutralization by sera from HIV-1-infected individuals, whereas primary isolates that use CCR5 instead of, or in addition to, CXCR4 are neutralized poorly. To determine whether this dichotomy in neutralization sensitivity could be explained by differential coreceptor usage, virus neutralization by serum samples from HIV-1-infected individuals was assessed in MT-2 cells, which express CXCR4 but not CCR5, and in mitogen-stimulated human peripheral blood mononuclear cells (PBMC), where multiple coreceptors including CXCR4 and CCR5 are available for use. Our results showed that three of four primary isolates with a syncytium-inducing (SI) phenotype and that use CXCR4 and CCR5 were neutralized poorly in both MT-2 cells and PBMC. The fourth isolate, designated 89.6, was more sensitive to neutralization in MT-2 cells than in PBMC. We showed that the neutralization of 89.6 in PBMC was not improved when CCR5 was blocked by having RANTES, MIP-1α, and MIP-1β in the culture medium, indicating that CCR5 usage was not responsible for the decreased sensitivity to neutralization in PBMC. Consistent with this finding, a laboratory-adapted strain of virus (IIIB) was significantly more sensitive to neutralization in CCR5-deficient PBMC (homozygous Δ32-CCR5 allele) than were two of two SI primary isolates tested. The results indicate that the ability of HIV-1 to be neutralized by sera from infected individuals depends on factors other than coreceptor usage.Human immunodeficiency virus type 1 (HIV-1), the etiologic agent of AIDS, utilizes the HLA class II receptor, CD4, as its primary receptor to gain entry into cells (17, 30). Entry is initiated by a high-affinity interaction between CD4 and the surface gp120 of the virus (32). Subsequent to this interaction, conformational changes that permit fusion of the viral membrane with cellular membranes occur within the viral transmembrane gp41 (9, 58, 59). In addition to CD4, one or more recently described viral coreceptors are needed for fusion to take place. These coreceptors belong to a family of seven-transmembrane G-protein-coupled proteins and include the CXC chemokine receptor CXCR4 (3, 4, 24, 44), the CC chemokine receptors CCR5 (1, 12, 13, 18, 21, 23, 45) and, less commonly, CCR3 and CCR2b (12, 21), and two related orphan receptors termed BONZO/STRL33 and BOB (19, 34). Coreceptor usage by HIV-1 can be blocked by naturally occurring ligands, including SDF-1 for CXCR4 (4, 44), RANTES, MIP-1α, and MIP-1β in the case of CCR5 (13, 45), and eotaxin for CCR3 (12).The selective cellular tropisms of different strains of HIV-1 may be determined in part by coreceptor usage. For example, all culturable HIV-1 variants replicate initially in mitogen-stimulated human peripheral blood mononuclear cells (PBMC), but only a minor fraction are able to infect established CD4+ T-cell lines (43). This differential tropism is explained by the expression of CXCR4 together with CCR5 and other CC chemokine coreceptors on PBMC and the lack of expression of CCR5 on most T-cell lines (5, 10, 19, 35, 39, 50, 53). Indeed, low-passage field strains (i.e., primary isolates) of HIV-1 that fail to replicate in T-cell lines use CCR5 as their major coreceptor and are unable to use CXCR4 (1, 12, 18, 21, 23, 28). Because these isolates rarely produce syncytia in PBMC and fail to infect MT-2 cells, they are often classified as having a non-syncytium-inducing (NSI) phenotype. Primary isolates with a syncytium-inducing (SI) phenotype are able to use CXCR4 alone or, more usually, in addition to CCR5 (16, 20, 51). HIV-1 variants that have been passaged multiple times in CD4+ T-cell lines, and therefore considered to be laboratory adapted, exhibit a pattern of coreceptor usage that resembles that of SI primary isolates. Most studies have shown that the laboratory-adapted strain IIIB uses CXCR4 alone (3, 13, 20, 24, 51) and that MN and SF-2 use CXCR4 primarily and CCR5 to a lesser degree (11, 13). Sequences within the V3 loop of gp120 have been shown to be important, either directly or indirectly, for the interaction of HIV-1 with both CXCR4 (52) and CCR5 (12, 14, 54, 60). This region of gp120 contains multiple determinants of cellular tropism (43) and is a major target for neutralizing antibodies to laboratory-adapted HIV-1 but not to primary isolates (29, 46, 57).It has been known for some time that the ability of sera from HIV-1-infected individuals to neutralize laboratory-adapted strains of HIV-1 does not predict their ability to neutralize primary isolates in vitro (7). In general, the former viruses are highly sensitive to neutralization whereas the latter viruses are neutralized poorly by antibodies induced in response to HIV-1 infection (7, 43). Importantly, neutralizing antibodies generated by candidate HIV-1 subunit vaccines have been highly specific for laboratory-adapted viruses (26, 37, 38). In principle, the dichotomy in neutralization sensitivity between these two categories of virus could be related to coreceptor usage. To test this, we investigated whether the use of CXCR4 in the absence of CCR5 would render SI primary isolates highly sensitive to neutralization in vitro by sera from HIV-1-infected individuals. Two similar studies using human monoclonal antibodies and soluble CD4 have been reported (31a, 55).  相似文献   

6.
