首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hong Q  Qian P  Li XM  Yu XL  Chen HC 《Biotechnology letters》2007,29(11):1677-1683
Pseudorabies (PR), foot-and-mouth disease (FMD), and porcine parvovirus disease are three important infectious diseases in swine worldwide. The gene-deleted pseudorabies virus (PRV) has been used as a live-viral vector to develop multivalent genetic engineering vaccine. In this study, a recombinant PRV, which could co-express protein precursor P1-2A of FMDV and VP2 protein of PPV, was constructed using PRV TK/gE/LacZ+ mutant as the vector. After homologous recombination and plaque purification, recombinant virus PRV TK/gE/P1-2A-VP2 was acquired and identified. Immunogenicity, safety of the recombinant PRV and its protection against PRV were confirmed in a mouse model by indirect ELISA and serum neutralization test. The results show that the recombinant PRV is a candidate vaccine strain to develop a novel trivalent vaccine against PRV, FMDV and PPV in swine.  相似文献   

2.
BACKGROUND: Foot-and-mouth disease virus (FMDV) affects susceptible livestock animals and causes disastrous economic impact. Immunization with plasmid expressing VP1 that contains the major antigenic epitope(s) of FMDV as cytoplasmic protein (cVP1) failed to elicit full protection against FMDV challenge. MATERIALS AND METHODS: In this study, mice were immunized via electroporation with four cDNA expression vectors that were constructed to express VP1 of FMDV, as cytoplasmic (cVP1), secreted (sVP1), membrane-anchored (mVP1) or capsid precursor protein (P1), respectively, to evaluate whether expression of VP1 in specific subcellular compartment(s) would result in better immune responses. RESULTS: Electroporation enhanced immune responses to vectors expressing cVP1 or P1 and expedited the immune responses to vectors expressing sVP1 or mVP1. Immunization of mice via electroporation with mVP1 cDNA was better than sVP1 or cVP1 cDNA in eliciting neutralizing antibodies and viral clearance protection. Vaccination with P1 cDNA, nonetheless, yielded the best immune responses and protection among all four cDNAs that we tested. CONCLUSIONS: These results suggest that the antigenicity of a VP1 DNA vaccine can be significantly enhanced by altering the cellular localization of the VP1 antigen. Electroporation is a useful tool for enhancing the immune responses of vectors expressing VP1 or P1. By mimicking FMDV more closely than that of transgenic VP1 and eliciting immune responses favorably toward Th2, transgenic P1 may induce more neutralizing antibodies and better protection against FMDV challenge.  相似文献   

3.
4.
DNA‐based vaccination is an attractive alternative for overcoming the disadvantages of inactivated virus vaccines; however, DNA vaccines alone often generate only weak immune responses. In this study, the efficacy of LMS as a chemical adjuvant on a DNA vaccine (pVIR‐P12A‐IL18‐3C) encoding the P1‐2A and 3C genes of the FMDV and swine IL‐18, which provides protection against FMDV challenge, was tested. All test pigs were administered booster vaccinations 28 days after the initial inoculation, and were challenged with 1000 ID50 FMDV O/NY00 20 days after the booster vaccination. Positive and negative control groups were inoculated with inactivated virus vaccine and PBS respectively. The DNA vaccine plus LMS induced greater humoral and cell‐mediated responses than the DNA vaccine alone, as evidenced by higher concentrations of neutralizing and specific anti‐FMDV antibodies, and by higher concentrations of T‐lymphocyte proliferation and IFN‐γ production, respectively. FMDV challenge revealed that the DNA vaccine plus LMS provided higher protection than the DNA vaccine alone. This study demonstrates that LMS may be useful as an adjuvant for improving the protective efficiency of DNA vaccination against FMDV in pigs.  相似文献   

5.
The leader protease (Lpro) and capsid-coding sequences (P1) constitute approximately 3 kb of the foot-and-mouth disease virus (FMDV). We studied the phylogenetic relationship of 46 FMDV serotype A isolates of Indian origin collected during the period 1968–2005 and also eight vaccine strains using the neighbour-joining tree and Bayesian tree methods. The viruses were categorized under three major groups — Asian, Euro-South American and European. The Indian isolates formed a distinct genetic group among the Asian isolates. The Indian isolates were further classified into different genetic subgroups (<5% divergence). Post-1995 isolates were divided into two subgroups while a few isolates which originated in the year 2005 from Andhra Pradesh formed a separate group. These isolates were closely related to the isolates of the 1970s. The FMDV isolates seem to undergo reverse mutation or convergent evolution wherein sequences identical to the ancestors are present in the isolates in circulation. The eight vaccine strains included in the study were not related to each other and belonged to different genetic groups. Recombination was detected in the Lpro region in one isolate (A IND 20/82) and in the VP1 coding 1D region in another isolate (A RAJ 21/96). Positive selection was identified at aa positions 23 in the Lpro (P<0.05; 0.046*) and at aa 171 in the capsid protein VP1 (P<0.01; 0.003**).  相似文献   

