首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within this study, the recently identified ovine CSN1S2 variants C and D were characterized at the molecular genetic level. Sequencing of the cDNA and of parts of the DNA identified several sequence differences within CSN1S2*C and D in comparison to CSN1S2*A and B. CSN1S2*C is characterized by two non-synonymous single nucleotide polymorphisms (SNPs) within exon 7 (c.178A>G, c.187G>T) leading to the amino acid substitutions p.Val45Ile and p.Ala48Ser. CSN1S2*D is caused by the SNP c.183G>C, leading to an amino acid replacement at position 46 (p.Arg46Ser). A very common c.527G>A-SNP within exon 15, resulting in the amino acid substitution p.Arg161His and producing the new variant CSN1S2*G, not detectable by isoelectric focusing and previously misidentified as CSN1S2*A, was also identified. On the basis of the identified sequence differences, a new nomenclature is proposed and a possible phylogenetic pathway shown for ovine CSN1S2 variants.  相似文献   

2.
The aim of our study was to detect new polymorphisms in the bovine β-lactoglobulin ( β-LG ) gene with significant effects on β-LG protein concentration. Genomic DNA samples from 22 proven bulls were screened for polymorphisms in the coding and promoter regions of the β-LG gene. In total, 50 polymorphisms were detected. Two single nucleotide polymorphisms (SNPs) (g.1772G>A and g.3054C>T) lead to amino acid changes and are the causal genetic polymorphisms of β-LG protein variants A and B. Forty-two polymorphisms were in complete linkage disequilibrium (LD) with β-LG protein variants A and B. Any of these 42 polymorphisms can be involved in the differential expression of the respective A and B alleles of the β- LG gene. The eight polymorphisms not in complete LD with β-LG protein variants A and B and the two polymorphisms causing the amino acid changes were genotyped in a set of 208 cows: 106 animals homozygous for β-LG protein variant A and 102 animals homozygous for β-LG protein variant B. Of these eight polymorphisms, six SNPs segregated only within the cows homozygous for β-LG protein variant A and two SNPs segregated only within the cows homozygous for β-LG protein variant B. One of the eight polymorphisms had a significant effect on β-LG protein concentration. This SNP, g.-731G>A, segregated only within the 106 cows homozygous for β-LG protein variant A. Within these cows, adjusted relative β-LG protein concentration was reduced by 1.22% (w/w) in animals homozygous g.-731AA compared with animals homozygous g.-731GG.  相似文献   

3.
Mutations in the gap junction β2 (GJB2) gene, encoding the connexin26 (CX26) protein, are the most common cause of non-syndromic hearing loss (HL) in many populations. In the East Asian population, two variants, p.V27I (c.79G>A) and p.E114G (c.341G>A), are considered benign polymorphisms since these variants have been identified in both HL patients and normal hearing controls. However, some studies have postulated that homozygotes carrying both p.V27I and p.E114G variants could cause HL. To elucidate possible roles of these variants, we used in vitro approaches to directly assess the pathogenicity of four haplotypes generated by the two polymorphisms: VE (wild type), I*E (p.V27I variant only), VG* (p.E114G variant only), I*G* (both variants). In biochemical coupling assays, the gap junctions (GJs) composed of VG* and I*G* types displayed defective channel activities compared with those of VE wild types or I*E types, which showed normal channel activities. Interestingly, the defect in hemichannel activity was a bit less severe in I*G* type than VG* type, suggesting that I* variant (p.V27I) may compensate for the deleterious effect of G* variant (p.E114G) in hemichannel activities. Our population studies using 412 Korean individuals showed that I*G* type was detected at around 20% in both HL patients and normal controls, suggesting that I*G* type may not be a pathogenic polymorphism. In contrast, VG* type was very rare (3/824) and detected only in HL patients, suggesting that VG* homozygotes (VG*/VG*) or compound heterozygotes carrying VG* type with other mutations may cause HL.  相似文献   

4.

INTRODUCTION:

Cytochrome P450 2D6 (CYP2D6) enzymes are involved in the metabolism of a large number of commonly prescribed drugs such as antidepressants and cardiovascular drugs. The CYP2D6 *3, *4 and *14 variants associated with the loss of enzyme function; CYP2D6 *10 and *17 variants with reduced enzyme function; and CYP2D6 *2 variant with no effect on enzyme function. Establishing the frequency of these variant alleles in Sri Lankan population would be useful for optimizing pharmacotherapy with CYP2D6-substrate drugs.