7.
Non-subtype B viruses cause the vast majority of new human immunodeficiency virus type 1 (HIV-1) infections worldwide and are thus the major focus of international vaccine efforts. Although their geographic dissemination is carefully monitored, their immunogenic and biological properties remain largely unknown, in part because well-characterized virological reference reagents are lacking. In particular, full-length clones and sequences are rare, since subtype classification is frequently based on small PCR-derived viral fragments. There are only five proviral clones available for viruses other than subtype B, and these represent only 3 of the 10 proposed (group M) sequence subtypes. This lack of reference sequences also confounds the identification and analysis of mosaic (recombinant) genomes, which appear to be arising with increasing frequency in areas where multiple sequence subtypes cocirculate. To generate a more representative panel of non-subtype B reference reagents, we have cloned (by long PCR or lambda phage techniques) and sequenced 10 near-full-length HIV-1 genomes (lacking less than 80 bp of long terminal repeat sequences) from primary isolates collected at major epicenters of the global AIDS pandemic. Detailed phylogenetic analyses identified six that represented nonrecombinant members of HIV-1 subtypes A (92UG037.1), C (92BR025.8), D (84ZR085.1 and 94UG114.1), F (93BR020.1), and H (90CF056.1), the last two comprising the first full-length examples of these subtypes. Four others were found to be complex mosaics of subtypes A and C (92RW009.6), A and G (92NG083.2 and 92NG003.1), and B and F (93BR029.4), again emphasizing the impact of intersubtype recombination on global HIV-1 diversification. Although a number of clones had frameshift mutations or translational stop codons in major open reading frames, all the genomes contained a complete set of genes and three had intact genomic organizations without inactivating mutations. Reconstruction of one of these (94UG114.1) yielded replication-competent virus that grew to high titers in normal donor peripheral blood mononuclear cell cultures. This panel of non-subtype B reference genomes should prove valuable for structure-function studies of genetically diverse viral gene products, the generation of subtype-specific immunological reagents, and the production of DNA- and protein-based subunit vaccines directed against a broader spectrum of viruses.One critical question facing current AIDS vaccine development efforts is to what extent human immunodeficiency virus type 1 (HIV-1) genetic variation has to be considered in the design of candidate vaccines (11, 21, 41, 72). Phylogenetic analyses of globally circulating viral strains have identified two distinct groups of HIV-1 (M and O) (33, 45, 61, 62), and 10 sequence subtypes (A to J) have been proposed within the major group (M) (29, 30, 45, 72). Sequence variation among viruses belonging to these different lineages is extensive, with envelope amino acid sequence variation ranging from 24% between different subtypes to 47% between the two different groups. Given this extent of diversity, the question has been raised whether immunogens based on a single virus strain can be expected to elicit immune responses effective against a broad spectrum of viruses or whether vaccine preparations should include mixtures of genetically divergent antigens and/or be tailored toward locally circulating strains (11, 21, 41, 72). This is of particular concern in developing countries, where multiple subtypes of HIV-1 are known to cocirculate and where subtype B viruses (which have been the source of most current candidate vaccine preparations [10, 21]) are rare or nonexistent (5, 24, 40, 72).Although the extent of global HIV-1 variation is well defined, little is known about the biological consequences of this genetic diversity and its impact on cellular and humoral immune responses in the infected host. In particular, it remains unknown whether subtype-specific differences in virus biology exist that have to be considered for vaccine design. Thus far, such differences have not been identified. For example, several studies have shown that there is no correlation between HIV-1 genetic subtypes and neutralization