首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
BackgroundThe purpose of this study was to investigate the dose coverage of sentinel lymph nodes (SLN), level I, II and III axillary volumes from tangent fields for breast cancer patients with positive SLN without axillary dissection.Materials and methodsIn 30 patients with cN0 invasive breast cancer treated with breast conserving surgery and SLN biopsy, the SLN area was intraoperatively marked with a titanium clip. Retrospectively, the SLN area and axillary target volumes were contoured, and three plans [standard tangent fields (STgF), high tangent fields (HTgF), and STgF + axillary-supraclavicular field] were generated for each patient. The prescribed dose was standardized to 50 Gy in 2 Gy fractions to the isocenter.ResultsThe mean dose with STgF or HTgF was 33.1 and 49.1 Gy (p = 0.0001) in the SLN area, 25.7 and 45.1 Gy (p < 0.0001) in the volume of level I, 7.2 and 28.9 Gy (p < 0.0001) in the level II and 3.5 and 12.7 Gy (p = 0.0003) in the level III. Adequate therapeutic doses to the level II or III volumes were delivered only with STgF + axillary-supraclavicular field. The mean dose of ipsilateral lung was the highest with the three-field-technique, 9.9 Gy. SLN area, level I, II or III were completely included in the HTgF with 93.3%, 73.3%, 13.3% and 0%, respectively.ConclusionsSLN area should be marked by surgical clip and axillary target volumes should be contoured to obtain accurate dose estimations. The use of HTgF improve axillary coverage.  相似文献   

3.
AimThe purpose of this study was to investigate the dosimetric characteristics of three stereotactic ablative body radiotherapy (SABR) techniques using the anisotropic analytical algorithm (AAA) and Acuros XB algorithm. The SABR techniques include coplanar volumetric modulated arc therapy (C-VMAT), non-coplanar intensity modulated radiation therapy (NC-IMRT) and non-coplanar three-dimensional conformal radiotherapy (NC-3D CRT).BackgroundSABR is a special type of radiotherapy where a high dose of radiation is delivered over a short time. The treatment outcome and accuracy of the dose delivered to cancer patients highly depend on the dose calculation algorithm and treatment technique.Materials and methodsTwelve lung cancer patients underwent 4D CT scanning, and three different treatment plans were generated: C-VMAT, NC-IMRT, NC-3D CRT. Dose calculation was performed using the AAA and Acuros XB algorithm. The dosimetric indices, such as conformity index (CI), homogeneity index, dose fall-off index, doses received by organs at risk and planning target volume, were used to compare the plans. The accuracy of AAA and Acuros XB (AXB) algorithms for the lung was validated against measured dose on a CIRS thorax phantom.ResultsThe CIs for C-VMAT, NC-IMRT and NC-3D CRT were 1.21, 1.28 and 1.38 for the AAA, respectively, and 1.17, 1.26 and 1.36 for the Acuros XB algorithm, respectively. The overall dose computed by AcurosXB algorithm was close to the measured dose when compared to the AAA algorithm. The overall dose computed by the AcurosXB algorithm was close to the measured dose when compared to the AAA algorithm.ConclusionThis study showed that the treatment planning results obtained using the Acuros XB algorithm was better than those using the AAA algorithm in SABR lung radiotherapy.  相似文献   

4.
5.
BackgroundThe aim of the study was dosimetric effect quantification of exclusive computed tomography (CT) use with an intravenous (IV) contrast agent (CA ), on dose distribution of 3D-CRT treatment plans for lung cancer. Furthermore, dosimetric advantage investigation of manually contrast-enhanced region overriding, especially the heart.Materials and methodsTen patients with lung cancer were considered. For each patient two planning CT sets were initially taken with and without CA. Treatment planning were optimized based on CT scans without CA. All plans were copied and recomputed on scans with CA. In addition, scans with IV contrast were copied and density correction was performed for heart contrast enhanced. Same plans were copied and replaced to undo dose calculation errors that may be caused by CA. Eventually, dosimetric evaluations based on dose volume histograms (DVHs) of planning target volumes (PTV) and organs at-risk were studied and analyzed using the Wilcoxon’s signed rank test.ResultsThere is no statistically significant difference in dose calculation for the PTV maximum, mean, minimum doses, spinal cord maximum doses and lung volumes that received 20 and 30 Gy, between planes calculated with and without contrast scans (p > 0.05) and also for contrast scan, with manual regions overriding.ConclusionsDose difference caused by the contrast agent is negligible and not significant. Therefore, there is no justification to perform two scans, and using an IV contrast enhanced scan for dose calculation is sufficient.  相似文献   