OBJECTIVE:

The objective of this study was to determine the prevalence of CYP2D6 *2, *3, *4, *10, *14 and *17 variants in the main ethnic groups in the Sri Lankan population.

MATERIALS AND METHODS:

A total of 90 deoxyribonucleic acid (DNA) samples (30 each from Sinhalese, Tamils and Moors) were selected from a DNA resource at the Human Genetic Unit, Faculty of Medicine, University of Colombo. This collection had been made for population genetic studies from a random population based volunteers. Genotyping was performed using published polymerase chain reaction/restriction fragment length polymorphism methods.

RESULTS:

The prevalence of the CYP2D6 variants in Sinhalese, Sri Lankan Tamils and Moors respectively were CYP2D6 *2: 37%, 41.6% and 37.9%; CYP2D6 *3: 60.3%, 45% and 30%; CYP2D6 *4: 21.6%, 6.6% and 8.3%; CYP2D6 *10: 40%, 35% and 44%. CYP2D6 *14 and *17 variants were not identified.

CONCLUSION:

CYP2D6*3, *4 and *10 variants, which are associated with reduced or loss of CYP2D6 enzyme function were found in our population in significant frequencies. CYP2D6*4, which is reported to be a Caucasian variant was also found in all three ethnic groups.  相似文献   

5.
Polymorphisms in the selected genes controlling carcinogen metabolism (CYP1A1, CYP2D6, CYP2E1, NAT2, GSTM1, GSTT1) considered separately or in different combinations, were investigated for an association with tobacco smoke-associated squamous cell carcinoma (SCC) of the larynx. The case-control study was performed in 289 patients with laryngeal SCC and in 316 cancer-free controls; all were Caucasian males from the same region of Poland and current tobacco smokers. The DNA samples were genotyped using PCR-RFLP and multiplex PCR. The variants' frequencies in both groups were compared; odds ratios and their 95% confidence intervals were calculated by logistic regression analyses. The CYP1A1*1/*4, CYP2D6*4/*4, NAT2*4/*6A genotypes, as well as the CYP1A1*4, CYP2D6*4 and NAT2*4 alleles, were found at significantly higher frequencies in cases than in controls indicating their role as "risk-elevating" factors in laryngeal SCC. Combined genotypes, characterized by the presence of the "risk-elevating" variants at more than one locus, often occurred together with the null variant of the GSTM1 gene and homozygous XPD A/A (Lys751Gln, A35931C) genotype. Furthermore, we identified some "protective" variants, found more frequently in controls than in cases, i.e. the NAT2*6A/*6A and NAT2*5B/*6A genotypes. A distribution of "risk" or "protection" genotypes/alleles seems to be connected with age as an occurrence or risk genes was more frequent in the group of "young" cases (< or = 49 years). Accumulation of certain alleles or genotypes of the CYP1A1, NAT2, GSTM1 and XPD seems to be associated with either increased or decreased risk to develop laryngeal SCC. Therefore, polymorphisms in these genes may play a role in the laryngeal cancer etiology.  相似文献   

6.
Obesity is due to the combined effects of genes, environment, lifestyle, and the interactions of these factors. The adrenergic receptor beta3 (beta3-AR), leptin (LEP) and leptin receptor (LEPR) genes have been intensively evaluated in the search of variants that could be related to obesity and its cardiometabolic complications. The results of most of these studies have been controversial. In the present study, we investigated the relationship of the beta3-AR p.W64R, LEP c.-2548G>A and LEPR p.Q223R gene variants with body mass index (BMI), in Brazilian subjects of different genetic backgrounds and ethnic origins. Two hundred obese patients (60 males, 140 females, BMI > or = 30 kg/m2) were screened and compared to 150 lean healthy subjects (63 males, 87 females, BMI < or = 24 kg/m2). Genomic DNA was extracted and amplified by polymerase chain reaction. Polymerase chain reaction products were digested with specific restriction enzymes and separated by electrophoresis. There was no significant difference in the genotype frequency of the beta3-AR p.W64R and the LEP c.-2548G>A polymorphisms, between lean and obese subjects. However, the genotype and allele frequencies of the LEPR p.Q223R variant were significantly different between the normal weight and obese groups. Haplotype analysis has shown an association between the G/G allelic combination of c.-2548G>A LEP and c.668A>G LEPR, in obese subjects. Our results suggest that genetic variability in the leptin receptor is associated with body weight regulation, the LEPR p.Q223R variant being related to BMI increase. The haplotype combination of LEP c.-2548G>A and LEPR p.Q223R variants was related to a 58% increase in obesity risk.  相似文献   

