首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
As for other mRNA measurement methods, quantitative RT-PCR results need to be normalized relative to stably expressed genes. Widely used normalizing genes include beta-actin and glyceraldehyde-3-phosphate dehydrogenase. It has, however, become clear that these and other normalizing genes can display modulated patterns of expression across tissue types and during complex cellular processes such as cell differentiation and cancer progression. Our objective was to set the basis for identifying normalizing genes that displayed stable expression during enterocytic differentiation and between healthy tissue and adenocarcinomas of the human colon. We thus identified novel potential normalizing genes using previously generated cDNA microarray data and examined the alterations of expression of two of these genes as well as seven commonly used normalizing genes during the enterocytic differentiation process and between matched pairs of resection margins and primary carcinomas of the human colon using real-time RT-PCR. We found that ribosomal phosphoprotein P0 was particularly stable in all intestinal epithelial cell extracts, thereby representing a particularly robust housekeeping reference gene for the assessment of gene expression during the human enterocytic differentiation process. On the other hand, beta-2-microglobulin generated the best score as a normalizing gene for comparing human colon primary carcinomas with their corresponding normal mucosa of the resection margin, although others were found to represent acceptable alternatives. In conclusion, we identified and characterized specific normalizing genes that should significantly improve quantitative mRNA studies related to both the differentiation process of the human intestinal epithelium and adenocarcinomas of the human colon. This approach should also be useful to validate normalizing genes in other intestinal contexts.  相似文献   

3.
Galectin-3 is an endogenous mammalian carbohydrate-binding protein with affinity for ABH group carbohydrate epitopes and polylactosamine glycans present on cell surface and extracellular matrix glycoproteins. It has been shown to play a role in cell differentiation, morphogenesis, adhesion and cell proliferation regulation. Progenitor cell proliferation in bone marrow depends on stem cell factors including those modulating their adhesion to the bone marrow stroma. The present study shows that the 32 kD galectin-3 is developmentally expressed in human myeloid cells and is strongly upregulated on the cell surface of late mature myeloid cells. Despite the fact that the expression of the galectin-3 is very low in CD34+ early myeloid cell, a 70 kD protein is found by Western blotting using antibodies specific to galectin-3, exclusively in those cells. Finally, exogenous human recombinant galectin-3 binds strongly to CD34+ early myeloid cells and emphasizes granulocyte-colony stimulating factor (G-CSF) driven proliferation in vitro.  相似文献   

4.
The heterogenous expression of brush border membrane hydrolases by the human enterocyte-like Caco-2 cell line during morphological and functional differentiation in vitro was investigated at the cellular level. Indirect immunofluorescence revealed that the heretogenous (“mosaic”) expression of sucrase-isomaltase, lactase, aminopeptidase N, and alkaline phosphatase was, in fact, transient in nature. The labeling indexes for each hydrolase gradually increased during culture at postconfluence in order to reach a maximum (≥90%) after 30 days, concomitant with an upregulation of their respective protein expression levels. In contrast, dipeptidylpeptidase IV labeling remained relatively constant. Backscattered electron imaging analysis in midstage (12 days postconfluence) monolayers demonstrated a lack of correlation between brush border membrane development and expression of each enzyme studied. Moreover, double immunostaining revealed that none of the other four hydrolases correlated directly with sucrase-isomaltase expression. Finally, immunodetection for the proliferation-associated antigen Kl-67 revealed a transient mosaic pattern of proliferation which was inversely related to Caco-2 cell differentiation. These data indicate that enterocytic differentiation-related (as well as proliferation-related) gene expression in Caco-2 cells is regulated but uncoordinated at the cellular level, suggesting that an overall control mechanism is lacking. © 1996 Wiley-Liss, Inc.  相似文献   

5.
6.
Organization of human class I homeobox genes   总被引:5,自引:0,他引:5  
We report the genomic organization of 20 human class I homeoboxes and the predicted primary sequence of the encoded homeodomains. These homeoboxes are clustered in four complex HOX loci on chromosomes 2, 7, 12, and 17. The homeoboxes of one HOX locus can be aligned to the homeoboxes of the other HOX loci so that corresponding homeodomains in all loci can share the maximal peptide sequence identity. This correspondence of individual homeoboxes in different chromosomal loci suggests the hypothesis of large-scale duplications of a single complex locus. The existence of an ancestral complex locus might have predated the divergence of vertebrates and invertebrates.  相似文献   