serotypes (38, 42, 46, 68). Some viruses are readily neutralized, while most are relatively neutralization resistant (42). Although the reasons for these different susceptibilities remain unknown, it is clear that neutralization is not a function of the viral genotype (38, 42, 46, 68). Similarly, recent studies have identified vigorous cross-clade cytotoxic T-lymphocyte (CTL) reactivities in individuals infected with viruses from several different clades (3, 6), as well as in recipients of a clade B vaccine (15). These results are very encouraging, since they suggest that CTL cross-recognition among HIV-1 clades is much more prevalent than previously anticipated and that immunogens based on a limited number of variants may be able to elicit a broad CTL response (6). Nevertheless, it would be premature to conclude that HIV-1 variation poses no problem for AIDS vaccine design. Only a comprehensive analysis of genetically defined representatives of the various groups and subtypes will allow us to judge whether certain variants differ in fundamental viral properties and whether such differences will have to be incorporated into vaccine strategies. Obviously, such studies require well-characterized reference reagents, in particular full-length and replication-competent molecular clones that can be used for functional and biological studies.Full-length reference sequences representing the various subtypes are also urgently needed for phylogenetic comparisons. Recent analyses of subgenomic (23, 52, 54, 58) as well as full-length (7, 18, 53, 60) HIV-1 sequences identified a surprising number of HIV-1 strains which clustered in different subtypes in different parts of their genome. All of these originated from geographic regions where multiple subtypes cocirculated and are the results of coinfections with highly divergent viruses (52, 60, 62). Detailed phylogenetic characterization revealed that most of them have a complex genome structure with multiple points of crossover (7, 18, 53, 60). Some recombinants, like the “subtype E” viruses, which are in fact A/E recombinants (7, 18), have a widespread geographic dissemination and are responsible for much of the Asian HIV-1 epidemic (69, 70). In other areas, recombinants appear to be generated with increasing frequencies since many randomly chosen isolates exhibit evidence of mosaicism (4, 8, 31, 66, 71). Since recombination provides the opportunity for evolutionary leaps with genetic consequences that are far greater than those of the steady accumulation of individual mutations, the impact of recombination on viral properties must be monitored. We therefore need full-length nonrecombinant reference sequences for all major HIV-1 groups and subtypes before we can map and characterize the extent of intersubtype recombination.The number of molecular reagents for non-subtype B viruses is very limited. There are currently only five full-length, nonrecombinant molecular clones available for viruses other than subtype B (45), and these represent only three of the proposed (group M) subtypes (A, C, and D). Moreover, only three clones (all derived from subtype D viruses) are replication competent and thus useful for studies requiring functional gene products (45, 48, 65). Given the unknown impact of genetic variation on correlates of immune protection, subtype-specific reagents are critically needed for phylogenetic, immunological, and biological studies. In this paper, we report the cloning (by long PCR and lambda techniques) of 10 near-full-length HIV-1 genomes from isolates previously classified as non-subtype B viruses. Detailed phylogenetic analysis showed that six comprise nonmosaic representatives of five major subtypes, including two for which full-length representatives have not been reported. Four others were identified as complex intersubtype recombinants, again emphasizing the prevalence of hybrid genomes among globally circulating HIV-1 strains. We also describe a strategy for the biological evaluation of long-PCR-derived genomes and report the generation of a replication-competent provirus by this approach. The effect of these reagents on vaccine development is discussed.  相似文献   

8.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

9.
10.
11.
