首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to develop a noble and specific marker for a quantitative polymerase chain reaction (PCR) assay for the species-specific detection of Pseudomonas aeruginosa based on the O-antigen acetylase gene. It is an important challenge to characterize populations of the bacterium P. aeruginosa, an opportunist by virtue of its physiological and genetic adaptability. However, molecular and serological methods currently available for sensitive and specific detection of P. aeruginosa are by no means satisfactory because there have been critical defects in the diagnosis and identification of P. aeruginosa strains in that these assays also detect other Pseudomonas species, or do not obtain amplified products from P. aeruginosa strains. Therefore, a primer set was designed based on the O-antigen acetylase gene of P. aeruginosa PA01 because it has been known that this gene is structurally diverse among species. The specificity of the primer set was evaluated using genomic DNA from six isolates of P. aeruginosa, 18 different species of Pseudomonas, and 23 other reference pathogenic bacteria. The primer set used in the PCR assay amplified a 232-bp amplicon for only six P. aeruginosa strains. The assay was also able to detect at least 1.41?×?103?copies/μl of cloned amplified target DNA using purified DNA, or 2.7?×?102 colony-forming unit per reaction when using calibrated cell suspension. In conclusion, this assay can be applied as a practical diagnostic method for epidemiological research and the sanitary management of water with a low level or latent infection of P. aeruginosa.  相似文献   

2.
Plants of the Brassicales order, including Arabidopsis and many common vegetables, produce toxic isothiocyanates to defend themselves against pathogens. Despite this defence, plant pathogenic microorganisms like Pectobacterium cause large yield losses in fields and during storage of crops. The bacterial gene saxA was previously found to encode isothiocyanate hydrolase that degrades isothiocyanates in vitro. Here we demonstrate in planta that saxA is a virulence factor that can overcome the chemical defence system of Brassicales plants. Analysis of the distribution of saxA genes in Pectobacterium suggests that saxA from three different phylogenetic origins are present within this genus. Deletion of saxA genes representing two of the most common classes from P. odoriferum and P. versatile resulted in significantly reduced virulence on Arabidopsis thaliana and Brassica oleracea. Furthermore, expressing saxA from a plasmid in a potato-specific P. parmentieri strain that does not naturally harbour this gene significantly increased the ability of the strain to macerate Arabidopsis. These findings suggest that a single gene may have a significant role in defining the host range of a plant pathogen.  相似文献   

3.
4.
Pectobacterium species are enterobacterial plant-pathogenic bacteria that cause soft rot disease in diverse plant species. Previous epidemiological studies of Pectobacterium species have suffered from an inability to identify most isolates to the species or subspecies level. We used three previously described DNA-based methods, 16S-23S intergenic transcribed spacer PCR-restriction fragment length polymorphism analysis, multilocus sequence analysis (MLSA), and pulsed-field gel electrophoresis, to examine isolates from diseased stems and tubers and found that MLSA provided the most reliable classification of isolates. We found that strains belonging to at least two Pectobacterium clades were present in each field examined, although representatives of only three of five Pectobacterium clades were isolated. Hypersensitive response and DNA hybridization assays revealed that strains of both Pectobacterium carotovorum and Pectobacterium wasabiae lack a type III secretion system (T3SS). Two of the T3SS-deficient strains assayed lack genes adjacent to the T3SS gene cluster, suggesting that multiple deletions occurred in Pectobacterium strains in this locus, and all strains appear to have only six rRNA operons instead of the seven operons typically found in Pectobacterium strains. The virulence of most of the T3SS-deficient strains was similar to that of T3SS-encoding strains in stems and tubers.The genus Pectobacterium (formerly Erwinia) contains both narrow- and broad-host-range bacterial plant pathogens that cause soft rot, stem rot, wilt, and blackleg in species belonging to over 35% of plant orders (20). Four Pectobacterium species have been described: Pectobacterium atrosepticum, Pectobacterium betavasculorum, Pectobacterium carotovorum, and Pectobacterium wasabiae (9). The recently described organism P. carotovorum subsp. brasiliensis is genetically distinct from previously described Pectobacterium taxa; approximately 82% of its genes are shared with P. atrosepticum, and 84% of its genes are shared with P. carotovorum subsp. carotovorum, while 13% of its genes are found in neither P. atrosepticum nor P. carotovorum subsp. carotovorum (7, 10, 20). To date, only P. carotovorum subsp. carotovorum and P. atrosepticum have been reported to occur in the same field (14, 21). P. carotovorum subsp. carotovorum is found worldwide, and P. atrosepticum is found in cool climates; while P. carotovorum subsp. brasiliensis has been found only in Brazil, Israel, and the United States, it is likely to have a wider distribution (20). Compared to the ecology and genetics of P. carotovorum subsp. carotovorum and P. atrosepticum, little is known about the ecology and genetics of P. betavasculorum, P. wasabiae, or P. carotovorum subsp. brasiliensis.Pectobacterium strains isolated from potato are diverse based on serology, genome structure, and fatty acid composition (5, 35). Previous epidemiological studies of pectolytic Enterobacteriaceae were complicated by the diversity of this group and the lack of tools capable of placing all isolates into clades. For example, Gross et al. (14) were unable to classify over 50% of Pectobacterium isolates obtained from potato, and Pitman et al. (23) were unable to type 13% of their isolates. Novel PCR-based methods potentially capable of classifying all Pectobacterium isolates have been described, but they were developed prior to the recognition of P. carotovorum subsp. brasiliensis (1, 34).The main virulence determinants of Pectobacterium are the pectolytic enzymes secreted through the type II secretion system. Although these enzymes are required for development of symptoms, many other virulence genes have been shown to contribute to Pectobacterium pathogenicity, including the type III secretion system (T3SS) genes, the cfa gene cluster, and the type IV secretion system genes (3, 15, 19). Recent genomic analysis showed that some of these gene clusters, such as the cfa and type IV secretion system cluster genes, as well as genes important for interactions with insects, are present in only some Pectobacterium species (10). Thus, Pectobacterium species appear to use different genetic tools to overcome plant host barriers and to interact with insect vectors.Many gram-negative pathogenic bacteria secrete virulence proteins, known as effectors, through the T3SS into host cells. Once inside host cells, the effectors manipulate host defenses and promote bacterial growth (13). Unlike many other gram-negative plant pathogens, Pectobacterium does not require the T3SS for pathogenicity. Rather, this secretion system makes a small, but measurable, contribution to the early stages of P. carotovorum growth in leaves of the model plant Arabidopsis thaliana (26) and contributes to the virulence of P. atrosepticum on potato (15). Recently, we isolated Pectobacterium strains that lack the T3SS from potatoes and also found P. wasabiae and P. carotovorum subsp. brasiliensis on potatoes in Wisconsin (35). The first goal of this study was to determine if P. wasabiae and P. carotovorum subsp. brasiliensis are common in agricultural fields or if soft rot disease is typically caused by P. carotovorum subsp. carotovorum and P. atrosepticum, which have been the focus of nearly all previous studies of potato soft rot, stem rot, and blackleg disease. Second, since we recently isolated a strain lacking the T3SS (35), we also aimed to determine if strains lacking the T3SS are common in infected potatoes and if these strains tend to be less virulent on potato stems and tubers than strains encoding a T3SS.  相似文献   