6.
PurposeTo study the impact of setup errors on the dose to the target volume and critical structures in the treatment of cancer of nasopharynx with intensity modulated radiation therapy (IMRT).Methods and materialsTwelve patients of carcinoma of nasopharynx treated by IMRT with simultaneous integrated boost technique were enrolled. The gross tumor volume, clinical target volume and low-risk nodal region were planned for 70, 59.4 and 54 Gy, respectively, in 33 fractions. Based on the constraints, treatment plans were generated. Keeping it as the base plan, the patient setup error was simulated for 3, 5 and 10 mm by shifting the isocenter in all three directions viz. anterior, posterior, superior, inferior, right and left lateral. The plans were evaluated for mean dose, maximum dose, volume of PTV receiving >110% and <93% of the prescribed dose. For both the parotids, the mean dose and the dose received by >50% of the parotid were evaluated. The maximum dose and dose received by 2 cc of spinal cord were also analyzed.ResultsThe dose to the target volume decreases gradually with increase in setup error. The superior and inferior shifts play major role in tumor under-dosage. A setup error of 3 mm along the posterior and lateral directions significantly affects the dose to the spinal cord. Similarly, setup error along lateral and anterior directions affects the dose to both parotids.ConclusionsThe isocenter position should be verified regularly to ensure that the goal of IMRT is achieved.  相似文献   

7.
为探讨NSCLC脑部转移瘤调强放疗与适形放疗的剂量特点,本研究选取57例非小细胞肺癌脑转移瘤患者,其中单个脑转移灶患者5例,多个脑转移灶患者52例,分别设计全脑放疗+适形放疗与调强放疗计划,用均匀指数(HI)和适形指数(CI)评价靶区剂量,危及器官(OAR)剂量用近似最大剂量D2%(串联)和中位剂量D50%(并联)进行评价。研究发现,单个脑转移灶IMRT与WBRT+CRT比较中,CI为(PTV,(0.80±0.15) cGy,(0.34±0.19) cGy, p=0.00),HI为(PTV,(0.52±0.03) c Gy,(0.71±0.12) cGy, p=0.24),两者OARs剂量比较:脑干为((4 348±236) cGy,(4 593±149) cGy, p=0.01),脑垂体为((4 258±166) cGy,(4 581±123) cGy, p=0.02);在多个脑转移灶中,IMRT与WBRT+CRT比,较CI为(PTV,(0.59±0.33) cGy,(0.49±0.27) cGy, p=0.03),HI为(PTV,(0.93±0.01) cGy,(0.58±0.03) cGy, p=0.19),两者OARs剂量比较:脑干为((4 946±132) cGy,(4 843±196) cGy, p=0.51),脑垂体为((4 597±180) cGy,(4 705±149) cGy, p=0.70)。本研究的结果说明,单个脑转移灶患者,IMRT较WBRT+CRT有更好的靶区适形性、稍差的靶区异质性,脑干和垂体的IMRT剂量低于WBRT+CRT,而眼球、晶体的剂量两者差别不明显。多个脑转移灶患者,IMRT较WBRT+CRT有更好的靶区适形性、稍差的靶区异质性,而OARs剂量,IMRT较WBRT+CRT差异不明显。在临床实践过程中,应当根据患者不同的病灶情况选择合适的放疗方案,以获取更优的临床治疗效果。  相似文献   