Previous studies have shown that protein-protein interactions among splicing factors may play an important role in pre-mRNA splicing. We report here identification and functional characterization of a new splicing factor, Sip1 (SC35-interacting protein 1). Sip1 was initially identified by virtue of its interaction with SC35, a splicing factor of the SR family. Sip1 interacts with not only several SR proteins but also with U1-70K and U2AF65, proteins associated with 5′ and 3′ splice sites, respectively. The predicted Sip1 sequence contains an arginine-serine-rich (RS) domain but does not have any known RNA-binding motifs, indicating that it is not a member of the SR family. Sip1 also contains a region with weak sequence similarity to the Drosophila splicing regulator suppressor of white apricot (SWAP). An essential role for Sip1 in pre-mRNA splicing was suggested by the observation that anti-Sip1 antibodies depleted splicing activity from HeLa nuclear extract. Purified recombinant Sip1 protein, but not other RS domain-containing proteins such as SC35, ASF/SF2, and U2AF65, restored the splicing activity of the Sip1-immunodepleted extract. Addition of U2AF65 protein further enhanced the splicing reconstitution by the Sip1 protein. Deficiency in the formation of both A and B splicing complexes in the Sip1-depleted nuclear extract indicates an important role of Sip1 in spliceosome assembly. Together, these results demonstrate that Sip1 is a novel RS domain-containing protein required for pre-mRNA splicing and that the functional role of Sip1 in splicing is distinct from those of known RS domain-containing splicing factors.Pre-mRNA splicing takes place in spliceosomes, the large RNA-protein complexes containing pre-mRNA, U1, U2, U4/6, and U5 small nuclear ribonucleoprotein particles (snRNPs), and a large number of accessory protein factors (for reviews, see references 21, 22, 37, 44, and 48). It is increasingly clear that the protein factors are important for pre-mRNA splicing and that studies of these factors are essential for further understanding of molecular mechanisms of pre-mRNA splicing.Most mammalian splicing factors have been identified by biochemical fractionation and purification (3, 15, 19, 3136, 45, 6971, 73), by using antibodies recognizing splicing factors (8, 9, 16, 17, 61, 66, 67, 74), and by sequence homology (25, 52, 74).Splicing factors containing arginine-serine-rich (RS) domains have emerged as important players in pre-mRNA splicing. These include members of the SR family, both subunits of U2 auxiliary factor (U2AF), and the U1 snRNP protein U1-70K (for reviews, see references 18, 41, and 59). Drosophila alternative splicing regulators transformer (Tra), transformer 2 (Tra2), and suppressor of white apricot (SWAP) also contain RS domains (20, 40, 42). RS domains in these proteins play important roles in pre-mRNA splicing (7, 71, 75), in nuclear localization of these splicing proteins (23, 40), and in protein-RNA interactions (56, 60, 64). Previous studies by us and others have demonstrated that one mechanism whereby SR proteins function in splicing is to mediate specific protein-protein interactions among spliceosomal components and between general splicing factors and alternative splicing regulators (1, 1a, 6, 10, 27, 63, 74, 77). Such protein-protein interactions may play critical roles in splice site recognition and association (for reviews, see references 4, 18, 37, 41, 47 and 59). Specific interactions among the splicing factors also suggest that it is possible to identify new splicing factors by their interactions with known splicing factors.Here we report identification of a new splicing factor, Sip1, by its interaction with the essential splicing factor SC35. The predicted Sip1 protein sequence contains an RS domain and a region with sequence similarity to the Drosophila splicing regulator, SWAP. We have expressed and purified recombinant Sip1 protein and raised polyclonal antibodies against the recombinant Sip1 protein. The anti-Sip1 antibodies specifically recognize a protein migrating at a molecular mass of approximately 210 kDa in HeLa nuclear extract. The anti-Sip1 antibodies sufficiently deplete Sip1 protein from the nuclear extract, and the Sip1-depleted extract is inactive in pre-mRNA splicing. Addition of recombinant Sip1 protein can partially restore splicing activity to the Sip1-depleted nuclear extract, indicating an essential role of Sip1 in pre-mRNA splicing. Other RS domain-containing proteins, including SC35, ASF/SF2, and U2AF65, cannot substitute for Sip1 in reconstituting splicing activity of the Sip1-depleted nuclear extract. However, addition of U2AF65 further increases splicing activity of Sip1-reconstituted nuclear extract, suggesting that there may be a functional interaction between Sip1 and U2AF65 in nuclear extract.  相似文献   

12.
13.
14.
15.
