首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Summary Citric acid was produced with immobilized Yarrowia lipolytica yeast in repeated batch-shake-flask and air-lift fermentations. In active and passive immobilization methods calcium alginate, -carrageenan, polyurethane gel, nylon web and polyurethane foams were tested as carriers in repeated-batch fermentations. The highest citric acid productivity of 155 mg l–1 h–1 was reached with alginate-bead-immobilized cells in the first batch. A decrease in bead diameter from 5–6 mm to 2–3 mm increased the volumetric citric acid productivity threefold. In an air-lift bioreactor the highest citric acid productivity of 120 mg l–1 h–1 with a product concentration of 16.4 g l–1 was obtained with cells immobilized in -carrageenan beads. Offprint requests to: H. Kautola  相似文献   

2.
Summary A high performance fermentation process for the continuous production of citric acid from sugarcane molasses by using the combination of submerged calcium alginate-immobilized and surface-stabilized cultures of Aspergillus niger KCU 520 in a continuous flow horizontal bioreactor is described. The citric acid productivity was dependent on the dilution rate with an optimum value of 0.015/h. Presaturation of fermentation medium with sterile air, in addition to surface aeration, before feeding into the bioreactor enhanced the citric acid productivity. The highest productivity, citric acid product concentration and yield obtained were 1.7 kg M–3h–1, 110kg M–3 and 91% respectively. The cultures were continuously used for 30 days without any apparent loss in citric acid productivity.  相似文献   

3.
Fed-batch cultures of Bacillus licheniformis produced poly--glutamic acid (PGA), a water-soluble biodegradable polymer. PGA reached 35 g l–1 with a productivity of 1 g l–1 h–1 by pulsed-feeding of citric acid (1.44 g h–1) and l-glutamic acid (2.4 g h–1) when citric acid was depleted from the culture medium.  相似文献   

4.
Summary The effect of a single pulse of ammonium sulphate or of citrate upon the progress and final outcome of a batch citric acid fermentation was studied. It was found that the optimum addition time for the supplemental N was in the range of 40 to 75 h. Final citric acid concentration achieved was significantly increased when the concentration of N source added was between 0.25 and 0.5 kg m–3. The mechanism of the observed stimulation seemed to be an indirect one. Addition of exogenous citric acid to the broth, led to an increase in citrate production by the culture. The optimum time for citric acid addition was around 90 h.Nomenclature Yp/s Yield of citric acid produced (kg) on sucrose consumed (kg) - P/t Overall citric acid productivity (kg m–3 h–1)  相似文献   

5.
A comparative study of the fermentation of a range of carbohydrate substrates, at various temperatures, was carried out using a commercial Lactobacillus casei strain in a free cell form and immobilised on gluten pellets. This strain required yeast extract, l-cysteine HCl and Mn2+ at 5, 0.5 and 0.1 g l–1, respectively, for maximum growth and lactic acid production. Sugar fermentation using free cells showed preference in the order glucose, sucrose, fructose while lactose was poorly utilised. Optimum temperature for growth and lactic acid production over (18–30 h) was 43 °C. L. casei was successfully immobilised on gluten pellets and fermented glucose and sucrose in a shorter time (18 h) with increased lactic acid production (42 and 41 g l–1 on glucose and sucrose, respectively).  相似文献   

6.
An anaerobic fermentation process was developed for production of natural propionic, acetic and succinic acids froml-lactic acid usingSelenomonas ruminantium. Thel-lactic acid was quickly converted to a racemic mixture and there was no enantiomeric preference for further metabolism. The lactic acid was metabolized to propionic, acetic and succinic acids typically in a molar ratio of about 531. However, the ratio of propionate: succinate started high (as much as 221), before declining to as low as 51 after the first 48 h. Nutrients in corn steep liquor and yeast extract were necessary for optimal production of propionic acid. The corn steep liquor and yeast extract were heat stable at neutral pH, but some nutritional qualities were lost when heated at pH 2.4. In fed-batch fermentation on lactic acid 2.0% propionic acid was produced in 48 h and 2.3% in 68 h. A continuous culture operated at a dilution rate of 0.055 h–1 and a lactic acid feed concentration of 30 gL–1 had a propionic acid productivity of 0.59 gL–1h–1. The steady state results were: lactic acid 0.6%, propionic acid 1.1%, acetic acid 0.50%, and succinic acid 0.33%.  相似文献   

