首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Wang J  Shen LL  Cao YX  Sun ZJ  Wang Q  Zhu DN 《生理学报》2001,53(1):1-6
采用微量注射、微透析、高效液相色谱-荧光测定等技术和方法,观察和 血管紧张素-(1-7)[Ang-(1-7)]在延髓头端腹外侧(RVLM)与氨基酸类递质释放之间的关系,在麻醉大鼠RVLM注射Ang-(1-7)可引起血压升高,同时伴RVLM兴奋性氨基酸(EAA)释放增多;在RVLM注射Ang-(1-7)选择性受体拮抗剂Ang779可引起血压降低,同时伴RVLM EAA释放减少和抑制性氨基酸(IAA)释放增多,Ang-(1-7)的升压作用和Ang779的降压作用均可被相应的氨基酸受体拮抗剂部分阻娄。结果提示,Ang-(1-7)在RVLM的升压效庆可能部分是通过EAA释放增多所致;而Ang779在 RVLM的降压效应可能部分是通过EAA释放减少、IAA释放增多所致。  相似文献   

2.
Zhao YH  Shen XH  Guo XQ 《生理学报》2000,52(3):255-258
观察延髓头端腹外侧区(rVLM)微量注射血管升压素(AVP)能否影响正常大鼠的血压和血粘度,并分析rVLM内AVP能机制在清醒大鼠经悬吊加束缚引起应激性升压反应和高血粘度中的影响。结果如下:⑴正常大鼠双侧rVLM微量注射AVP(每侧0.5μg/0.5μl),可引起血压和血粘度升高;此作用可被事先在同一位置微量注射AVP-V1受体拮抗剂d(CH2)5「Tyr(Me)^2」AVP(每侧0.1μg/0.  相似文献   

3.
Wang WZ  Rong WF  Wang CM  Wang JW  Wang JJ  Yuan WJ 《生理学报》2001,53(4):270-274
实验用多管微电极细胞外记录氨基甲酸乙酯麻醉的SD大鼠延髓头端腹外侧区(RVLM)神经元的活动,用电刺激主动脉神经和静脉注射苯肾上腺素激活压力感受器反射等方法鉴定心血管神经元,在RVLM内共记录到145个自发放电的神经元,其中33个为心血管神经元,31个为伤害调制性神经元,81个为未知功能神经元。33个心血管神经元微电泳硫酸皮质酮(CORT)后,25个(76%)神经元放电迅速加快,8个(24%)自发放电没有变化。伤害刺激引起兴奋的31个伤害调制性神经元,微电泳CORT后19个(64%)神经元放电抑制,而2个(6%)兴奋,其余10个(30%)没有反应,功能不明的81个神经元在微电泳CORT后,32个(40%0兴奋,5个(6%)抑制,44个(54%)没有反应,以上结果证明CORT可能通过非基因组机制快速影响RVLM神经元的活动,提示在应激等情况下CORT的快速作用机制可能在心血管和抗伤害等活动整合中具有一定意义。  相似文献   

4.
内皮素通过最后区易化大鼠延髓腹外侧头端区神经元活动   总被引:1,自引:0,他引:1  
Li DP  He RR 《生理学报》1999,51(3):263-271
在35只切断双侧缓冲神经、用氨基甲酸乙酯-α氯醛糖混合麻醉的Sprague-Dawley大鼠,应用细胞外记录的电生理学方法,由RM-6000型多道生理记录仪和WS-682G热阵记录器(频响范围0~2.8kHz)同步记录血压、心率和单位神经元放电,观察颈动脉注射内皮素对87个延髓腹是头端区(RVLM)自发放电神经元活动的影响,所得结果如下;(1)颈动脉注射ET-1(0.3nmol/kg)时36个单位  相似文献   

5.
延髓头端腹外侧区注入肾上腺素对血液流变学的影响   总被引:6,自引:0,他引:6  
王石洪  郭学勤 《生理学报》1997,49(2):185-190
实验用SD雄性大鼠78只,采用束缚方法引起应激性高血粘度和血压升高。结果:(1)清醒大鼠束缚2d可引起应激性高血粘度和血压升高。(2)双侧延髓头端腹外侧区(rVLM)微量注射肾上腺素(E,每侧0.5μg/0.5μl)可引起血粘度明显增高,此作用可预先在双侧rVLM注入α肾上腺素能受体阻断剂酚妥拉明所阻断,不能被β-肾上腺能受体阻断剂心得安所阻断。用同样剂量E注入双侧延髓尾端腹外侧区(cVLM)或静  相似文献   