The pathogenesis of African swine fever virus (ASFV) infection in Ornithodoros porcinus porcinus was examined in nymphal ticks infected with the ASFV isolate Chiredzi/83/1. At times postinfection (p.i.) ranging from 6 h to 290 days, ticks or dissected tick tissues were titrated for virus and examined ultrastructurally for evidence of virus replication. The ASFV infection rate in ticks was 100% in these experiments, and virus infection was not associated with a significant increase in tick mortality. Initial ASFV replication occurred in phagocytic digestive cells of the midgut epithelium. Subsequent infection and replication of ASFV in undifferentiated midgut cells was observed at 15 days p.i. Generalization of virus infection from midgut to other tick tissues required 2 to 3 weeks and most likely involved virus movement across the basal lamina of the midgut into the hemocoel. Secondary sites of virus replication included hemocytes (type I and II), connective tissue, coxal gland, salivary gland, and reproductive tissue. Virus replication was not observed in the nervous tissue of the synganglion, Malpighian tubules, and muscle. Persistent infection, characterized by active virus replication, was observed for all involved tick tissues. After 91 days p.i., viral titers in salivary gland and reproductive tissue were consistently the highest detected. Successful tick-to-pig transmission of ASFV at 48 days p.i. correlated with high viral titers in salivary and coxal gland tissue and their secretions. A similar pattern of virus infection and persistence in O. porcinus porcinus was observed for three additional ASFV tick isolates in their associated ticks.African swine fever (ASF) is a highly lethal disease of domestic pigs for which animal slaughter and area quarantine are the only methods of disease control. African swine fever virus (ASFV), the causative agent of ASF, is a large double-stranded DNA virus which is the only member of an unnamed family of viruses. ASFV is the only known DNA arbovirus (4, 6, 12). The natural arthropod host for ASFV is Ornithodoros porcinus porcinus (Walton) ticks (40). Some confusion exists in earlier reports since ticks that should be classified as O. porcinus porcinus are often referred to as either O. moubata porcinus or simply O. moubata (59).ASFV can infect hosts through either a sylvatic cycle or a domestic cycle. In the sylvatic cycle, ASFV infects warthogs (Phacochoerus aethiopicus) and bushpigs (Potamochoerus spp.) as well as ticks of the genus Ornithodoros (710, 36, 55). In sub-Saharan Africa, warthogs occupy burrows which are frequently infested with large numbers of O. porcinus porcinus ticks (38, 45, 57, 58), and a correlation, though not absolute, has been established between ASFV infection of warthogs and the presence of O. porcinus porcinus ticks in burrows (57). In ASFV-enzootic areas, adult warthogs are typically nonviremic, although most are seropositive (28, 41, 46, 53, 58), and virus can usually be isolated only from lymph nodes (28, 41). Young warthogs, which are confined to the burrow for the first months of life, are most likely to be infected through feeding of infected O. porcinus porcinus ticks. Infection in young warthogs is subclinical, with viremic titers ranging from 2 to 3 log10 50% hemadsorption dose (HAD50)/ml (56, 57), a level sufficient to infect a low percentage of naive ticks (42, 58, 30). The sylvatic ASFV cycle is further maintained by transovarial (43) and venereal (44) transmission in ticks. In burrows containing ASFV-infected ticks, infection rates are typically low (<2%), with the highest rate occurring in adult females (40, 45, 57, 65). The mechanism of ASFV transmission from the sylvatic cycle in Africa to the domestic cycle is most likely through feeding of infected ticks on pigs (41, 58), since direct contact between infected warthogs and domestic pigs has failed to result in transmission (36, 10, 28, 58), except in a single case (8). The virus may be transmitted between domestic pigs by either direct or indirect contact (33).Various characteristics of ASFV infection have been studied in a number of Ornithodoros spp. ticks. The first association of ASFV with a tick was made by Sanchez-Botija (50), who reported isolation of ASFV from O. erraticus, a tick native to the Iberian peninsula and later considered important to maintenance of ASFV in an enzootic cycle in that region (51). In the first experimental infection, striking differences were found in the percentage of O. moubata porcinus ticks infected by two different ASFV isolates, a low infectious dose for ticks (ranging from of 0.9 to 4 log10 HAD50) was demonstrated, and transmission out to 469 days postinfection (p.i.) was successful with single ticks (42). Experimental ASFV infection and transmission to pigs has been demonstrated for O. savignyi, a tick found in Africa (34), O. coriaceus (23, 25) and O. turicata (25), ticks indigenous to the United States, and O. puertoricensis (25, 