8.
BackgroundIn our department, during lung stereotactic body radiation therapy (SBRT), all patients receive an intra-fractional midpoint cone beam computed tomography (CBCT). This study aimed to quantify the benefit of adding a second midpoint CBCT over a course of peripheral lung SBRT.Materials and methodsSix-hundred-sixty-four CBCTs from 166 patients were retrospectively analyzed. Treatments were based on the internal target volume (ITV) approach. An isotropic 0.5 cm margin was used to create the planning target volume (PTV) around the ITV. The prescribed dose was 48 Gy in 4 fractions to the PTV. Patients were divided into two groups: patients for whom the 3D-intra-fractional-variation (IFV) was < 0.5 cm (105 patients, low risk group) and patients with at least one 3D-IFV ≥ 0.5 cm (61 patients, high-risk group). Plans simulating the dosimetric impact of the IFV were created as follows: the original 2 arcs (ARC ) were copied into a new plan consisting of 4 times ARC 1 and 4 times ARC 2. The delivery of ARC 1 was always assumed to have occurred with the isocenter initially coordinated, whereas the positions of ARC 2 were modified for each arc by the measured the 3D-IFV.ResultsFor the PTV, we obtained: D99% (Gy) = 45.2 vs. 48.2 Gy (p < 0.0001); Dmean = 53 vs. 54 Gy (p < .0001) for the reconstructed vs. planned dose values, respectively. For the ITV, the changes are less pronounced: D99% (Gy) = 52.2 vs. 53.6 Gy (p = 0.0007); Dmean = 56 vs. 56.8 Gy (p = 0.0144). The V48 Gy(%)-ITV coverage did not statistically change between the delivered vs. planned dose (p = 0.1803). Regarding the organs at risk for both groups, dose-volume-histograms were near-identical.ConclusionWe demonstrated that a single CBCT is sufficient and reliable to manage the IFV during peripheral lung SBRT.  相似文献   

9.
10.

Aim

Our aim was to improve dose distribution to the left breast and to determine the dose received by the ipsilateral lung, heart, contralateral lung and contralateral breast during primary left-sided breast irradiation by using intensity modulated radiotherapy (IMRT) techniques compared to conventional tangential techniques (CTT). At the same time, different beams of IMRT plans were compared to each other in respect to CI, HI and organs at risk (OAR) dose.

Background

Conventional early breast cancer treatment consists of lumpectomy followed by whole breast radiation therapy. CTT is a traditional method used for whole breast radiotherapy and includes standard wedged tangents (two opposed wedged tangential photon beams). The IMRT technique has been widely used for many treatment sites, allowing both improved sparing of normal tissues and more conformal dose distributions. IMRT is a new technique for whole breast radiotherapy. IMRT is used to improve conformity and homogeneity and used to reduce OAR doses.

Materials and methods

Thirty patients with left-sided breast carcinoma were treated between 2005 and 2008 using 6, 18 or mixed 6/18 MV photons for primary breast irradiation following breast conserving surgery (BCS). The clinical target volume [CTV] was contoured as a target volume and the contralateral breast, ipsilateral lung, contralateral lung and heart tissues as organs at risk (OAR). IMRT with seven beams (IMRT7), nine beams (IMRT9) and 11 beams (IMRT11) plans were developed and compared with CTT and among each other. The conformity index (CI), homogeneity index (HI), and doses to OAR were compared to each other.