6.
延髓尾端有两个调节心血管活动的区域,尾端腹外侧延髓除了作为外周压力感受器传入冲动的中继站外,可能还有一压力感受器非依赖的,对头端腹外侧延髓的抑制作用。此外,尾端腹外侧延髓还提供一种非兴奋性氨基酸介导的兴奋冲动,影响头端腹外侧延髓,尾端加压区神经元是支持头端腹外侧延髓交感前运动神经元静息活性的主要突触来源,对维持血管张力起一定作用。  相似文献   

7.
L—NNA及NO供体对延髓腹外侧头端区神经元自发放电的影响   总被引:1,自引:1,他引:0  
杨丽明  何瑞荣 《生理学报》1996,48(4):320-328
  相似文献   

8.
冯康  郭学勤 《生理学报》1997,49(5):491-496
雄性Sprague-Dawley大鼠,用乌拉坦(700mg/kg)和氯醛糖(30mg/kg)腹腔麻醉。在双侧头端延髓腹外侧区(rVLM区)每侧微量注射血管加压素(AVP)(10pmol/0.1μl)可引起平均动脉压(MBP)升高,心率(HR)变化不明显,每侧微量注射AVP的V1受体拮抗剂d(CH2)5[Tyr(Me)^2]AVP(0.1nmol/0.1μl)后MBP和HR无明显变化。若预先在rVL  相似文献   

9.
储祥平  李鹏 《生理学报》1997,49(6):609-617
在89张Sprague-Dawley大鼠延髓脑片,用玻璃微电极记录到165个延髓头端腹外侧区神经元的自发放电,其放电形式有三种:规则型;不规则型,静息型,乙酰胆碱对自发放电有兴奋,抑制双相和无影响四种效应,各占所测试神经元数的41.8%,20%,3%和自发放电有兴奋,抑制双相和无双相和影响四种效应,各占所有测试神经元数的41.8%,20%,3T和35.2%。  相似文献   

10.
周正锋  顾蕴辉 《生理学报》1987,39(2):123-131
本实验用氨基甲酸乙酯麻醉和箭毒化的雄性大鼠,细胞外记录脊髓胸2节段的交感节前神经元(SPN)单位放电,电刺激同侧颈交感干,逆向激活 SPN,以确定所记录的神经元为交感节前神经元。共分析了80个 SPN 单位放电,其中有自发活动和无自发活动的单位各40个。SPN 轴突传导速度为0.59—3.75m/s。实验观察到电刺激同侧延髓头端腹外侧区(Rostralventrolateral medulla:RVL)可兴奋多数有自发活动的 SPN(19/25),并可使少数静止SPN 产生诱发反应(4/23),潜伏期为6—115ms。电刺激对侧 RVL 结果类似:多数自发活动的 SPN(6/9)呈兴奋反应,及少数静止 SPN(3/17)产生诱发反应,潜伏期为11—105ms。表明 RVL 对双侧 SPN 有兴奋性影响。  相似文献   

11.
Microglia are known to be activated in the hypothalamic para-ventricular nucleus (PVN) of rats with cardiovascular diseases. However, the exact role of microglial activation in the plasticity of presympathetic PVN neurons associated with the modulation of sympathetic outflow remains poorly investigated. In this study, we analyzed the direct link between microglial activation and spontaneous firing rate along with the underlying synaptic mechanisms in PVN neurons projecting to the rostral ventrolateral medulla (RVLM). Systemic injection of LPS induced microglial activation in the PVN, increased the frequency of spontaneous firing activity of PVN-RVLM neurons, reduced GABAergic inputs into these neurons, and increased plasma NE levels and heart rate. Systemic minocycline injection blocked all the observed LPS-induced effects. Our results indicate that LPS increases the firing rate and decreases GABAergic transmission in PVN-RVLM neurons associated with sympathetic outflow and the alteration is largely attributed to the activation of microglia. Our findings provide some insights into the role of microglial activation in regulating the activity of PVN-RVLM neurons associated with modulation of sympathetic outflow in cardiovascular diseases.  相似文献   