14), a tick indigenous to the Caribbean. A 40% mortality rate was found in infected O. coriaceus (25) and O. puertoricensis ticks (15). O. marocanus, which was formerly referred to as O. erraticus, transmitted ASFV out to 588 days p.i., although 73% mortality was reported for infected ticks (16, 17). A number of reports have not found significant virus-induced mortality in O. moubata porcinus ticks (22, 4044). In contrast, mortality rates were 35% higher in infected O. moubata porcinus females in the only study to examine mortality during the gonotrophic cycle (26).Specific aspects of ASFV infection in the natural host remain poorly understood. Greig (22) experimentally infected O. moubata porcinus ticks with pathogenic ASFV isolates and used virus titration and immunofluorescence of dissected tissues to determine that the midgut was the initial site of viral replication and the site of longest persistence. Several other tissues were also found to have detectable levels of virus, although the midgut was the only tissue which was consistently positive. The presence of ASFV has been demonstrated in hemocytes of infected O. coriaceus ticks by electron microscopy and immunofluorescence studies, but the presence or nature of virus replication was not addressed (13).Here we describe the pathogenesis and persistence of ASFV infection in O. porcinus porcinus ticks. Our data indicate that initial ASFV replication occurs in phagocytic digestive cells of the midgut epithelium, with secondary replication occurring in undifferentiated midgut cells at later times p.i. Generalization of virus infection from the midgut to other tick tissues required 2 to 3 weeks. Secondary sites of virus replication include hemocytes (type I and II), coxal gland, salivary gland, connective tissue, and reproductive tissue. Successful tick-to-pig transmission correlated with relatively high viral titers in salivary and coxal glands. Persistent infection in the tick involves continuous viral replication in several tissues and is associated with minimal cytopathology.  相似文献   

16.
17.
We have investigated whether the identity of the coreceptor (CCR5, CXCR4, or both) used by primary human immunodeficiency virus type 1 (HIV-1) isolates to enter CD4+ cells influences the sensitivity of these isolates to neutralization by monoclonal antibodies and CD4-based agents. Coreceptor usage was not an important determinant of neutralization titer for primary isolates in peripheral blood mononuclear cells. We also studied whether dualtropic primary isolates (able to use both CCR5 and CXCR4) were differentially sensitive to neutralization by the same antibodies when entering U87MG-CD4 cells stably expressing either CCR5 or CXCR4. Again, we found that the coreceptor used by a virus did not greatly affect its neutralization sensitivity. Similar results were obtained for CCR5- or CXCR4-expressing HOS cell lines engineered to express green fluorescent protein as a reporter of HIV-1 entry. Neutralizing antibodies are therefore unlikely to be the major selection pressure which drives the phenotypic evolution (change in coreceptor usage) of HIV-1 that can occur in vivo. In addition, the increase in neutralization sensitivity found when primary isolates adapt to growth in transformed cell lines in vitro has little to do with alterations in coreceptor usage.Human immunodeficiency virus type 1 (HIV-1) enters CD4+ T cells via an interaction with CD4 and coreceptor molecules, the most important of which yet identified are the chemokine receptors CXCR4 and CCR5 (4, 12, 23, 26, 28, 32). CXCR4 is used by T-cell line-tropic (T-tropic) primary isolates or T-cell line-adapted (TCLA) lab strains, whereas CCR5 is used by primary isolates of the macrophage-tropic (M-tropic) phenotype (4, 12, 23, 26, 28, 32). Most T-tropic isolates and some TCLA strains are actually dualtropic in that they can use both CXCR4 and CCR5 (and often other coreceptors such as CCR3, Bonzo/STRL33, and BOB/gpr15), at least in coreceptor-transfected cells (18, 24, 30, 54, 89). The M-tropic and T-tropic/dualtropic nomenclature has often been used interchangeably with the terms “non-syncytium-inducing” (NSI) and “syncytium-inducing” (SI), although it is semantically imprecise to do so.M-tropic viruses are those most commonly transmitted sexually (3, 33, 87, 106) and from mother to infant (2, 72, 81). If T-tropic strains are transmitted, or when they emerge, this is associated with a more rapid course of disease in both adults (17, 37, 46, 51, 52, 76, 78, 82, 92, 101) and children (6, 45, 84, 90). However, T-tropic viruses emerge in only about 40% of infected people, usually only several years after infection (76, 78). A well-documented, albeit anecdotal, study found that when a T-tropic strain was transmitted by direct transfer of blood, its replication was rapidly suppressed: the T-tropic virus was eliminated from the body, and M-tropic strains predominated (20). These results suggest that there is a counterselection