7.
Drugs and carcinogens are excreted from the body after metabolic conversion involving enzymes mediating oxidative metabolism and conjugation. Many of the corresponding genes exhibit functional polymorphisms that contribute to individual cancer susceptibility. To increase the efficiency and to facilitate genotyping, we developed a combined approach (PCR-ASO) which includes multiplex PCR and allele-specific oligonucleotide (ASO) hybridization. PCR primer pairs were used to amplify the following alleles/variants: CYP1A1*1, *2A, *2B; CYP2D6*3, *4; NAT1*4, *3, *10, *11, *14, *15; and NAT2*4, *5A, *5B, *5C, *6A, *7B. The products were dot-blotted and polymorphisms were detected by hybridization with ASO probes for both wild-type and variant sites in parallel. This approach was validated by genotyping DNA samples from a French-Canadian population that was previously analyzed by PCR-RFLP. The variants frequencies were compared with the data on other populations available in the literature. The PCR-ASO assay appears to be simple, efficient, and cost-effective, particularly if a large number of samples are to be screened for several DNA variants. This approach has potential for automation with microplates and robotic workstations for high throughput.  相似文献   

8.
Levanat S  Musani V  Cvok ML  Susac I  Sabol M  Ozretic P  Car D  Eljuga D  Eljuga L  Eljuga D 《Gene》2012,498(2):169-176
BRCA1 and BRCA2 genes from 167 candidates (145 families) were scanned for mutations. We identified 14 pathogenic point mutations in 17 candidates, 9 in BRCA1 and 5 in BRCA2. Of those, 11 have been previously described and 3 were novel (c.5335C>T in BRCA1 and c.4139_4140dupTT and c.8175G>A in BRCA2). No large deletions or duplications involving BRCA1 and BRCA2 genes were identified. No founder mutations were detected for the Croatian population. Croatia shares most of the mutations with neighboring Slovenia and also with Germany, Austria and Poland. Two common sequence variants in BRCA1, c.2077G>A and c.4956G>A, were found more frequently in mutation carriers compared to healthy controls. No difference in BRCA2 variants was detected between the groups. Haplotype inference showed no difference in haplotype distributions between deleterious mutation carriers and non-carriers in neither BRCA1 nor BRCA2. In silico analyses identified one BRCA1 sequence variant (c.4039A>G) and two BRCA2 variants (c.5986G>A and c.6884G>C) as harmful with high probability, and inconclusive results were obtained for our novel BRCA2 variant c.3864_3866delTAA. Combination of QMPSF and HRMA methods provides high detection rate and complete coverage of BRCA1/2 genes. Benefit of BRCA1/2 mutation testing is clear, since we detected mutations in young unaffected women, who will be closely monitored for breast and ovarian cancer.  相似文献   

9.
Some controversy exists on the specific genetic variants that are associated with nicotine dependence and smoking-related phenotypes. The purpose of this study was to analyse the association of smoking status and smoking-related phenotypes (included nicotine dependence) with 17 candidate genetic variants: CYP2A6*1×2, CYP2A6*2 (1799T>A) [rs1801272], CYP2A6*9 (-48T>G) [rs28399433], CYP2A6*12, CYP2A13*2 (3375C>T) [rs8192789], CYP2A13*3 (7520C>G), CYP2A13*4 (579G>A), CYP2A13*7 (578C>T) [rs72552266], CYP2B6*4 (785A>G), CYP2B6*9 (516G>T), CHRNA3 546C>T [rs578776], CHRNA5 1192G>A [rs16969968], CNR1 3764C>G [rs6928499], DRD2-ANKK1 2137G>A (Taq1A) [rs1800497], 5HTT LPR, HTR2A -1438A>G [rs6311] and OPRM1 118A>G [rs1799971]. We studied the genotypes of the aforementioned polymorphisms in a cohort of Spanish smokers (cases, N = 126) and ethnically matched never smokers (controls, N = 80). The results showed significant between-group differences for CYP2A6*2 and CYP2A6*12 (both P<0.001). Compared with carriers of variant alleles, the odds ratio (OR) for being a non-smoker in individuals with the wild-type genotype of CYP2A6*12 and DRD2-ANKK1 2137G>A (Taq1A) polymorphisms was 3.60 (95%CI: 1.75, 7.44) and 2.63 (95%CI: 1.41, 4.89) respectively. Compared with the wild-type genotype, the OR for being a non-smoker in carriers of the minor CYP2A6*2 allele was 1.80 (95%CI: 1.24, 2.65). We found a significant genotype effect (all P≤0.017) for the following smoking-related phenotypes: (i) cigarettes smoked per day and CYP2A13*3; (ii) pack years smoked and CYP2A6*2, CYP2A6*1×2, CYP2A13*7, CYP2B6*4 and DRD2-ANKK1 2137G>A (Taq1A); (iii) nicotine dependence (assessed with the Fagestrom test) and CYP2A6*9. Overall, our results suggest that genetic variants potentially involved in nicotine metabolization (mainly, CYP2A6 polymorphisms) are those showing the strongest association with smoking-related phenotypes, as opposed to genetic variants influencing the brain effects of nicotine, e.g., through nicotinic acetylcholine (CHRNA5), serotoninergic (HTR2A), opioid (OPRM1) or cannabinoid receptors (CNR1).  相似文献   