6.
The influenza M2 ectodomain (M2e) is well conserved across human influenza A subtypes, but there are few residue changes among avian and swine origin influenza A viruses. We expressed a tandem repeat construct of heterologous M2e sequences (M2e5x) derived from human, swine, and avian origin influenza A viruses using the yeast expression system. Intramuscular immunization of mice with AS04-adjuvanted M2e5x protein vaccines was effective in inducing M2e-specific antibodies reactive to M2e peptide and native M2 proteins on the infected cells with human, swine, or avian influenza virus, mucosal and systemic memory cellular immune responses, and cross-protection against H3N2 virus. Importantly, M2e5x immune sera were found to confer protection against different subtypes of H1N1 and H5N1 influenza A viruses in naïve mice. Also, M2e5x-immune complexes of virus-infected cells stimulated macrophages to secrete cytokines via Fc receptors, indicating a possible mechanism of protection. The present study provides evidence that M2e5x proteins produced in yeast cells could be developed as a potential universal influenza vaccine.  相似文献   

7.
Pseudorabies virus (PRV), an alpha-herpesvirus, has been developed as a live viral vector for animal vaccines. However, the PRV recombinant virus TK/gE/GP5+ expressing GP5 of porcine reproductive and respiratory syndrome virus (PRRSV), based on the PRV genetically depleted vaccine strain TK/gE/LacZ+, scarcely stimulated the vaccinated animals to produce neutralizing antibodies against PRRSV. To develop a booster-specific immune response of such PRV recombinants, the ORF5m gene (the modified ORF5 gene having better immune responses) was substituted for the ORF5 gene and introduced into PRV TK/gE/LacZ+, resulting in a PRV recombinant named TK/gE/GP5m+, which expressed the modified GP5m protein. The recombinant virus was confirmed using PCR, Southern blotting and Western blotting. TK/gE/GP5m+ and TK/gE/GP5+ expressing the authentic GP5 protein were inoculated into Balb/c mice to evaluate their immune responses. The results indicated that the protecting neutralization antibodies (the 3/6 vaccinated mice obtained 1:16) and cell immune responses induced by TK/gE/GP5m+ against PRRSV were higher than that induced by TK/gE/GP5+. Thus, the development of the new PRV recombinant expressing the modified GP5m protein as a candidate vaccine established the basis for the study of bivalent genetic engineering vaccines against PRRSV and PRV. Translated from Journal of Biotechnology, 2005, 21(6): 858–864 [译自: 生物工程学报]  相似文献   

8.
Field isolates of foot-and-mouth disease virus (FMDV) have a restricted cell tropism which is limited by the need for certain RGD-dependent integrin receptors. In contrast, cell culture-adapted viruses use heparan sulfate (HS) or other unidentified molecules as receptors to initiate infection. Here, we report several novel findings resulting from cell culture adaptation of FMDV. In cell culture, a virus with the capsid of the A/Turkey/2/2006 field isolate gained the ability to infect CHO and HS-deficient CHO cells as a result of a single glutamine (Q)-to-lysine (K) substitution at VP1-110 (VP1-Q110K). Using site-directed mutagenesis, the introduction of lysine at this same site also resulted in an acquired ability to infect CHO cells by type O and Asia-1 FMDV. However, this ability appeared to require a second positively charged residue at VP1-109. CHO cells express two RGD-binding integrins (α5β1 and αvβ5) that, although not used by FMDV, have the potential to be used as receptors; however, viruses with the VP1-Q110K substitution did not use these integrins. In contrast, the VP1-Q110K substitution appeared to result in enhanced interactions with αvβ6, which allowed a virus with KGE in place of the normal RGD integrin-binding motif to use αvβ6 as a receptor. Thus, our results confirmed the existence of nonintegrin, non-HS receptors for FMDV on CHO cells and revealed a novel, non-RGD-dependent use of αvβ6 as a receptor. The introduction of lysine at VP1-110 may allow for cell culture adaptation of FMDV by design, which may prove useful for vaccine manufacture when cell culture adaptation proves intractable.  相似文献   

