共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An amino-terminal domain of the Sendai virus nucleocapsid protein is required for template function in viral RNA synthesis. 总被引:1,自引:0,他引:1 下载免费PDF全文
The nucleocapsid protein (NP) of Sendai virus encapsidates the genome RNA, forming a helical nucleocapsid which is the template for RNA synthesis by the viral RNA polymerase. The NP protein is thought to have both structural and functional roles, since it is an essential component of the NP0-P (P, phosphoprotein), NP-NP, nucleocapsid-polymerase, and RNA-NP complexes required during viral RNA replication. To identify domains in the NP protein, mutants were constructed by using clustered charge-to-alanine mutagenesis in a highly charged region from amino acids 107 to 129. Each of the mutants supported RNA encapsidation in vitro. The product nucleocapsids formed with three mutants, NP114, NP121, and NP126, however, did not serve as templates for further amplification in vivo, while NP107, NP108, and NP111 were nearly like wild-type NP in vivo. This template defect in the NP mutants from amino acids 114 to 129 was not due to a lack of NP0-P, NP-NP, or nucleocapsid-polymerase complex formation, since these interactions were normal in these mutants. We propose that amino acids 114 to 129 of the NP protein are required for the nucleocapsid to function as a template in viral genome replication. 相似文献
3.
4.
The amino-terminal one-third of the influenza virus PA protein is responsible for the induction of proteolysis. 总被引:4,自引:4,他引:4 下载免费PDF全文
We have previously described the fact that the individual expression of influenza virus PA protein induced a generalized proteolysis (J.J. Sanz-Ezquerro, S. de la Luna, Ortin, and A. Nieto, J. Virol. 69:2420-2426, 1995). In this study, we have further characterized this effect by mapping the regions of PA protein required and have found by deletion analysis that the first 247 amino acids are sufficient to bring about this activity. PA mutants that were able to decrease the accumulation levels of coexpressed proteins also presented lower steady-state levels due to a reduction in their half-lives. Furthermore, the PA wild type produced a decrease in the stationary levels of different PA versions, indicating that is itself a target for its induced proteolytic process. All of the PA proteins that induced proteolysis presented nuclear localization, being the sequences responsible for nuclear transport located inside the first 247 amino acids of the molecule. To distinguish between the regions involved in nuclear localization and those involved in induction of proteolysis, we fused the nuclear localization signal of the simian virus 40 T antigen to the carboxy terminus of the cytosolic versions of PA. None of the cytosolic PA versions affected in the first 247-amino-acid part of PA, which were now located in the nucleus, were able to induce proteolysis, suggesting that conservation of a particular conformation in this region of the molecule is required for the effect observed. The fact that all of the PA proteins able to induce proteolysis presented nuclear localization, together with the observation that this activity is shared by influenza virus PA proteins from two different type A viruses, suggests a physiological role for this PA protein activity in viral infection. 相似文献
5.
In vitro translation was used to study the mRNA for the Sendai virus nonstructural C protein. The C protein mRNA was found to be coordinately expressed with the mRNAs for the structural proteins. However, the C protein mRNA appeared to be translated more efficiently in vitro than the other mRNAs. In addition, the 22,000-dalton C protein mRNA cosedimented on sucrose gradients with the 79,000-dalton P protein mRNA. The C protein mRNA thus appears to be much larger than expected. 相似文献
6.
Sendai virus M protein binds independently to either the F or the HN glycoprotein in vivo. 总被引:2,自引:10,他引:2 下载免费PDF全文
We have analyzed the mechanism by which M protein interacts with components of the viral envelope during Sendai virus assembly. Using recombinant vaccinia viruses to selectively express combinations of Sendai virus F, HN, and M proteins, we have successfully reconstituted M protein-glycoprotein interaction in vivo and determined the molecular interactions which are necessary and sufficient to promote M protein-membrane binding. Our results showed that M protein accumulates on cellular membranes via a direct interaction with both F and HN proteins. Specifically, our data demonstrated that a small fraction (8 to 16%) of M protein becomes membrane associated in the absence of Sendai virus glycoproteins, while > 75% becomes membrane bound in the presence of both F and HN proteins. Selective expression of M protein together with either F or HN protein showed that each viral glycoprotein is individually sufficient to promote efficient (56 to 73%) M protein-membrane binding. Finally, we observed that M protein associates with cellular membranes in a time-dependent manner, implying a need for either maturation or transport before binding to glycoproteins. 相似文献
7.