7.
8.
Double immunofluorescence and in situ hybridizations performed on adjacent thin sections show that a population of normal antropyloric cells of the human stomach expresses both gastrin and somatostatin mRNA's and the corresponding peptides. Such cells were present in both adult and fetal antropyloric mucosa and were situated in the regenerative (isthmus) region of the antropyloric tubes. It is, hence, likely that these cells represent immature endocrine cells that yet have to be committed to either the gastrin or somatostatin lineage. Cells coexpressing gastrin and somatostatin were also detected in pancreatic endocrine tumours. The presence of gastrin-somatostatin cells during development and in tumours suggests that gastrin and somatostatin cells may differentiate from such multipotent precursor cells.Presented in part at the 76th Annual Meeting of the Endocrine Society, 15–18 June 1994, Anaheim, Calif., USA, Abstract no. 691  相似文献   

9.
Data on nonbilaterian animals (sponges, cnidarians, and ctenophores) have suggested that Antennapedia (ANTP) class homeobox genes played a crucial role in the early diversification of animal body plans. Estimates of ancestral gene diversity within this important class of developmental regulators have been mostly based on recent analyses of the complete genome of a demosponge species, leading to the proposal that all ANTP families found in nonsponges animals (eumetazoans) derived from an ancestral "proto-NK" six-gene cluster. However, a single sponge species cannot reveal ancestral metazoan traits, in particular because lineage-specific gene duplications or losses are likely to have occurred during the long history of the Porifera. We thus looked for ANTP genes by degenerate polymerase chain reaction search in five species belonging to the Homoscleromorpha, a sponge lineage recently phylogenetically classified outside demosponges and characterized by unique histological features. We identified new genes of the ANTP class called HomoNK. Our phylogenetic analyses placed HomoNK (without significant support) close to the NK6 and NK7 families of cnidarian and bilaterian ANTP genes and did not recover the monophyly of the proposed "proto-NK" cluster. Our expression analyses of the HomoNK gene OlobNK in adult Oscarella lobularis showed that this gene is a strict marker of choanocytes, the most typical sponge cell type characterized by an apical flagellum surrounded by a collar of microvilli. These results are discussed in the light of the predominant neurosensory expression of NK6 and NK7 genes in bilaterians and of the recent proposal that choanocytes could be the sponge homologs of sensory cells.  相似文献   

10.
Classification and nomenclature of all human homeobox genes   总被引:2,自引:0,他引:2  

Background

The homeobox genes are a large and diverse group of genes, many of which play important roles in the embryonic development of animals. Increasingly, homeobox genes are being compared between genomes in an attempt to understand the evolution of animal development. Despite their importance, the full diversity of human homeobox genes has not previously been described.

Results

We have identified all homeobox genes and pseudogenes in the euchromatic regions of the human genome, finding many unannotated, incorrectly annotated, unnamed, misnamed or misclassified genes and pseudogenes. We describe 300 human homeobox loci, which we divide into 235 probable functional genes and 65 probable pseudogenes. These totals include 3 genes with partial homeoboxes and 13 pseudogenes that lack homeoboxes but are clearly derived from homeobox genes. These figures exclude the repetitive DUX1 to DUX5 homeobox sequences of which we identified 35 probable pseudogenes, with many more expected in heterochromatic regions. Nomenclature is established for approximately 40 formerly unnamed loci, reflecting their evolutionary relationships to other loci in human and other species, and nomenclature revisions are proposed for around 30 other loci. We use a classification that recognizes 11 homeobox gene 'classes' subdivided into 102 homeobox gene 'families'.

Conclusion

We have conducted a comprehensive survey of homeobox genes and pseudogenes in the human genome, described many new loci, and revised the classification and nomenclature of homeobox genes. The classification scheme may be widely applicable to homeobox genes in other animal genomes and will facilitate comparative genomics of this important gene superclass.  相似文献   

11.
Caudal-related homeobox (Cdx) proteins play an important role in development and differentiation of the intestinal epithelium. Using cDNA differential display, we identified clusterin as a prominently induced gene in a Cdx2-regulated cellular model of intestinal differentiation. Transfection experiments and DNA-protein interaction assays showed that clusterin is an immediate downstream target gene for Cdx proteins. The distribution of clusterin protein in the intestine was assessed during development and in the adult epithelium using immunohistochemistry. In the adult mouse epithelium, clusterin protein was localized in both crypt and villus compartments but not in interstitial cells of the intestinal mucosa. Together, these data suggest that clusterin is a direct target gene for Cdx homeobox proteins, and the pattern of clusterin protein expression suggests that it is associated with the differentiated state in the intestinal epithelium.  相似文献   