9.
Foot-and-mouth disease (FMD) and infectious bovine rhinotracheitis (IBR) are two important infectious diseases of cattle. Using bovine herpesvirus type 1 (BHV-1) as a gene delivery vector for development of live-viral vaccines has gained widespread interest. In this study, a recombinant BHV-1 was constructed by inserting the synthetic FMDV (O/China/99) VP1 gene in the the gE locus of BHV-1 genome under the control of immediately early gene promoter of human cytomegalovirus (phIE CMV) and bovine growth hormone polyadenylation (BGH polyA) signal. After homologous recombination and plaque purification, a recombinant virus named BHV-1/gE/VP1 was acquired and identified. The immunogenicity was confirmed in a rabbit model by virus neutralization test and enzyme-linked immunosorbent assay (ELISA). The result indicated that the BHV-1/gE/VP1 has the potential for being developed as a bivalent vaccine for FMD and IBR.  相似文献   

10.
A safe and potent adjuvant is needed for development of mucosal vaccines against etiological agents, such as influenza virus, that enter the host at mucosal surfaces. Cytokines are potential adjuvants for mucosal vaccines because they can enhance primary and memory immune responses enough to protect against some infectious agents. For this study, we tested 26 interleukin (IL) cytokines as mucosal vaccine adjuvants and compared their abilities to induce antigen (Ag)-specific immune responses against influenza virus. In mice intranasally immunized with recombinant influenza virus hemagglutinin (rHA) plus one of the IL cytokines, IL-1 family cytokines (i.e., IL-1α, IL-1β, IL-18, and IL-33) were found to increase Ag-specific immunoglobulin G (IgG) in plasma and IgA in mucosal secretions compared to those after immunization with rHA alone. In addition, high levels of both Th1- and Th2-type cytokines were observed in mice immunized with rHA plus an IL-1 family cytokine. Furthermore, mice intranasally immunized with rHA plus an IL-1 family cytokine had significant protection against a lethal influenza virus infection. Interestingly, the adjuvant effects of IL-18 and IL-33 were significantly decreased in mast cell-deficient W/W(v) mice, indicating that mast cells have an important role in induction of Ag-specific mucosal immune responses induced by IL-1 family cytokines. In summary, our results demonstrate that IL-1 family cytokines are potential mucosal vaccine adjuvants and can induce Ag-specific immune responses for protection against pathogens like influenza virus.  相似文献   

11.
Hepatitis A virus (HAV) and Hepatitis E virus (HEV) are the most common causes of infectious hepatitis. These viruses are spread largely by the fecal-oral route and lead to clinically important disease in developing countries. To evaluate the potential of targeting hepatitis A and E infection simultaneously, a combined mucosal candidate vaccine was developed with the partial open reading frame 2 (ORF2) sequence (aa 368–607) of HEV (HE-ORF2) and partial virus protein 1 (VP1) sequence (aa 1–198) of HAV (HA-VP1), which included the viral neutralization epitopes. Tuftsin is an immunostimulatory peptide which can enhance the immunogenicity of a protein by targeting it to macrophages and dendritic cells. Here, we developed a novel combined protein vaccine by conjugating tuftsin to HE-ORF2 and HA-VP1 and used synthetic CpG oligodeoxynucleotides (ODNs) as the adjuvant. Subsequent experiments in BALB/c mice demonstrated that tuftsin enhanced the serum-specific IgG and IgA antibodies against HEV and HAV at the intestinal, vaginal and pulmonary interface when delivered intranasally. Moreover, mice from the intranasally immunized tuftsin group (HE-ORF2-tuftsin + HA-VP1-tuftsin + CpG) showed higher levels of IFN-γ-secreting splenocytes (Th1 response) and ratio of CD4+/CD8+ T cells than those of the no-tuftsin group (HE-ORF2 + HA-VP1 + CpG). Thus, the tuftsin group generated stronger humoral and cellular immune responses compared with the no-tuftsin group. Moreover, enhanced responses to the combined protein vaccine were obtained by intranasal immunization compared with intramuscular injection. By integrating HE-ORF2, HA-VP1 and tuftsin in a vaccine, this study validated an important concept for further development of a combined mucosal vaccine against hepatitis A and E infection.  相似文献   