Importance of the cysteine-rich carboxyl-terminal half of V protein for Sendai virus pathogenesis. 总被引:4,自引:3,他引:1 下载免费PDF全文
The Sendai virus V protein is a nonstructural trans-frame protein whose cysteine-rich C-terminal half is fused to the acidic N-terminal half of the P protein via mRNA editing. We recently created a mutant by disrupting the editing motif, which is devoid of mRNA editing and hence unable to produce the V protein, and demonstrated that this V(-) virus replicated normally or even faster with augmented gene expression and cytopathogenicity in cells in vitro, but was strongly attenuated in pathogenicity for mice (A. Kato, K. Kiyotani, Y. Sakai, T. Yoshida, and Y. Nagai, EMBO J. 16:578-587, 1997). Thus, although categorized as a nonessential protein, the V protein appeared to encode a luxury function required for the viral in vivo pathogenesis. Here, we created another version of a V-deficient mutant, VdeltaC, encoding only the N-terminal half but not the V-specific C-terminal half, by introducing a stop codon in the trans-V frame, and then we compared its in vitro and in vivo phenotypes with those of the V(-) and wild-type viruses. The VdeltaC virus was found to be similar to the wild-type virus in vitro with no augmented gene expression and cytopathogenicity, but in vivo, it resembled the V(-) virus, displaying a similarly attenuated phenotype. Thus, the pathogenicity determinant in the V protein was mapped to the C-terminal half. The N-terminal half was likely sufficient to confer normal (wild-type) in vitro phenotypes. 相似文献
8.
The amino-terminal domain of bovine viral diarrhea virus Npro protein is necessary for alpha/beta interferon antagonism 下载免费PDF全文
Gil LH Ansari IH Vassilev V Liang D Lai VC Zhong W Hong Z Dubovi EJ Donis RO 《Journal of virology》2006,80(2):900-911
The alpha/beta interferon (IFN-alpha/beta) system is the first line of defense against viral infection and a critical link between the innate and adaptive immune responses. IFN-alpha/beta secretion is the hallmark of cellular responses to acute RNA virus infections. As part of their survival strategy, many viruses have evolved mechanisms to counteract the host IFN-alpha/beta response. Bovine viral diarrhea virus (BVDV) (genus Pestivirus) was reported to trigger interferon production in infected cultured cells under certain circumstances or to suppress it under others. Our studies with various cultured fibroblasts and epithelial bovine cells indicated that cytopathic (cp) BVDV induces IFN-alpha/beta very inefficiently. Using a set of engineered cp BVDVs expressing mutant Npro and appropriate controls, we found that the IFN-alpha/beta response to infection was dependent on Npro expression and independent of viral replication efficiency. In order to investigate whether the protease activity of Npro is required for IFN-alpha/beta antagonism, we engineered Npro mutants lacking protease activity by replacement of amino acid E22, H49, or C69. We found that E22 and H49 substitutions abolished the ability of Npro to suppress IFN, whereas C69 had no effect, suggesting that the structural integrity of the N terminus of Npro was more important than its catalytic activity for IFN-alpha/beta suppression. A catalytically active mutant with a change at a conserved Npro region near the N terminus (L8P) in both BVDV biotypes did not antagonize IFN-alpha/beta production, confirming its involvement in this process. Taken together, these results not only provide direct evidence for the role of Npro in blocking IFN-alpha/beta induction, but also implicate the amino-terminal domain of the protein in this function. 相似文献
9.
10.