10.
A survey of more than 21 000 haemolysates from blood samples collected in various parts of south and southeast Asia, Australasia and the Western Pacific and examined in this laboratory has revealed several new alleles controlling variants of sMDH; in addition, further information has been provided on the distribution of sMDH3 in New Guinea. Two of the variant alleles, sMDH3 and sMDH6, achieve polymorphic frequency in various populations. sMDH3 is widely distributed in New Guinea, with highest frequencies in the Eastern Highlands. The pattern of its distribution suggests the mutant arose originally in a Papuan-speaking population. So far, sMDH6 has been detected only in Micronesians from a number of islands in the Carolines. A single example of another new variant, sMDH 5-1, and two examples of a slow variant, sMDH 7-1, were detected in samples from Iran and Singapore, respectively. No examples of mMDH variants were found in a total of 652 placental extracts from Papua New Guinea and Australia.  相似文献   

11.
Until now, worldwide more than 80 different alleles producing weak D phenotypes have been identified. Here we identified rare RHD DVa alleles in Chinese individuals associated with weak expression of D antigen and an RHD phenotype resembling DVI. Multi-monoclonal anti-D antibodies were used to identify the RHD phenotyping for rare RHD DVa. RHD genotyping was used to confirm the presence of RHD exons and identify RHD, RHCE hybrids and exon deficiencies. Sanger sequencing was used to identify nucleotide polymorphisms in RHD exons. Pedigree analysis demonstrated RHD DVa allele alterations of 667 T>G, 676 G>C, 697 G>C, 712 G>A, 733 G>C, 744 C>T and 1227 G>A, which means the proband''s alleles were RHD DVa-3 [also called RHD-CE(5)-D] and 1227 G>A. The results also demonstrated RHD DVa and the original RHD Va allele without 1227 G>A. The study suggests that RHD phenotyping is a superior strategy for the molecular analysis of RHD variant in Chinese subjects, and for understanding related polymorphisms and mutations.  相似文献   

12.
A population sample from S?o Tomé e Príncipe (West Africa) was screened for the G6PD-deficient variants A- (376G/202A), Betica (376G/968C), and Santa Maria (376G/542T). G6PD locus haplotype diversity was also investigated using six intragenic RFLPs (FokI, PvuII, BspHI, PstI, BclI, NlaIII) and a (CTT)n microsatellite 18.61 kb within the G6PD locus. The estimated frequencies of the G6PD*B normal allele, the G6PD*A variant (376G), and the G6PD*A- allele were 0.698, 0.194, and 0.108, respectively. G6PD variants Betica and Santa Maria were not found. Similar levels of microsatellite diversity were found on variants G6PD*B and G6PD*A (H = 0.61 and 0.68, respectively), indicating a similar age for both alleles. All G6PD*A- alleles share the RFLP-microsatellite haplotype ++(-)+(-)+/195, the same haplotype described in nearly all the *A-alleles from sub-Saharan, Mexican Mestizo, and Portuguese populations, consistent with a single and recent origin of the G202A mutation on this *A haplotype.  相似文献   