Results

All of IMRT plans significantly improved CI (CTT: 0.76; IMRT7: 0.84; IMRT9: 0.84; IMRT11: 0.85), HI (CTT: 1.16; IMRT7: 1.12; IMRT9: 1.11; IMRT11: 1.11), volume of the ipsilateral lung receiving more than 20 Gy (>V20 Gy) (CTT: 14.6; IMRT7: 9.08; IMRT9: 8.10; IMRT11: 8.60), and volume of the heart receiving more than 30 Gy (>V30 Gy) (CTT: 6.7; IMRT7: 4.04; IMRT9: 2.80; IMRT11: 2.98) compared to CTT. All IMRT plans were found to significantly decrease >V20 Gy and >V30 Gy volumes compared to conformal plans. But IMRT plans increased the volume of OAR receiving low dose radiotherapy: volume of contralateral lung receiving 5 and 10 Gy (CTT: 0.0–0.0; IMRT7: 19.0–0.7; IMRT9: 17.2–0.66; IMRT11: 18.7–0.58, respectively) and volume of contralateral breast receiving 10 Gy (CTT: 0.03; IMRT7: 0.38; IMRT9: 0.60; IMRT11: 0.68). The differences among IMRT plans with increased number of beams were not statistically significant.

Conclusion

IMRT significantly improved conformity and homogeneity index for plans. Heart and lung volumes receiving high doses were decreased, but OAR receiving low doses was increased.  相似文献   

11.
12.
BackgroundThis analysis evaluates the impacts of biologically effective dose (BED) and histology on local control (LC) of spinal metastases treated with highly conformal radiotherapy to moderately-escalated doses.Materials and methodsPatients were treated at two institutions from 2010–2020. Treatments with less than 5 Gy per fraction or 8 Gy in 1 fraction were excluded. The dataset was divided into three RPA classes predictive of survival (1). The primary endpoint was LC.Results223 patients with 248 treatments met inclusion criteria. Patients had a median Karnofsky Performance Status (KPS ) of 80, and common histologies included breast (29.4%), non-small cell lung cancer (15.7%), and prostate (13.3%). A median 24 Gy was delivered in 3 fractions (BED: 38.4 Gy) to a median planning target volume (PTV) of 37.3 cc. 2-year LC was 75.7%, and 2-year OS was 42.1%. Increased BED was predictive of improved LC for primary prostate cancer (HR = 0.85, 95% CI: 0.74–0.99). Patients with favorable survival (RPA class 1) had improved LC with BED ≥ 40 Gy (p = 0.05), unlike the intermediate and poor survival groups. No grade 3–5 toxicities were reported.ConclusionsModerately-escalated treatments were efficacious and well-tolerated. BED ≥ 40 Gy may improve LC, particularly for prostate cancer and patients with favorable survival.  相似文献   

13.
ObjectiveTo assess the feasibility of treatment planning for pancreatic tumours subject to respiratory motion using field-specific target volumes (FTV) and field-specific organs at risk (FOAR) using four-dimensional computed tomography (4DCT).MethodsFourteen pancreatic cancer patients underwent 4DCT. Radiation oncologists contoured the gross tumour volume (GTV), clinical target volume (CTV), spinal cord, duodenum, kidneys, and stomach. The gating duty cycle was set to 30 % around exhalation. FTV and FOAR were calculated using the 4DCT dataset. Planning target volumes (PTV) and planning organs at risk volumes (PRV) were defined as equal to FTV and FOAR, respectively. A dose of 55.2 Gy relative biological effectiveness (RBE) was planned to target the PTV from four beam angles. A single field uniform dose (SFUD) plan was selected. The dose distribution, including intrafractional motion changes, was generated.ResultsThe mean volume of target receiving 95 % of the planned doses was 96.4 ± 4.1 % to the GTV and 94.7 ± 0.9 % to the CTV. The highest dose to 2 cc of duodenal volume was 27.5 Gy (RBE). The volume of the stomach receiving ⩾30 Gy (RBE) was <7.0 cc in all patients. All metrics for OARs satisfied dose constraints.ConclusionDose to the CTV was covered sufficiently by the 4DCT-generated FTV, and dose to OARs was reduced by 4DCT-generated FOAR. This methodology may prevent adverse reactions while preserving local tumour control.  相似文献   