Abstract Five different interferon preparations were compared for their antiviral activity against Herpes simplex virus type 1 (HSV-1) and several RNA viruses. The interferons used were: interferon α from human buffy coats, interferon β from human fibroblasts, interferon γ from human lymphocytes after stimulation with phytohemagglutinin (PHA), lymphoblastoid interferon from Namalva cells IFN-α (Ly) and cloned α 2 interferon produced by Escherichia coli containing the human gene for interferon α 2 . All preparations were able to protect monolayers of HeLa cells against HSV-1 infection when low multiplicities were used. The five IFN preparations were also tested against encephalomyocarditis (EMC) virus, poliovirus and vesicular stomatitis virus (VSV). 相似文献
11.
Template requirements for de novo RNA synthesis by hepatitis C virus nonstructural protein 5B polymerase on the viral X RNA 总被引:1,自引:0,他引:1 下载免费PDF全文
The hepatitis C virus (HCV)-encoded NS5B protein is an RNA-dependent RNA polymerase which plays a substantial role in viral replication. We expressed and purified the recombinant NS5B of an HCV genotype 3a from Esherichia coli, and we investigated its ability to bind to the viral RNA and its enzymatic activity. The results presented here demonstrate that NS5B interacts strongly with the coding region of positive-strand RNA, although not in a sequence-specific manner. It was also determined that more than two molecules of polymerase bound sequentially to this region with the direction 3' to 5'. Also, we attempted to determine the initiation site(s) of de novo synthesis by NS5B on X RNA, which contains the last 98 nucleotides of HCV positive-strand RNA. The initiation site(s) on X RNA was localized in the pyrimidine-rich region of stem I. However, when more than five of the nucleotides of stem I in X RNA were deleted from the 3' end, RNA synthesis initiated at another site of the specific ribonucleotide. Our study also showed that the efficiency of RNA synthesis, which was directed by X RNA, was maximized by the GC base pair at the penultimate position from the 3' end of the stem. These results will provide some clues to understanding the mechanism of HCV genomic RNA replication in terms of viral RNA-NS5B interaction and the initiation of de novo RNA synthesis. 相似文献
12.
The reactive site of human inter-alpha-trypsin inhibitor is in the amino-terminal half of the protein 总被引:2,自引:0,他引:2
Human inter-alpha-trypsin inhibitor has been found to inactivate human trypsin, chymotrypsin, neutrophil elastase and cathepsin G. The protein was cleaved into two major fragments without loss of activity by incubation with Serratia marcescens metalloproteinase, and these were separated by ion-exchange chromatography. Inhibitory activity was found in only one of the fragments, the amino-terminal sequence of which was found to be identical with that of the native protein, as well as with that reported earlier for the urinary trypsin inhibitor. It may thus be concluded that the reactive site of the inter-alpha-trypsin inhibitor is located in the amino-terminal region. 相似文献
13.
The hypervariable C-terminal tail of the Sendai paramyxovirus nucleocapsid protein is required for template function but not for RNA encapsidation. 总被引:13,自引:9,他引:4 下载免费PDF全文
J Curran H Homann C Buchholz S Rochat W Neubert D Kolakofsky 《Journal of virology》1993,67(7):4358-4364
The paramyxovirus nucleocapsid proteins (NPs) are relatively well conserved, except for the C-terminal 20% (or ca. 100 amino acids), referred to as the tail. We have examined whether this hypervariable tail is required for genome synthesis, both in vitro, where synthesis is predominantly from the input templates, and in vivo, where multiple rounds of amplification occur. In these viruses, genome synthesis and assembly of the nascent chain are coupled. We find that the tail is required in vivo but not in vitro. Closer examination of the in vivo system showed that the tailless NP could encapsidate the genome chain but that amplification did not occur. We interpret these results as indicating that the tail is not required for RNA assembly but is required for the template to function in RNA synthesis. Relatively small deletions within the conserved N-terminal 80% of the protein, on the other hand, rendered the protein nonfunctional in either system. The possible functions of the tail in RNA synthesis are discussed. 相似文献
14.