13.
Fluorescent dye terminator Sanger sequencing (FTSS), with detection by automated capillary electrophoresis (CE), has long been regarded as the gold standard for variant detection. However, software analysis and base-calling algorithms used to detect mutations were largely optimized for resequencing applications in which different alleles were expected as heterozygous mixtures of 50%. Increasingly, the requirements for variant detection are an analytic sensitivity for minor alleles of <20%, in particular, when assessing the mutational status of heterogeneous tumor samples. Here, we describe a simple modification to the FTSS workflow that improves the limit of detection of cell-line gDNA mixtures from 50%-20% to 5% for G>A transitions and from 50%-5% to 5% for G>C and G>T transversions. In addition, we use two different sample types to compare the limit of detection of sequence variants in codons 12 and 13 of the KRAS gene between Sanger sequencing and other methodologies including shifted termination assay (STA) detection, single-base extension (SBE), pyrosequencing (PS), high- resolution melt (HRM), and real-time PCR (qPCR).  相似文献   

14.
The ABO blood group is the most important blood group system in transfusion medicine and organ transplantation. To date, more than 160 ABO alleles have been identified by molecular investigation. Almost all ABO genotyping studies have been performed in blood donors and families and for investigation of ABO subgroups detected serologically. The aim of the present study was to perform ABO genotyping in patients with leukemia. Blood samples were collected from 108 Brazilian patients with chronic myeloid leukemia (N = 69), chronic lymphoid leukemia (N = 13), acute myeloid leukemia (N = 15), and acute lymphoid leukemia (N = 11). ABO genotyping was carried out using allele specific primer polymerase chain reaction followed by DNA sequencing. ABO*O01 was the most common allele found, followed by ABO*O22 and by ABO*A103. We identified 22 new ABO*variants in the coding region of the ABO gene in 25 individuals with leukemia (23.2%). The majority of ABO variants was detected in O alleles (15/60.0%). In 5 of 51 samples typed as blood group O (9.8%), we found non-deletional ABO*O alleles. Elucidation of the diversity of this gene in leukemia and in other diseases is important for the determination of the effect of changes in an amino acid residue on the specificity and activity of ABO glycosyltransferases and their function. In conclusion, this is the first report of a large number of patients with leukemia genotyped for ABO. The findings of this study indicate that there is a high level of recombinant activity in the ABO gene in leukemia patients, revealing new ABO variants.  相似文献   

15.
16.
Molecular variants of polymorphic drug metabolizing enzymes and drug transporters are attributed to differences in individual's therapeutic response and drug toxicity in different populations. We sought to determine the genotype and allele frequencies of polymorphisms for major phase II drug-metabolizing enzymes (TPMT, UGT1A1) and drug transporter (MDR1) in South Indians. Allelic variants of TPMT (*2,*3A,*3B,*3C & *8), UGT1A1 (TA)6>7 and MDR1 (2677G>T/A & 3435C>T) were evaluated in 450-608 healthy South Indian subjects. Genomic DNA was extracted by phenol-chloroform method and genotype was determined by PCR-RFLP, qRT-PCR, allele specific PCR, direct sequencing and SNaPshot techniques. The frequency distributions of TPMT, UGT1A1 and MDR1 gene polymorphisms were compared between the individual 4 South Indian populations viz., Tamilian, Kannadiga, Andhrite and Keralite. The combined frequency distribution of the South Indian populations together, was also compared with that of other major populations. The allele frequencies of TPMT*3C, UGT1A1 (TA)7, MDR1 2677T, 2677A and 3435T were 1.2, 39.8, 60.3, 3.7, and 61.6% respectively. The other variant alleles such as TPMT*2, *3A, *3B and *8 were not identified in the South Indian population. Sub-population analysis showed that the distribution of UGT1A1 (TA)6>7 and MDR1 allelic variants differed between the four ethnic groups. However, the frequencies of TPMT*3C allele were similar in the four South Indian populations. The distribution of TPMT, UGT1A1 and MDR1 gene polymorphisms of the South Indian population was significantly different from other populations.  相似文献   

17.
Thiopurine methyltransferase (TPMT) is a key component in thiopurine metabolism. There is an insufficient evidence about the distribution of the genotype frequencies of TPMT variants and frequencies of TPMT alleles associated with intermediate and deficient activity in a healthy Slovak population and pediatric patients with inflammatory bowel disease (IBD). TPMT variant alleles (*1,*2, *3A, *3B, and *3C) were determined in 114 children treated for IBD and in 281 healthy volunteers. Mutant alleles were present in 9/114 (7.89%) in the IBD patients and in 23/281 (8.19%) of probands. The distribution of the most frequent variants of TPMT gene was similar in a healthy population and patients with IBD.  相似文献   