12.
Mucosal vaccination is an effective strategy for generating antigen-specific immune responses against mucosal infections of foot-and-mouth disease virus (FMDV). In this study, Lactobacillus plantarum strains NC8 and WCFS1 were used as oral delivery vehicles containing a pSIP411-VP1 recombinant plasmid to initiate mucosal and systemic immune responses in guinea pigs. Guinea pigs were orally vaccinated (three doses) with NC8-pSIP411, NC8-pSIP411-VP1, WCFS1-pSIP411, WCFS1-pSIP411-VP1 or milk. Animals immunized with NC8-pSIP411-VP1 and WCFS1-pSIP411-VP1 developed high levels of antigen-specific serum IgG, IgA, IgM, mucosal secretory IgA (sIgA) and neutralizing antibodies, and revealed stronger cell-mediated immune responses and enhanced protection against FMDV challenge compared with control groups. The recombinant pSIP411-VP1 effectively improved immunoprotection against FMDV in guinea pigs.  相似文献   

13.
Foot-and-mouth disease (FMD) is an acute and highly contagious disease caused by foot-and-mouth disease virus (FMDV) that can affect cloven-hoofed animal species, leading to severe economic losses worldwide. Therefore, the development of a safe and effective new vaccine to prevent and control FMD is both urgent and necessary. In this study, we developed a chimeric virus-like particle (VLP) vaccine candidate for serotype O FMDV and evaluated its protective immunity in guinea pigs. Chimeric VLPs were formed by the antigenic structural protein VP1 from serotype O and segments of the viral capsid proteins (VP2, VP3, and VP4) from serotype A. The chimeric VLPs elicited significant humoral and cellular immune responses with a higher level of anti-FMDV antibodies and cytokines than the control group. Furthermore, four of the five guinea pigs vaccinated with the chimeric VLPs were completely protected against challenge with 100 50% guinea pig infectious doses (GPID50) of the virulent FMDV strain O/MAY98. These data suggest that chimeric VLPs are potential candidates for the development of new vaccines against FMDV.  相似文献   

14.
【目的】利用口蹄疫病毒的反向遗传操作技术,构建含不同外源标签口蹄疫病毒的全长克隆,鉴定口蹄疫病毒结构蛋白VP1容忍不同外源标签的能力。【方法】通过融合PCR技术,在FMDV O/HN/93全长感染性克隆的VP1 G-H环分别引入V5、TC12、KT3、3FLAG外源标签,构建全长质粒。全长质粒经Not I线化后转染表达T7 RNA聚合酶的稳定细胞,拯救重组病毒。RT-PCR、序列测定、间接免疫荧光鉴定病毒,噬斑和一步生长曲线分析重组病毒的生物学特性。【结果】成功拯救到表达V5或KT3表位标签的重组病毒,未能拯救到表达TC12或3×FLAG的重组病毒。V5和KT3表位标签的插入均影响了口蹄疫病毒的复制能力。【结论】重组口蹄疫病毒的成功拯救为未来标记疫苗以及口蹄疫病毒作为表达载体等的研究奠定了基础。  相似文献   

15.
Cellular immune responses, particularly those associated with CD3+CD8+ cytotoxic T lymphocytes (CTL), are critical factors in controlling viral infection. Nasopharyngeal carcinoma (NPC) is closely associated with persistent Epstein-Barr virus (EBV) infection. NPC vaccine studies have focused on enhancing specific antiviral CTL responses. In this study, three vaccines capable of expressing the EBV-latent membrane protein 2 (LMP2) (a DNA vector, an adeno-associated virus (AAV) vector, and a replication-defective adenovirus serotype 5 (Ad5) vector) were respectively used to immunize female Balb/c mice (4–6 weeks old) at weeks 0, 2 and 4, either alone or in combination. Our results suggest that combined immunization with DNA, AAV, and adenovirus vector vaccines induced specific cellular immunity more effectively than any of these vectors alone or a combination of two of the three, constituting a sound vaccine strategy for the prevention and treatment of NPC.  相似文献   