12.
Water deprivation is associated with regional increases in sympathetic tone, but whether this is mediated by changes in brain stem regulation of sympathetic activity is unknown. Therefore, this study tested the hypothesis that water deprivation increases excitatory amino acid (EAA) drive of the rostral ventrolateral medulla (RVLM), by determining whether bilateral microinjection of kynurenate (Kyn; 2.7 nmol) into the RVLM decreases arterial pressure more in water-deprived than water-replete rats. Plasma osmolality was increased in 48-h water-deprived rats (313 +/- 1 mosmol/kgH2O; P < 0.05) compared with 24-h water-deprived rats (306 +/- 2 mosmol/kgH2O) and water-replete animals (300 +/- 2 mosmol/kgH2O). Kyn decreased arterial pressure by 28.1 +/- 5.2 mmHg (P < 0.01) in 48-h water-deprived rats but had no effect in water-replete rats (-5.9 +/- 1.3 mmHg). Variable depressor effects were observed in 24-h water-deprived animals (-12.5 +/- 2.4 mmHg, not significant); however, in all rats the Kyn depressor response was strongly correlated to the osmolality level (P < 0.01; r2 = 0.47). The pressor responses to unilateral microinjection of increasing doses (0.1, 0.5, 1.0, and 5.0 nmol) of glutamate were enhanced (P < 0.05) during water deprivation, but the pressor responses to intravenous phenylephrine injection were smaller (P < 0.05). These data suggest that water deprivation increases EAA drive to the RVLM, in part by increasing responsiveness of the RVLM to EAA such as glutamate.  相似文献   

13.
The present study sought to determine whether water deprivation increases Fos immunoreactivity, a neuronal marker related to synaptic activation, in sympathetic-regulatory neurons of the hypothalamic paraventricular nucleus (PVN). Fluorogold (4%, 50 nl) and cholera toxin subunit B (0.25%, 20-30 nl) were microinjected into the spinal cord (T1-T3) and rostral ventrolateral medulla (RVLM), respectively. Rats were then deprived of water but not food for 48 h. Water deprivation significantly increased the number of Fos-positive nuclei throughout the dorsal, ventrolateral, and lateral parvocellular divisions of the PVN (water deprived, 215 +/- 23 cells; control, 45 +/- 7 cells, P < 0.01). Moreover, a significantly greater number of Fos-positive nuclei were localized in spinally projecting (11 +/- 3 vs. 2 +/- 1 cells, P < 0.025) and RVLM-projecting (45 +/- 7 vs. 7 +/- 1 cells, P < 0.025) neurons of the PVN in water-deprived vs. control rats, respectively. The majority of these double-labeled neurons was found in the ventrolateral and lateral parvocellular divisions of the ipsilateral PVN. Interestingly, a significantly greater percentage of RVLM-projecting PVN neurons were Fos positive compared with spinally projecting PVN neurons in the ventrolateral (25.8 +/- 0.7 vs. 8.0 +/- 1.5%, respectively, P < 0.01) and lateral (23.4 +/- 2.1 vs. 5.0 +/- 0.9%, respectively, P > 0.01) parvocellular divisions. In addition, we analyzed spinally projecting neurons of the RVLM and found a significantly greater percentage were Fos positive in water-deprived rats than in control rats (26 +/- 3 vs. 3 +/- 1%, respectively; P < 0.001). Collectively, the present findings indicate that water deprivation evokes a distinct cellular response in sympathetic-regulatory neurons of the PVN and RVLM.  相似文献   

14.
We have investigated transmitter release from small and large dense-core vesicles in nerve terminals isolated from guinea pig hippocampus. Small vesicles are found in clusters near the active zone, and large dense-core vesicles are located at ectopic sites. The abilities of Ca2+ channel activation and uniform elevation of Ca2+ concentration (with ionophores) to evoke secretion of representative amino acids, catecholamines, and neuropeptides were compared. For a given increase in Ca2+ concentration, ionophore was less effective than Ca2+ channel activation in releasing amino acids, but not in releasing cholecystokinin-8. Titration of the average Ca2+ concentration showed that the Ca2+ affinity for cholecystokinin-8 secretion was higher than that for amino acids. Catecholamine release showed intermediate behavior. It is concluded that neuropeptide release is triggered by small elevations in the Ca2+ concentration in the bulk cytoplasm, whereas secretion of amino acids requires higher elevations, as produced in the vicinity of Ca2+ channels.  相似文献   