pressure against the emergence of T-tropic strains during the early stages of HIV-1 infection in most people. But what is this pressure?Since the M-tropic and T-tropic phenotypes are properties mediated by the envelope glycoproteins whose function is to associate with CD4 and the coreceptors, a selection pressure differentially exerted on M- and T-tropic viruses could, in principle, act at the level of virus entry. In other words, neutralizing antibodies to the envelope glycoproteins, or the chemokine ligands of the coreceptors, could theoretically interfere more potently with the interactions of T-tropic strains with CXCR4 than with M-tropic viruses and CCR5. A differential effect of this nature could suppress the emergence of T-tropic viruses. Consistent with this possibility, neutralizing antibodies are capable of preventing the CD4-dependent association of gp120 with CCR5 (42, 94, 103), and chemokines can also prevent the coreceptor interactions of HIV-1 (8, 13, 23, 28, 70).Here, we explore whether the efficiency of HIV-1 neutralization is affected by coreceptor usage. Although earlier studies have not found T-tropic strains to be inherently more neutralization sensitive than M-tropic ones (20, 40, 44), previously available reagents and techniques may not have been adequate to fully address this question. One major problem is that even single residue changes can drastically affect both antibody binding to neutralization epitopes and the HIV-1 phenotype (25, 55, 62, 67, 83, 91), and so studies using relatively unrelated viruses and a fixed antibody (polyclonal or monoclonal) preparation have two variables to contend with: the viral phenotype (coreceptor use) and the antigenic structure of the virus and hence the efficiency of the antibody-virion interaction.We have used a new experimental strategy to explore whether coreceptor usage affects neutralization sensitivity in the absence of other confounding variables: the use of dualtropic viruses able to enter CD4+ cells via either CCR5 or CXCR4. By using a constant HIV-1 isolate or clone and the same monoclonal antibodies (MAbs) or CD4-based reagents as neutralizing agents, we can ensure that the only variable under study in the neutralization reaction is the nature of the coreceptor used for entry. Our major conclusion is that there is no strong association between coreceptor usage and neutralization sensitivity for primary HIV-1 isolates. Independent studies have reached the same conclusion (53a, 59). The emergence of T-tropic (SI) viruses in vivo may be unlikely to be due to escape from antibody-mediated selection pressure.  相似文献   

18.
The human immunodeficiency virus type 1 (HIV-1) vpu gene encodes a type I anchored integral membrane phosphoprotein with two independent functions. First, it regulates virus release from a post-endoplasmic reticulum (ER) compartment by an ion channel activity mediated by its transmembrane anchor. Second, it induces the selective down regulation of host cell receptor proteins (CD4 and major histocompatibility complex class I molecules) in a process involving its phosphorylated cytoplasmic tail. In the present work, we show that the Vpu-induced proteolysis of nascent CD4 can be completely blocked by peptide aldehydes that act as competitive inhibitors of proteasome function and also by lactacystin, which blocks proteasome activity by covalently binding to the catalytic β subunits of proteasomes. The sensitivity of Vpu-induced CD4 degradation to proteasome inhibitors paralleled the inhibition of proteasome degradation of a model ubiquitinated substrate. Characterization of CD4-associated oligosaccharides indicated that CD4 rescued from Vpu-induced degradation by proteasome inhibitors is exported from the ER to the Golgi complex. This finding suggests that retranslocation of CD4 from the ER to the cytosol may be coupled to its proteasomal degradation. CD4 degradation mediated by Vpu does not require the ER chaperone calnexin and is dependent on an intact ubiquitin-conjugating system. This was demonstrated by inhibition of CD4 degradation (i) in cells expressing a thermally inactivated form of the ubiquitin-activating enzyme E1 or (ii) following expression of a mutant form of ubiquitin (Lys48 mutated to Arg48) known to compromise ubiquitin targeting by interfering with the formation of polyubiquitin complexes. CD4 degradation was also prevented by altering the four Lys residues in its cytosolic domain to Arg, suggesting a role for ubiquitination of one or more of these residues in the process of degradation. The results clearly demonstrate a role for the cytosolic ubiquitin-proteasome pathway in the process of Vpu-induced CD4 degradation. In contrast to other viral proteins (human cytomegalovirus US2 and US11), however, whose translocation of host ER molecules into the cytosol occurs in the presence of proteasome inhibitors, Vpu-targeted CD4 remains in the ER in a transport-competent form when proteasome activity is blocked.