14.
PurposeRadiation therapy plans are assessed using dose volume metrics derived from clinical toxicity and outcome data. In this study, plans for patients with locally advanced non-small cell lung cancer (LA-NSCLC) are examined in the context of the implementation of the Acuros XB (AXB) dose calculation algorithm focussing on the impact on common metrics. Methods: Volumetric modulated arc therapy (VMAT) plans were generated for twenty patients, using the Analytical Anisotropic Algorithm (AAA) and recalculated with AXB for both dose to water (Dw) and dose to medium (Dm). Standard dose volume histogram (DVH) metrics for both targets and organs-at-risk (OARs) were extracted, in addition to tumour control probability (TCP) for targets. Results: Mean dose to the planning target volume (PTV) was not clinically different between the algorithms (within ±1.1 Gy) but differences were seen in the minimum dose, D99% and D98% as well as for conformity and homogeneity metrics. A difference in TCP was seen for AXBDm plans versus both AXBDw and AAA plans. No clinically relevant differences were seen in the lung metrics. For point doses to spinal cord and oesophagus, the AXBDm values were lower than AXBDw, by up to 1.0 Gy. Conclusion: Normalisation of plans to the mean/median dose to the target does not need to be adjusted when moving from AAA to AXB. OAR point doses may decrease by up to 1 Gy with AXBDm, which can be accounted for in clinical planning. Other OAR metrics do not need to be adjusted.  相似文献   

15.
BackgroundThis retrospective analysis evaluated the long-term outcome of spinal stereotactic body radiotherapy (SBRT) treatment for hemangioblastomas.Materials and methodsBetween 2010 and 2018, 5 patients with 18 Von-Hippel Lindau-related pial-based spinal hemangioblastomas were treated with fractionated SBRT. After precisely registering images of all relevant datasets, we delineated the gross tumor volume, spinal cord (including intramedullary cysts and/or syrinxes), and past radiotherapy regions. A sequential optimization algorithm was used for dose determinations, and patients received 25–26 Gy in five fractions or 24 Gy in three fractions. On-line image guidance, based on spinal bone structures, and two orthogonal radiographs were provided. The actuarial nidus control, surgery-free survival, cyst/syrinx changes, and progression-free survival were calculated with the Kaplan-Meier method. Toxicities were graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events v5.0.ResultsThe median follow-up was 5 years after SBRT. Patients displayed one nidus progression, one need of neurosurgery, and two cyst/syrinx progressions directly connected to symptom worsening. No SBRT-related complications or acute adverse radiation-related events occurred. However, one asymptomatic radiological sign of myelopathy occurred two years after SBRT. All tumors regressed; the one-year equivalent tumor volume reduction was 0.2 mL and the median volume significantly decreased by 28% (p = 0.012). Tumor volume reductions were not correlated with the mean (p = 0.19) or maximum (p = 0.16) dose.ConclusionsSBRT for pial-based spinal hemangioblastomas was an effective, safe, viable alternative to neurosurgery in asymptomatic patients. Escalating doses above the conventional dose-volume limits of spinal cord tolerance showed no additional benefit.  相似文献   

16.
Chi A  Liao Z  Nguyen NP  Xu J  Welsh JS  Jang SY  Howe C  Komaki R 《PloS one》2012,7(4):e35809

Background

No selection criteria for helical tomotherapy (HT) based stereotactic ablative radiotherapy (SABR) to treat early stage non-small cell lung cancer (NSCLC) or solitary lung metastases has been established. In this study, we investigate the dosimetric selection criteria for HT based SABR delivering 70 Gy in 10 fractions to avoid severe toxicity in the treatment of centrally located lesions when adequate target dose coverage is desired.

Materials and Methods

78 HT-SABR plans for solitary lung lesions were created to prescribe 70 Gy in 10 fractions to the planning target volume (PTV). The PTV was set to have ≥95% PTV receiving 70 Gy in each case. The cases for which dose constraints for ≥1 OAR could not be met without compromising the target dose coverage were compared with cases for which all target and OAR dose constraints were met.