18.
APOA5 variants and metabolic syndrome in Caucasians   总被引:2,自引:0,他引:2  
Apolipoprotein A5 (APOA5) gene variants were reported to be associated with two components of metabolic syndrome (MetS): higher TG levels and lower HDL levels. Moreover, a recent Japanese case-control study found variant -1131T>C associated with MetS itself. Thus, our study systematically analyzed the APOA5 gene for association with lipid parameters, any other features of MetS, including waist circumference, glucose-related parameters, blood pressure, uric acid, and MetS itself in Caucasians. Ten polymorphisms were analyzed in a large fasting sample of the population-based Cooperative Health Research in the Region of Augsburg (KORA) survey S4 (n = 1,354; southern Germany) and in a second fasting sample, the Salzburg Atherosclerosis Prevention Program in Subjects at High Individual Risk (SAPHIR) study (n = 1,770; Austria). Minor alleles of variants -1131T>C, -3A>G, c.56C>G, 476G>A, and 1259T>C were significantly associated with higher TG levels in single polymorphism (P < 0.001) and haplotype (P G was associated with higher risk for MetS [odds ratio (95% confidence interval) = 1.43 (1.04, 1.99), P = 0.03 for KORA and 1.48 (1.10, 1.99), P = 0.009 for SAPHIR). Our study confirms the association of the APOA5 locus with TG and HDL levels in humans. Furthermore, the data suggest a different mechanism of APOA5 impact on MetS in Caucasians, as variant c.56C>G (not analyzed in the Japanese study) and not -1131T>C, as in the Japanese subjects, was associated with MetS.  相似文献   

19.
CYP2D6 is a member of cytochrome P450 enzymes that metabolise over 25% of commonly used drugs. Genetic polymorphisms can cause insufficient drug efficacy at usually administered doses or can be the cause of adverse drug reaction. CYP2D6 genotyping can be used to predict CYP2D6 phenotype and thereby explain some abnormalities in drug response and thus optimize pharmacotherapy. The aim of this study was to investigate the frequency of functionally important variant alleles of the CYP2D6 gene throughout the Czech population to predict the prevalence of ultra-rapid and poor metabolizer phenotypes. The DNA of 223 unrelated, healthy volunteers was analysed to detect the presence of CYP2D6*6, *5, *4, *3 and gene duplication. The variant allele frequencies in our population were 0.22%, 3.14%, 22.87%, 1.12% and 3.14% for CYP2D6*6, CYP2D6*5, CYP2D6*4, CYP2D6*3 and CYP2D6*MxN, respectively. Fifteen subjects carried two variant alleles leading to predicted poor type of metabolism, 84 subjects were heterozygous extensive metabolizers (het-EM). The full-text contains detailed comparison with European white populations. The distribution of variant alleles complies with the Hardy-Weinberg equilibrium. The frequencies of functional variant alleles of CYP2D6 in Czech population are in concordance with other Caucasian populations.  相似文献   

20.
Oculocutaneous albinism (OCA) is a genetically heterogeneous disease and is most inherited in an autosomal recessive manner. The characteristic manifestation of OCA is due to disfunction of melanin synthesis. OCA1 is the most severe subtype of OCA and is caused by homozygous or compound heterozygous variants in tyrosinase (TYR) gene, which is the key gene for melanin synthesis. This study aimed to identify the genetic variants of a northern Chinese family with OCA1. Clinical information and peripheral blood samples were collected. PCR amplification and Sanger sequencing were used to detect the entire exons and adjacent flanking sequences of TYR gene. Functional prediction of variants was performed by various bioinformatic analyses, while the pathogenicity classification of variants was evaluated according to ACMG standards and guidelines. A missense variant NM_000372.5:c.107G > C;NP_000363.1:p.C36S was discovered in TYR gene which converted cysteine to serine. Another variant in intron, NM_000372.5:c.1037–7 T > A, also affected the function of TYR gene. We verified the pathogenicity of the intron variant with a pCAS2 mini-gene based splicing assay and found that c.1037–7 T > A led to an insertion of 5 bp upstream from the common acceptor site of exon 3, which caused a frameshift TYR:c.1037–7 T > A:p.G346Efs*11. The results showed that the compound heterozygous variants c.107G > C:p.C36S and c.1037–7 T > A:p.G346Efs*11 of TYR gene were the pathogenic variants for this OCA1 family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号