The human immunodeficiency virus type 1 (HIV-1)-specific accessory protein Vpu performs two distinct functions in the viral life cycle (11, 12, 29, 34, 46, 47, 5052; reviewed in references 31 and 55): enhancement of virus particle release from the cell surface, and the selective induction of proteolysis of newly synthesized membrane proteins. Known targets for Vpu include the primary virus receptor CD4 (63, 64) and major histocompatibility complex (MHC) class I molecules (28). Vpu is an oligomeric class I integral membrane phosphoprotein (35, 48, 49) with a structurally and functionally defined domain architecture: an N-terminal transmembrane anchor and C-terminal cytoplasmic tail (20, 34, 45, 47, 50, 65). Vpu-induced degradation of endoplasmic reticulum (ER) membrane proteins involves the phosphorylated cytoplasmic tail of the protein (50), whereas the virion release function is mediated by a cation-selective ion channel activity associated with the membrane anchor (19, 31, 45, 47).CD4 is a 55-kDa class I integral membrane glycoprotein that serves as the primary coreceptor for HIV entry into cells. CD4 consists of a large lumenal domain, a transmembrane peptide, and a 38-residue cytoplasmic tail. It is expressed on the surface of a subset of T lymphocytes that recognize MHC class II-associated peptides, and it plays a pivotal role in the development and maintenance of the immune system (reviewed in reference 30). Down regulation of CD4 in HIV-1-infected cells is mediated through several independent mechanisms (reviewed in references 5 and 55): intracellular complex formation of CD4 with the HIV envelope protein gp160 (8, 14), endocytosis of cell surface CD4 induced by the HIV-1 nef gene product (1, 2), and ER degradation induced by the HIV-1 vpu gene product (63, 64).Vpu-induced degradation of CD4 is an example of ER-associated protein degradation (ERAD). ERAD is a common outcome when proteins in the secretory pathway are unable to acquire their native structure (4). Although it was thought that ERAD occurs exclusively inside membrane vesicles of the ER or other related secretory compartments, this has gained little direct experimental support. Indeed, there are several recent reports that ERAD may actually represent export of the target protein to the cytosol, where it is degraded by cytosolic proteases. It was found that in yeast, a secreted protein, prepro-α-factor (pαF), is exported from microsomes and degraded in the cytosol in a proteasome-dependent manner (36). This process was dependent on the presence of calnexin, an ER-resident molecular chaperone that interacts with N-linked oligosaccharides containing terminal glucose residues (3). In mammalian cells, two human cytomegalovirus (HCMV) proteins, US2 and US11, were found to cause the retranslocation of MHC class I molecules from the ER to the cytosol, where they are destroyed by proteasomes (61, 62). In the case of US2, class I molecules were found to associate with a protein (Sec61) present in the channel normally used to translocate newly synthesized proteins into the ER (termed the translocon), leading to the suggestion that the ERAD substrates are delivered to the cytosol by retrograde transport through the Sec61-containing pore (61). Fujita et al. (24) reported that, similar to these findings, the proteasome-specific inhibitor lactacystin (LC) partially blocked CD4 degradation in transfected HeLa cells coexpressing CD4, Vpu, and HIV-1 Env glycoproteins. In the present study, we show that Vpu-induced CD4 degradation can be completely blocked by proteasome inhibitors, does not require the ER chaperone calnexin, but requires the function of the cytosolic polyubiquitination machinery which apparently targets potential ubiquitination sites within the CD4 cytoplasmic tail. Our findings point to differences between the mechanism of Vpu-mediated CD4 degradation and ERAD processes induced by the HCMV proteins US2 and US11 (61, 62).  相似文献   

19.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号