15.
In this paper we review our recent work in the rabbit and cat on the role of the rostral ventrolateral medulla in cardiovascular regulation. Microinjection of neuroexcitatory amino acids into a highly circumscribed region, located just ventral to the retrofacial nucleus at the level of the rostral part of the inferior olive, leads to an increase in blood pressure, owing to sympathetic vasoconstriction. Bilateral destruction of this region, which we have termed the subretrofacial nucleus, leads to a profound fall in blood pressure. Anatomical studies show that the subretrofacial nucleus contains a compact group of bulbospinal neurones that project to sympathetic preganglionic nuclei in the thoracolumbar spinal cord. Single-unit recording studies have shown that these bulbospinal neurons are spontaneously active and are powerfully inhibited by baroreceptor inputs. These observations indicate that the subretrofacial bulbospinal cells are sympathoexcitatory and play a major role in the tonic and phasic control of the cardiovascular system. Some important unresolved questions regarding the subretrofacial neurones will be discussed. (i) Are they functionally homogenous, or are they viscerotopically organized with respect to particular end organs? (ii) What are their afferent inputs? (iii) What are their histochemical properties? Specifically, are they part of the group of adrenaline-synthesizing cells, or alternatively, substance P cells?  相似文献   

16.
Agmatine (decarboxylated arginine) was originally identified in the CNS as an imidazoline receptor ligand. Further studies demonstrated that agmatine antagonizes NMDA receptors and inhibits nitric oxide synthase. Intrathecally administered agmatine inhibits opioid tolerance and hyperalgesia evoked by inflammation, nerve injury, and intrathecally administered NMDA. These actions suggest an anti-glutamatergic role for agmatine in the spinal cord. We have previously reported that radiolabeled agmatine is transported into spinal synaptosomes in an energy- and temperature-dependent manner. In the present study, we demonstrate that agmatine is releasable from purified spinal nerve terminals upon depolarization. When exposed to either elevated potassium or capsaicin, tritiated agmatine (but not its precursor L-arginine or its metabolite putrescine) is released in a calcium-dependent manner. Control experiments confirmed that the observed release was specific to depolarization and not due to permeabilization of or degradation of synaptosomes. That capsaicin-evoked stimulation results in agmatine release implicates the participation of primary afferent nerve terminals. Radiolabeled agmatine also accumulates in purified spinal synaptosomal vesicles in a temperature-dependent manner, suggesting that the source of releasable agmatine may be vesicular in origin. These results support the proposal that agmatine may serve as a spinal neuromodulator involved in pain processing.  相似文献   

17.
Water deprivation is associated with increased excitatory amino acid (EAA) drive of the rostral ventrolateral medulla (RVLM), but the mechanism is unknown. This study tested the hypotheses that the increased EAA activity is mediated by decreased blood volume and/or increased osmolality. This was first tested in urethane-anesthetized rats by determining whether bilateral microinjection of kynurenate (KYN, 2.7 nmol) into the RVLM decreases arterial pressure less in water-deprived rats after normalization of blood volume by intravenous infusion of isotonic saline or after normalization of plasma osmolality by intravenous infusion of 5% dextrose in water (5DW). Water-deprived rats exhibited decreased plasma volume and elevated plasma osmolality, hematocrit, and plasma sodium, chloride, and protein levels (all P < 0.05). KYN microinjection decreased arterial pressure by 24 +/- 2 mmHg (P < 0.05; n = 17). The depressor response was not altered following isotonic saline infusion but, while still present (P < 0.05), was reduced (P < 0.05) to -13 +/- 2 mmHg soon after 5DW infusion. These data suggest that the high osmolality, but not low blood volume, contributes to the KYN depressor response. To further investigate the action of increased osmolality on EAA input to RVLM, water-replete rats were also studied after hypertonic saline infusion. Whereas KYN microinjection did not decrease pressure immediately following the infusion, a depressor response gradually developed over the next 3 h. Lumbar sympathetic nerve activity also gradually increased to up to 167 +/- 19% of control (P < 0.05) 3 h after hypertonic saline infusion. In conclusion, acute and chronic increases in osmolality appear to increase EAA drive of the RVLM.  相似文献   