7.
A mutant strain of Yarrowia lipolytica was developed which produced 8.0 g l--hydroxybutyric acid l–1 from butyric acid in a batch culture. The optimum culture conditions in the fermenter for maintenance of a high cell activity, determined by chemostat analyses, were a specific growth rate of 0.06 h–1, a glucose concentration of 2.0 g l–1, and a butyric acid concentration of 8.1 g l–1. A fed-batch fermentation was performed under these conditions resulting in an l--hydroxybutyric acid yield of 31 g l–1.  相似文献   

8.
Summary A series of continuous fermentations were carried out with a production strain of the yeast Saccharomyces cerevisiae in a membrane bioreactor. A membrane separation module composed of ultrafiltration tubular membranes retained all biomass in a fermentation zone of the bioreactor and allowed continuous removal of fermentation products into a cell-free permeate. In a system with total (100%) cell recycle the impact of fermentation conditions [dilution rate (0.03–0.3 h–1); substrate concentration in the feed (50–300 g·1–1); biomass concentration (depending on the experimental conditions)] was studied on the behaviour of the immobilized cell population and on ethanol formation. Maximum ethanol productivity (15 g·1–1·h–1) was attained at an ethanol concentration of 81 g·1–1. The highest demands of cells for maintenance energy were found at the maximum feed substrate concentration (300 g·1–1) and at very low concentrations of cells in the broth.  相似文献   

9.
Redox potential was used to develop a stationary-phase fermentation of Candida tropicalis that resulted in non-growth conditions with a limited decline in cell viability, a xylitol yield of 0.87 g g–1 (95% of the theoretical value), and a high maximum specific production rate (0.67 g g–1 h–1). A redox potential of 100 mV was found to be optimum for xylitol production over the range 0–150 mV. A shift from ethanol to xylitol production occurred when the redox potential was reduced from 50 mV to 100 mV as cumulative ethanol (Yethanol) decreased from 0.34 g g–1 to 0.025 g g–1 and Yxylitol increased from 0.15 g g–1 to 0.87 g g–1 (=0.05). Reducing the redox potential to 150 mV did not improve the fermentation. Instead, the xylitol yield and productivity decreased to 0.63 g g–1 and 0.58 g g–1 h–1 respectively and cell viability declined. The viable, stationary-phase fermentation could be used to develop a continuous fermentation process, significantly increasing volumetric productivity and reducing downstream separation costs, potentially by the use of a membrane cell-recycle reactor.Electronic supplementary material is available if you access this article at . On that page (frame on the left side), a link takes you directly to the electronic supplementary materialAn erratum to this article can be found at  相似文献   

10.
Summary Growth, citric acid production and enzymatic activity of the mitochondrial respiratory enzymes of a wild-type and a citric-acid-producing mutant of Aspergillus niger have been compared during fermentation under citric-acid-accumulating and non-accumulating conditions. Under non-accumulating conditions, both strains showed standard growth and no citric acid production. The mutant strain was characterized by delayed onset of growth and lowered cell yield. Under citric-acid-accumulating conditions the wild-type strain exhibited decelerated growth and a maximal citric acid concentration of 12 g l–1. Reduced, but continuing growth and citric acid production of 32 g l–1 was observed for the mutant strain. In general, the mutant strain exhibited reduced activity for the proton-pumping respiratory complexes and enhanced activity for the alternative respiratory enzymes. In contrast to the stable activity of complex I in the wild-type strain, this complex was selectively lost in the mutant strain at the onset of citric acid production, while the alternative NADH dehydrogenases were kept at enhanced and constant activity. A possible causal connection between the loss of complex I and citric acid accumulation is discussed. Offsprint requests to: J. Wallrath  相似文献   

11.
Lactobacillus helveticus grown in milk with pH control at 6.2 had a slower growth rate (=0.27 h–1) and produced less exopolysaccharide (49 mg l–1) but increased lactic acid production (425 mM) compared to cultures without pH control (=0.5 h–1, 380 mg exopolysaccharide l–1, and 210 mM lactate), respectively. Both cultures displayed a mixed-acid fermentation with formation of acetate, which is linked not only to citrate metabolism, but also to alternative pathways from pyruvate.  相似文献   