Results

There were 23 central lesions for which OAR dose constraints could not be met without compromising PTV dose coverage. Comparing to cases for which optimal HT-based SABR plans were generated, they were associated with larger tumor size (5.72±1.96 cm vs. 3.74±1.49 cm, p<0.0001), higher lung dose, increased number of immediately adjacent OARs ( 3.45±1.34 vs. 1.66±0.81, p<0.0001), and shorter distance to the closest OARs (GTV: 0.26±0.22 cm vs. 0.88±0.54 cm, p<0.0001; PTV 0.19±0.18 cm vs. 0.48±0.36 cm, p = 0.0001).

Conclusion

Delivery of 70 Gy in 10 fractions with HT to meet all the given OAR and PTV dose constraints are most likely when the following parameters are met: lung lesions ≤3.78 cm (11.98 cc), ≤2 immediately adjacent OARs which are ≥0.45 cm from the gross lesion and ≥0.21 cm from the PTV.  相似文献   

17.
AimTo present a proposed gastric cancer intensity-modulated radiotherapy (IMRT) treatment planning protocol for an institution that have not introduced volumetric modulated arc therapy in clinical practice. A secondary aim was to determine the impact of 2DkV set-up corrections on target coverage and organ at risk (OAR).Methods and MaterialsTwenty consecutive patients were treated with a specially-designed non-coplanar 7-field IMRT technique. The isocenter-shift method was used to estimate the impact of 2DkV-based set-up corrections on the original base plan (BP) coverage. An alternative plan was simulated (SP) by taking into account isocenter shifts. The SP and BP were compared using dose-volume histogram (DVH) plots calculated for the internal target volume (ITV) and OARs.ResultsBoth plans delivered a similar mean dose to the ITV (100.32 vs. 100.40%), with no significant differences between the plans in internal target coverage (5.37 vs. 4.96%). Similarly, no significant differences were observed between the maximal dose to the spinal cord (67.70 and 67.09%, respectively) and volume received 50% of the prescribed dose of: the liver (62.11 vs. 59.84%), the right (17.62 vs. 18.58%) and left kidney (29.40 vs. 30.48%). Set-up margins (SM) were computed as 7.80 mm, 10.17 mm and 6.71 mm in the left-right, cranio-caudal and anterior-posterior directions, respectively.ConclusionPresented IMRT protocol (OAR dose constraints with selected SM verified by 2DkV verification) for stomach treatment provided optimal dose distribution for the target and the critical organs. Comparison of DVH for the base and the modified plan (which considered set-up uncertainties) showed no significant differences.  相似文献   

18.
19.
PurposeEvaluating performance of modern dose calculation algorithms in SBRT and locally advanced lung cancer radiotherapy in free breathing (FB) and deep inspiration breath hold (DIBH).MethodsFor 17 patients with early stage and 17 with locally advanced lung cancer, a plan in FB and in DIBH were generated with Anisotropic Analytical Algorithm (AAA). Plans for early stage were 3D-conformal SBRT, 45 Gy in 3 fractions, prescribed to 95% isodose covering 95% of PTV and aiming for 140% dose centrally in the tumour. Locally advanced plans were volumetric modulated arc therapy, 66 Gy in 33 fractions, prescribed to mean PTV dose. Calculation grid size was 1 mm for SBRT and 2.5 mm for locally advanced plans. All plans were recalculated with AcurosXB with same MU as in AAA, for comparison on target coverage and dose to risk organs.ResultsLung volume increased in DIBH, resulting in decreased lung density (6% for early and 13% for locally-advanced group).In SBRT, AAA overestimated mean and near-minimum PTV dose (p-values < 0.01) compared to AcurosXB, with largest impact in DIBH (differences of up to 11 Gy). These clinically relevant differences may be a combination of small targets and large dose gradients within the PTV.In locally advanced group, AAA overestimated mean GTV, CTV and PTV doses by median less than 0.8 Gy and near-minimum doses by median 0.4–2.7 Gy.No clinically meaningful difference was observed for lung and heart dose metrics between the algorithms, for both FB and DIBH.ConclusionsAAA overestimated target coverage compared to AcurosXB, especially in DIBH for SBRT.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号