16.
To develop a safe and efficient recombinant subunit vaccine to foot-and-mouth disease virus(FMDV)type Asia 1 in sheep,a tandem repeated multiple-epitope gene consisting of residues 137-160 and 197-211 of the VP1 gene of FMDV was designed and artificially synthesized.The biologically functional molecule,the ovine IgG heavy constant region(oIgG)as a protein carrier was introduced for design of the multiple-epitope recombinant vaccine and recombinant expression plasmids pET-30a-RE and pET-30a-RE-oIgG were successfully constructed.The recombinant proteins,RE and RE-oIgG,were expressed as a formation of inclusion bodies in E.coli.The immune potential of this vaccine regime in guinea pigs and sheep was evaluated.The results showed that IgG could significantly enhance the immune potential of antigenic epitopes.The recombinant protein RE-oIgG could not only elicit the high levels of neutralizing antibodies and lymphocytes proliferation responses in the vaccinated guinea pigs,but confer complete protection in guinea pigs against virus challenge.Although the recombinant protein RE could not confer protection in the vaccinated animals,it could delay the appearance of the clinical signs and reduce the severity of disease.Inspiringly,the titers of anti-FMDV neutralizing antibodies elicited in sheep vaccinated with RE-oIgG was significantly higher than that for the RE vaccination.Therefore,we speculated that this vaccine formulation may be a promising strategy for designing a novel vaccine against FMDV in the future.  相似文献   

17.
Foot-and-mouth disease virus (FMDV) causes a highly contagious infection in cloven-hoofed animals. Current inactivated FMDV vaccines generate short-term, serotype-specific protection, mainly through neutralizing antibody. An improved understanding of the mechanisms of protective immunity would aid design of more effective vaccines. We have previously reported the presence of virus-specific CD8+ T cells in FMDV-vaccinated and -infected cattle. In the current study, we aimed to identify CD8+ T cell epitopes in FMDV recognized by cattle vaccinated with inactivated FMDV serotype O. Analysis of gamma interferon (IFN-γ)-producing CD8+ T cells responding to stimulation with FMDV-derived peptides revealed one putative CD8+ T cell epitope present within the structural protein P1D, comprising residues 795 to 803 of FMDV serotype O UKG/2001. The restricting major histocompatibility complex (MHC) class I allele was N*02201, expressed by the A31 haplotype. This epitope induced IFN-γ release, proliferation, and target cell killing by αβ CD8+ T cells, but not CD4+ T cells. A protein alignment of representative samples from each of the 7 FMDV serotypes showed that the putative epitope is highly conserved. CD8+ T cells from FMDV serotype O-vaccinated A31+ cattle recognized antigen-presenting cells (APCs) loaded with peptides derived from all 7 FMDV serotypes, suggesting that CD8+ T cells recognizing the defined epitope are cross-reactive to equivalent peptides derived from all of the other FMDV serotypes.Foot-and-mouth disease virus (FMDV) is a member of the family Picornaviridae, genus Aphthovirus. The FMDV particle consists of a positive-strand RNA molecule of approximately 8,500 nucleotides, enclosed within an icosahedral capsid. The genome encodes a unique polyprotein from which four structural proteins (P1A, P1B, P1C, and P1D; also referred to as VP4, VP2, VP3, and VP1, respectively) and nine nonstructural proteins are cleaved by viral proteases (48). FMDV shows a high genetic and antigenic variability, which is reflected in the seven serotypes and multiple subtypes reported so far (13). The virus causes a highly contagious infection in cloven-hoofed animals which is characterized by the formation of vesicles on the mouth, tongue, nose, and feet. In addition, most infected animals develop viremia.The virus elicits a rapid humoral response in both infected and vaccinated animals (26). Virus-specific antibodies protect animals in a serotype-specific manner against reinfection or against infection in the case of vaccination, and protection is generally correlated with high levels of neutralizing antibodies (38). Control of the disease is achieved by vaccination with a chemically inactivated whole-virus vaccine emulsified with adjuvant; however, this provides only short-term, serotype-specific protection (2). The introduction of this vaccine has been very successful in areas of the world where the disease is enzootic. However, one of the major difficulties in implementing vaccination is the inability to distinguish vaccinated animals from infected/recovered animals, which may still be shedding virus. Currently, a number of assays specifically developed for this purpose are being validated (29, 41), and the success of these assays is dependent on the use of purified vaccine antigen. A strategy using replication-deficient adenovirus 5 expressing FMDV antigens has been shown to provide early protection against homologous challenge (39).The identification and characterization of T cell epitopes are important for understanding protective immunity mediated by CD8+ and CD4+ T lymphocytes. Such T cell responses are pathogen specific and are restricted by major histocompatibility complex (MHC) class I and class II molecules, which present foreign peptides to the immune system (55, 56). The role of cellular immunity in the protection of animals from FMDV is still a matter of some controversy. Specific T cell-mediated antiviral responses have been observed in cattle and swine following either infection or vaccination (3, 7, 24). CD4+ T cell responses are suggested to play an important role in protection against FMDV, and published studies demonstrate the presence of FMDV-specific MHC class II-restricted responses in cattle and pigs (22, 24). CD4+ epitopes within both P1A and P1D proteins have recently been identified in cattle (23). We have recently reported the presence of FMDV-specific, MHC class I-restricted CD8+ T cell responses in cattle following infection or vaccination. Despite these observations, the significance of cell-mediated immune responses in protective immunity to FMDV remains unclear.Cattle MHC (bovine leukocyte antigen [BoLA]) is relatively complex, with variable haplotypes expressing one, two, or three of the six classical class I genes (6, 15). At present, about 60 full-length validated cattle MHC class I cDNA sequences have been identified (www.ebi.ac.uk/ipd/mhc/bola), and the haplotypes commonly found in the Holstein breed are well characterized. We have previously identified amino acid motifs present in peptides binding to BoLA class I alleles N*02101, N*02201, and N*01301 (20). More recently, a number of Theileria parva CD8+ T cell epitopes presented through these and additional class I alleles have been described (25). Identification of such epitopes allows detailed analysis of cellular immune responses to vaccination and infection.In the present study, we aimed to identify MHC class I-restricted CD8+ T cell epitopes within the FMDV capsid protein. Using a panel of overlapping peptides, we have identified a BoLA A31-restricted epitope that is similar in all FMDV serotypes.  相似文献   