12.
The present study describes the use of vermiculite for enhanced citric acid productivity by a mutant strain of Aspergillus niger NGGCB-101 in a stirred bioreactor of 15.0 l capacity. The maximum amount of citric acid (96.10 g/l) was obtained with the control 144 h after mycelial inoculation. To enhance citric acid production, varying levels of vermiculite were added as an additive into the fermentation medium. The best results were observed when 0.20 g/l vermiculite was added into the medium 24 h after inoculation resulting in the production of 146.88 g citric acid monohydrate/l. The dry cell mass and residual sugar were 11.75 and 55.90 g/l, respectively. Mixed mycelial pellets (1.08–1.28 mm, dia) were observed in the fermented culture broth. When the culture grown at different vermiculite levels was monitored for Q p , Q s and q p , there was a significant enhancement (P 0.05) in these variables over the control (vermiculite-free). Based on these results, it is concluded that vermiculite might affect mycelial morphology and subsequent TCA cycle performance to improve carbon source utilization by the mould, basic parameters for high performance citric acid fermentation.  相似文献   

13.
The effect of medium composition on the growth form of Aspergillus terreus NRRL 1960 in relation to itaconic acid fermentation has been studied. Four types of mycelial pellets were obtained under the conditions used and may be classified as (a) frayed and loose with 0.1–0.5 mm diameter (b) compact with 0.1–0.5 mm diameter (c) loose with 0.5–2.0 mm diameter and (d) compact with 0.5–2.0 mm diameter. Their respective maximum specific rates of formation and yields of itaconic acid, based on 100 g sucrose supplied, were (a) 1.25 mol mg–1h–1 and 55–59 g, (b) 0.27–0.43 mol mg–1 h–1 and 26–38 g, (c) 0.75–0.90 mol mg–1 h–1 and 45–51 g and (d) 0.12 mol mg–1 h–1 and 10 g. The presence of Ca2+, Zn2+ and Fe2+ in the basal medium at concentrations of 23.3 mg/100 ml, 0.01 mg/100 ml and 0.006 mg/100 ml respectively were found to be adequate and crucial in obtaining the desired outgrowth for both high production rates and consistent yields of itaconic acid. The further addition of either commercial plaster of Paris or analytical-reagent-grade CaSO4, especially when activated by heating to 530°C and present in excess of solubility, results in small and frayed pellets, which lead to itaconic acid yields of 55–59 g acid/100 g sugar supplied.  相似文献   

14.
Packed-bed bioreactors containing activated carbon as support carrier were used to produce H2 anaerobically from a sucrose-limiting medium while acclimated sewage sludge was used as the H2 producer. The effects of bed porosity (b) and substrate loading rate on H2 fermentation were examined using packed beds with b of 70–90% being operated at hydraulic retention times (HRT) of 0.5–4 h. Higher b and lower HRT favored H2 production. With 20 g COD l–1 of sucrose in the feed, the optimal H2 production rate (7.4 l h–1 l–1) was obtained when the bed with b=90% was operated at HRT = 0.5 h. Flocculation of cells enhanced the retention of sludge for stable operations of the bioreactor at low HRTs. The gas products resulting from fermentative H2 production consisted of 30–40% H2 and 60–70% CO2. Butyric acid was the primary soluble product, followed by propionic acid and valeric acid.  相似文献   