15.
Initiation is the rate-limiting step in protein synthesis and therefore an important target for regulation. For the initiation of translation of most cellular mRNAs, the cap structure at the 5' end is bound by the translation factor eukaryotic initiation factor 4E (eIF4E), while the poly(A) tail, at the 3' end, is recognized by the poly(A)-binding protein (PABP). eIF4G is a scaffold protein that brings together eIF4E and PABP, causing the circularization of the mRNA that is thought to be important for an efficient initiation of translation. Early in infection, rotaviruses take over the host translation machinery, causing a severe shutoff of cell protein synthesis. Rotavirus mRNAs lack a poly(A) tail but have instead a consensus sequence at their 3' ends that is bound by the viral nonstructural protein NSP3, which also interacts with eIF4GI, using the same region employed by PABP. It is widely believed that these interactions lead to the translation of rotaviral mRNAs, impairing at the same time the translation of cellular mRNAs. In this work, the expression of NSP3 in infected cells was knocked down using RNA interference. Unexpectedly, under these conditions the synthesis of viral proteins was not decreased, while the cellular protein synthesis was restored. Also, the yield of viral progeny increased, which correlated with an increased synthesis of viral RNA. Silencing the expression of eIF4GI further confirmed that the interaction between eIF4GI and NSP3 is not required for viral protein synthesis. These results indicate that NSP3 is neither required for the translation of viral mRNAs nor essential for virus replication in cell culture. 相似文献
16.
It was previously shown that a temperature-sensitive mutant of Sendai virus, ts-23, readily establishes persistent infection in Vero cells at 37 C, a permissive temperature for growth of the mutant. In the present study, it was demonstrated that the virus yield from ts-23-infected Vero cells at 37 C began to decrease 48 to 72 hr postinfection, after an initial phase of high virus production. Before the decrease in virus production, the formation of viral nucleoprotein declined, although synthesis of all species of viral protein continued. It was suggested that the limited formation of viral nucleoprotein and the decrease in virus production were due to the restriction of viral RNA synthesis which began to occur early after infection in ts-23-infected cells at 37 C. The mutant has a temperature-sensitive defect in RNA polymerase activity and the temperature 37 C, used for establishment of persistent infection, would be a semi-permissive temperature for the RNA polymerase activity of the mutant. The ts-23 mutant interfered with the replication of the parental wild virus in Vero cells at 37 C. 相似文献
17.
Expression of hepatitis C virus proteins interferes with the antiviral action of interferon independently of PKR-mediated control of protein synthesis 总被引:9,自引:0,他引:9 下载免费PDF全文
François C Duverlie G Rebouillat D Khorsi H Castelain S Blum HE Gatignol A Wychowski C Moradpour D Meurs EF 《Journal of virology》2000,74(12):5587-5596
Hepatitis C virus (HCV) of genotype 1 is the most resistant to interferon (IFN) therapy. Here, we have analyzed the response to IFN of the human cell line UHCV-11 engineered to inducibly express the entire HCV genotype 1a polyprotein. IFN-treated, induced UHCV cells were found to better support the growth of encephalomyocarditis virus (EMCV) than IFN-treated, uninduced cells. This showed that expression of the HCV proteins allowed the development of a partial resistance to the antiviral action of IFN. The nonstructural 5A (NS5A) protein of HCV has been reported to inhibit PKR, an IFN-induced kinase involved in the antiviral action of IFN, at the level of control of protein synthesis through the phosphorylation of the initiation factor eIF2alpha (M. Gale, Jr., C. M. Blakely, B. Kwieciszewski, S. L. Tan, M. Dossett, N. M. Tang, M. J. Korth, S. J. Polyak, D. R. Gretch, and M. G. Katze, Mol. Cell. Biol. 18:5208-5218, 1998). Accordingly, cell lines inducibly expressing NS5A were found to rescue EMCV growth (S. J. Polyak, D. M. Paschal, S. McArdle, M. J. Gale, Jr., D. Moradpour, and D. R. Gretch, Hepatology 29:1262-1271, 1999). In the present study we analyzed whether the resistance of UHCV-11 cells to IFN could also be attributed to inhibition of PKR. Confocal laser scanning microscopy showed no colocalization of PKR, which is diffuse throughout the cytoplasm, and the induced HCV proteins, which localize around the nucleus within the endoplasmic reticulum. The effect of expression of HCV proteins on PKR activity was assayed in a reporter assay and by direct analysis of the in vivo phosphorylation of eIF2alpha after treatment of cells with poly(I)-poly(C). We found that neither PKR activity nor eIF2alpha phosphorylation was affected by coexpression of the HCV proteins. In conclusion, expression of HCV proteins in their biological context interferes with the development of the antiviral action of IFN. Although the possibility that some inhibition of PKR (by either NS5A or another viral protein) occurs at a very localized level cannot be excluded, the resistance to IFN, resulting from the expression of the HCV proteins, cannot be explained solely by inhibition of the negative control of translation by PKR. 相似文献
18.