12.
13.
The BarH1 and BarH2 homeobox genes are coexpressed in cells of the fly retina and in the central and peripheral nervous systems. The fly Bar genes are required for normal development of the eye and external sensory organs. In Xenopus we have identified two distinct vertebrate Bar-related homeobox genes, XBH1 and XBH2. XBH1 is highly related in sequence and expression pattern to a mammalian gene, MBH1, suggesting that they are orthologues. XBH2 has not previously been identified but is clearly related to the Drosophila Bar genes. During early Xenopus embryogenesis XBH1 and XBH2 are expressed in overlapping regions of the central nervous system. XBH1, but not XBH2, is expressed in the developing retina. By comparing the expression of XBH1 with that of hermes, a marker of differentiated retinal ganglion cells, we show that XBH1 is expressed in retinal ganglion cells during the differentiation process, but is down-regulated as cells become terminally differentiated. Received: 12 August 1999 / Accepted: 5 October 1999  相似文献   

14.
The ability of meristems to continuously produce new organs depends on the activity of their stem cell populations, which are located at the meristem tip. In Arabidopsis, the size of the stem cell domain is regulated by two antagonistic activities. The WUS (WUSCHEL) gene, encoding a homeodomain protein, promotes the formation and maintenance of stem cells. These stem cells express CLV3 (CLAVATA3), and signaling of CLV3 through the CLV1/CLV2 receptor complex restricts WUS activity. Homeostasis of the stem cell population may be achieved through feedback regulation, whereby changes in stem cell number result in corresponding changes in CLV3 expression levels, and adjustment of WUS expression via the CLV signal transduction pathway. We have analyzed whether expression of CLV3 is controlled by the activity of WUS or another homeobox gene, STM (SHOOT MERISTEMLESS), which is required for stem cell maintenance. We found that expression of CLV3 depends on WUS function only in the embryonic shoot meristem. At later developmental stages, WUS promotes the level of CLV3 expression, together with STM. Within a meristem, competence to respond to WUS activity by expressing CLV3 is restricted to the meristem apex.  相似文献   

15.
Embryonic Stem (ES) cells have the potential to form every cell of the body and thus are of great promise for tissue transplantation. One of the rising techniques that allows studying the differentiation state of ES cells is quantitative RT-PCR (qRT-PCR). When relative quantification by qRT-PCR is applied, accurate normalization is necessary, since differentiated embryonic stem cells and developing embryos contain heterogeneous cell populations. Corrections for variations in the qRT-PCR reaction are needed to allow comparisons between different samples. We applied the normalization tools geNorm and Normfinder to ten reference genes identifying the most stable ones for relative quantification of gene expression during differentiation of human ES cells, as well as in differentiated mouse ES cells and in the developing mouse embryo. For relative quantification by qRT-PCR in these systems, we advise to use normalization factors based on multiple stable reference genes. However, when the use of several reference genes would be unpractical, a single reference gene in each experimental setup could be sufficient. When looking for single stable reference genes, beta-actin works best in both mouse embryo and ES cell experiments and glyceraldehyde-3-phosphate-dehydrogenase can be applied in both mouse and human ES cell experiments.  相似文献   

16.
Six genes are vertebrate homologues of the homeobox-containing gene sine oculis, which plays an essential role in controlling Drosophila compound eye development. Here we report the identification and expression patterns of all three subfamilies of Xenopus Six genes. Two Six2 subfamily genes (Six1, Six2) showed very similar expression patterns in cranial ganglia, otic placodes and the eyes. Non-neural expression of Six1 and Six2 was observed with mesodermal head mesenchyme, somites and their derivatives, the muscle anlagen of the embryonic trunk. In addition, Six2 expression was also found with mesenchyme associated with the developing stomach and pronephros. Expression of Six3 subfamily genes (Six3.1, Six3.2, Six6.1, and Six6.2) was restricted to the developing head, where expression was especially observed in derivatives of the forebrain (eyes, optic stalks, the hypothalamus and pituitary gland). Interestingly, expression of all Six3 subfamily members but Six6.2 was also found with the pineal gland primordium and the tegmentum. Expression of Six4 subfamily genes (Six4.1, Six4.2) was present in the developing visceral arches, placodal derivatives (otic vesicle, olfactory system), head mesenchyme and the eye. The observed dynamic expression patterns are largely conserved between lower and higher vertebrates and imply important roles of Six family genes not only in eye formation and myogenesis, but also in the development of the gut, the kidney and of placode-derived structures.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号