15.
Continuous mix batch bioreactors were used to study the kinetic parameters of lactic acid fermentation in microaerated-nutrient supplemented, lactose concentrated cheese whey using Lactobacillus helveticus. Four initial lactose concentrations ranging from 50 to 150 g l–1 were first used with no microaeration and no yeast extract added to establish the substrate concentration above which inhibition will occur and then the effects of microaeration and yeast extract on the process kinetic parameters were investigated. The experiments were conducted under controlled pH (5.5) and temperature (42 °C) conditions. The results indicated that higher concentrations of lactose had an inhibitory effect as they increased the lag period and the fermentation time; and decreased the specific growth rate, the maximum cell number, the lactose utilization rate, and the lactic acid production rate. The maximum lactic acid conversion efficiency (75.8%) was achieved with the 75 g l–1 initial lactose concentration. The optimum lactose concentration for lactic acid production was 75 g l–1 although Lactobacillus helveticus appeared to tolerate up to 100 g l–1 lactose concentration. Since the lactic acid productivity is of a minor importance compared to lactic acid concentration when considering the economic feasibility of lactic acid production from cheese whey using Lactobacillus helveticus, a lactose concentration of up to 100 g l–1 is recommended. Using yeast extract and/or microaeration increased the cell number, specific growth rate, cell yield, lactose consumption, lactic acid utilization rate, lactic acid concentration and lactic acid yield; and reduced the lag period, fermentation time and residual lactose. Combined yeast extract and microaeration produced better results than each one alone. From the results it appears that the energy uncoupling of anabolism and catabolism is the major bottleneck of the process. Besides lactic acid production, lactose may also be hydrolysed into glucose and galactose. The -galactosidase activity in the medium is caused by cell lysis during the exponential growth phase. The metabolic activities of Lactobacillus helveticus in the presence of these three sugars need further investigation.  相似文献   

16.
17.
-Amylase production was higher (13 units ml–1) when a recombinant Saccharomyces cerevisiae containing a SUC2 promoter was grown with 10 g lactic acid l–1 than without addition (8 units ml–1). With continuous lactic acid feeding in the inducing phase, -amylase increased to 79 units ml–1 in a 1-l jar fermenter.  相似文献   

18.
A method for micropropagation of mature trees of Capparis decidua was developed. Multiple shoots were obtained from nodal explants on Murashige and Skoog's (1962) medium+0.1mgl–1 NAA+5.0mgl–1BAP+additives (50mgl–1 ascorbic acid and25 mgl–1 each of adenine sulphate, L-arginine and citric acid) at 28 ± 2°C, 12 h/dphotoperiod and 35–40 mol m-2s–1 photon flux density. The shoots were multiplied by (i) subculture of nodal shoot segments onto MS +0.1 mgl-–1 IAA+1.0mgl–1 BAPH+additives, and (ii) repeated transfer of original explant onto MS+ 0.1mgl–1 IAA+mg l–1 BAP+additives, at intervals of 3 weeks. Sixty to 70% of the shoots rooted when pulse treated with 100 mg l–1 IBA in half strength MS liquid medium for 4h, and then transferred onto hormone-free half-strength agar-gelled MS basal saltmedium. Incubation in dark at 33 ± 2°C for 6d favoured root induction. In vitro hardened plants were transferred to pots.Abbreviations IAA Indole-3-aceticacid - IBA Indole-3-butyric acid - NAA -naphthaleneacetic acid - BAP 6-benzylaminopurine - Kn 6-furfurylaminopurine - 2-ip Isopentenyl adenine - B5 Gamborg et al. (1968) medium - MS Murashige and Skoog's (1962) medium - WP Woody plant medium (Lloyd and McCown 1981)  相似文献   

19.
Summary Yeast-like cells ofAureobasidium pullulans were immobilized in Ca-alginate gel beads and employed for continuous production of glucoamylase in a fluidized-bed reactor (250 ml working volume). After an activation time of 48 h, to allow the in situ germination of the fungal blastospores, the reactor was operated continuously for over 150 h. A steady state enzyme concentration of 1.2–1.3 U ml–1 of glucoamylase activity and an enzyme volumetric productivity of ca. 130 U ml–1 h–1 were obtained at a medium flow rate of 26 ml h–1. Enzyme activity and volumetric productivity were influenced by fermentation conditions such as inoculum size and airflow rate.  相似文献   

20.
Continuous malolactic fermentation in red wine using free Oenococcus oeni   总被引:4,自引:0,他引:4  
Malolactic fermentation (MLF) of wine in continuous culture was obtained by using Oenococcus oeni (formerly Leuconostoc oenos). The maximum malic acid degradation in our bioreactor system was reached at a dilution rate of 0.016h–1, and 92–95% of the malic acid (3.9–4.0g/l) was converted to lactic acid and CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号