Black beetle virus induces the synthesis of three new proteins, protein A (molecular weight, 104,000), protein α (molecular weight, 47,000), and protein B (molecular weight, 10,000), in infected Drosophila cells. Two of these proteins, A and α, are known to be encoded by black beetle virus RNAs 1 and 2, respectively, extracted from virions. We found that RNA extracted from infected cells directed the synthesis of all three proteins when it was added to a cell-free protein-synthesizing system. When polysomal RNA was fractionated on a sucrose density gradient, the messengers for proteins A and α cosedimented with viral RNAs 1 (22S) and 2 (15S), respectively. However, the messenger for protein B was a 9S RNA (RNA 3) not found in purified virions. Like the synthesis of viral RNAs 1 and 2, intracellular synthesis of RNA 3 was not affected by the drug actinomycin D at concentrations which blocked synthesis of host cell RNA. This indicated that RNA 3 is a virus-specific subgenomic RNA and, therefore, that protein B is a virus-encoded protein. 相似文献
19.
20.
The arginine-rich domain of the hepatitis B virus core protein is required for pregenome encapsidation and productive viral positive-strand DNA synthesis but not for virus assembly. 总被引:12,自引:21,他引:12 下载免费PDF全文
M Nassal 《Journal of virology》1992,66(7):4107-4116
Assembly of replication-competent hepatitis B virus (HBV) nucleocapsids requires the interaction of the core protein, the P protein, and the RNA pregenome. The core protein contains an arginine-rich C-terminal domain which is dispensable for particle formation in heterologous expression systems. Using transient expression in HuH7 cells of a series of C-terminally truncated core proteins, I examined the functional role of this basic region in the context of a complete HBV genome. All variants containing at least the 144 N-terminal amino acids were assembly competent, but efficient pregenome encapsidation was observed only with variants consisting of 164 or more amino acids. These data indicate that one function of the arginine-rich region is to provide the interactions between core protein and RNA pregenome. However, in cores from the variant ending with amino acid 164, the production of complete positive-strand DNA was drastically reduced. Moreover, almost all positive-strand DNA originated from in situ priming, whereas in wild-type particles, this type of priming not supporting the formation of relaxed circular DNA (RC-DNA) accounted for about one half of the positive strands. Further C-terminal residues to position 173 restored RC-DNA formation, and the corresponding variant did not differ from the full-length core protein in all assays used. The observation that RNA encapsidation and formation of RC-DNA can be genetically separated suggests that the core protein, via its basic C-terminal region, also acts as an essential auxiliary component in HBV replication, possibly like a histone, or like a single-stranded-DNA-binding protein. In contrast to their importance for HBV replication, sequences beyond amino acid 164 were not required for the formation of enveloped virions. Since particles from variant 164 did not contain mature DNA genomes, a genome maturation signal is apparently not required for HBV nucleocapsid envelopment. 相似文献