18.
The effects of Astragalus polysaccharides (APS) on the immune response in pigs immunized with foot-and-mouth disease virus (FMDV) vaccine were investigated. Fifteen pigs were randomly divided into five groups. Four groups were vaccinated with a FMDV inactivated vaccine. Pigs in three experimental groups were administered varying doses of APS (APS1, 5 mg/kg; APS2, 10 mg/kg; APS3, 20 mg/kg). The influence of APS on the number of CD3+CD4CD8+ cytotoxic T cells, CD3+CD4+CD8+ T helper memory cells, and CD3CD4CD8+ natural killer cells among peripheral blood lymphocytes (PBL) in the three APS groups were significant compared to the vaccine group. In vitro stimulation of PBL by Con A and LPS in APS groups induced a stronger proliferative response at 2 and 6 weeks post-inoculation (PI). APS markedly increased the titer of FMDV-specific antibody in a dose-dependent manner, and up-regulated mRNA expression of IFN-γ and IL-6. APS could potentially be used as an immunomodulator for a FMDV vaccine and provide better protection against FMDV.  相似文献   

19.
5T4 is a tumor associated antigen that is expressed on the surface of a wide spectrum of human adenocarcinomas. The highly attenuated virus, modified vaccinia Ankara, has been engineered to express human 5T4 (h5T4). In a pre-clinical murine model, the recombinant virus (TroVax) induces protection against challenge with CT26–h5T4 (a syngeneic tumor line expressing h5T4). Anti-tumor activity is long lived, with protection still evident 6 months after the final vaccination. In a therapeutic setting, injection of mice with TroVax results in a reduction in tumor burden of >90%. Depletion of CD8+ T cells has no effect upon therapy in the active treatment model, whereas depletion of CD4+ T cells completely abrogates anti-tumor activity. In a prophylactic setting, depletion of CD4+ and CD8+ T cells after the induction of a h5T4 immune response has no deleterious effect on protection following challenge with CT26–h5T4. In light of these studies, the role of antibodies in protection against tumor challenge was investigated. 5T4 specific polyclonal serum decreased tumor burden by approximately 70%. Thus, we conclude that CD4+ T cells are essential for the induction of a protective immune response and that antibodies are the likely effector moiety in this xenogeneic murine tumor model.  相似文献   

20.
Sun M  Qian K  Su N  Chang H  Liu J  Shen G  Chen G 《Biotechnology letters》2003,25(13):1087-1092
A Chlamydomonas reinhardtii chloroplast expression vector, pACTBVP1, containing the fusion of the foot and mouth disease virus (FMDV) VP1 gene and the cholera toxin B subunit (CTB) gene was constructed and transfered to the chloroplast genome of C. reinhardtii by the biolistic method. The transformants were identified by PCR, Southern blot, Western blot and ELISA assays after selection on resistant medium and incubation in the dark. The CTBVP1 fusion protein was expressed in C. reinhardtii chloroplast and accounted for up to 3% of the total soluble protein. The fusion protein also retained both GM1-ganglioside binding affinity and antigenicity of the FMDV VP1 and CTB proteins. These experimental results support the possibility of using transgenic chloroplasts of green alga as a mucosal vaccine source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号