18.
Neurons within cardiorespiratory regions of the rostral ventrolateral medulla (RVLM) have been shown to be excited by local hypoxia. To determine the electrophysiological properties of these excitatory responses to hypoxia, we developed a primary dissociated cell culture system to examine the intrinsic response of RVLM neurons to hypoxia. Neonatal rat neurons plated on medullary astrocyte monolayers were studied using the whole cell perforated patch-clamp technique. Sodium cyanide (NaCN, 0.5-10 mM) was used, and membrane potential (V(m)), firing frequency, and input resistance were examined. In 11 of 19 neurons, NaCN produced a V(m) depolarization, an increase in firing frequency, and a decrease in input resistance, suggesting the opening of a cation channel. The hypoxic depolarization had a linear dose response and was dependent on baseline V(m), with a greater response at more hyperpolarized V(m). In 8 of 19 neurons, NaCN produced a V(m) hyperpolarization, decrease in firing frequency, and variable changes in input resistance. The V(m) hyperpolarization exhibited an all-or-none dose response and was independent of baseline V(m). These differential responses to NaCN were retained after synaptic blockade with low Ca(2+)-high Mg(2+) or TTX. Thus hypoxic excitation 1) is maintained in cell culture, 2) is an intrinsic response, and 3) is likely due to the increase in a cation current. These hypoxia-excited neurons are likely candidates to function as central oxygen sensors.  相似文献   

19.
Exercise training (ExTr) has been associated with blunted activation of the sympathetic nervous system in several animal models and in some human studies. Although these data are consistent with the hypothesis that ExTr reduces the incidence of cardiovascular diseases via reduced sympathoexcitation, the mechanisms are unknown. The rostral ventrolateral medulla (RVLM) is important in control of sympathetic nervous system activity in both physiological and pathophysiological states. The purpose of the present study was to test the hypothesis that ExTr results in reduced sympathoexcitation mediated at the level of the RVLM. Male Sprague-Dawley rats were treadmill trained or remained sedentary for 8-10 wk. RVLM microinjections were performed under Inactin anesthesia while mean arterial pressure, heart rate, and lumbar sympathetic nerve activity (LSNA) were recorded. Bilateral microinjections of the GABA(A) antagonist bicuculline (5 mM, 90 nl) into the RVLM increased LSNA in sedentary animals (169 +/- 33%), which was blunted in ExTr animals (100 +/- 22%, P < 0.05). Activation of the RVLM with unilateral microinjections of glutamate (10 mM, 30 nl) increased LSNA in sedentary animals (76 +/- 13%), which was also attenuated by training (26 +/- 2%, P < 0.05). Bilateral microinjections of the ionotropic glutamate receptor antagonist kynurenate (40 mM, 90 nl) produced small increases in mean arterial pressure and LSNA that were similar between groups. Results suggest that ExTr may reduce increases in LSNA due to reduced activation of the RVLM. Conversely, we speculate that the relatively enhanced activation of LSNA in sedentary animals may be related to the increased incidence of cardiovascular disease associated with a sedentary lifestyle.  相似文献   

20.
Frog sciatic nerves were incubated for 24 hours in either glycine, aspartic acid, glutamic acid, lysine, leucine, γ-aminobutyric acid, glutamine, or pentanedioic acid (all labeled with C14), and the rates of release of these compounds were monitored under resting conditions and during stimulation. Upon stimulation, the rate or release of glutamic acid increased an average of 200% above the resting rate. This extra release is highly specific with regard to molecular size and structure, since of the compounds tested only glutamic acid gave significant increases in rates of release during stimulation. Ouabain (0.1 mM) had no effect on the rate of release; however, sodium azide (0.2 mM or 1.0 mM) completely eliminated the extra release during excitation, indicating that the increased permeability to glutamic acid is energy-dependent. Competition experiments show that the extra release of glutamic acid can be eliminated with 10 mM concentrations of non-isotopic choline. The hypothesis is advanced that glutamic acid is actively extruded by a highly specific carrier mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号