5.
6.
This study was based on RAPD fingerprinting for species identification of the Saccharomyces sensu stricto complex. 40 random primers were used for RAPD analysis. The results showed that one of these primers, OPT-18, produced a 974 bp species-specific band, which was only found in the tested S. bayanus. Afterward this specific fragment was isolated from agarose gel and ligated into vector for DNA sequencing. A pair of primer SpeOPT18Sbay-F2 and SpeOPT18Sbay-R2 were designed according to the cloned species-specific sequence, which was employed for PCR with the template DNA of the S. sensu stricto strains, single 779 bp species-specific band was only found in S. bayanus. Therefore, we conclude that our novel species DNA marker could be used to rapidly and accurately identify the species of S. bayanus from S. sensu stricto complex by direct PCR.  相似文献   

7.
A PCR-based assay for identification of six species of Pratylenchus common in California is described. In this assay, five forward species-specific primers were designed from the internal variable portion of the D3 expansion region of the 26S rDNA and were each used with a single, common reverse primer. The optimized species-specific primers produced unique amplicons from their respective target and did not amplify DNA from other Pratylenchus species. With this assay we were able to identify single females to species level. This method obviates the need for subsequent RFLP or sequence analysis of the PCR product and can be used as a rapid diagnostic tool in epidemiological and management studies.  相似文献   

8.
《Journal of Asia》2014,17(4):679-684
Currently, DNA barcodes are often required to be analyzed using old museum specimens when they are the only available specimens for rare or endangered species, or even type series. In this study, using eight universal primers and newly designed 315 species-specific primers, we tried to recover full-length barcode sequences from 45 dried specimens of 36 butterfly species collected between 1959 and 1980 in Korea. The eight universal primers failed entirely in the PCR amplification and sequencing of all the specimens. On the other hand, 284 primer pairs consisting of the 315 primers, targeting fragments of 71–417 bp, amplified various lengths of barcode sequences from all specimens. The fragments were successfully combined to generate the barcode sequences ranging from 444 bp to 658 bp. Notably, of the 284 primer pairs, 26 primer pairs designed for Limenitis camilla, Argynnis niobe, and Brenthis daphne successfully amplified the barcode sequences of congeneric species, Limenitis doerriesi, Argynnis nerippe, and Brenthis ino, suggesting that the species-specific primers can be available for analyzing barcode sequences of closely related species. Our study reveals that the newly designed species-specific primers will be effective in acquiring COI sequences from old butterfly specimens.  相似文献   

9.
【目的】建立一种基于环介导等温扩增(loop-mediated isothermal amplification,LAMP)技术,从植物罹病组织中直接检测3种常见的根结线虫,为根结线虫的监测和防治提供技术支持。【方法】分别采用3种根结线虫的种类特异性引物对所选择的根结线虫的DNA片段进行PCR扩增,扩增产物纯化、回收并测序。根据3种根结线虫的测序结果,针对种类特异区段,采用PrimerExplorerV4软件,分别设计3种根结线虫的LAMP引物。设计的引物组人工合成后,以提取的纯化种群线虫DNA为模板,分别进行引物组的特异性测试,筛选出分别针对3种根结线虫的最佳引物组。【结果】研究设计的3种根结线虫的LAMP特异性引物能够直接从植物根结中检测出南方、花生、爪哇3种常见根结线虫,LAMP快速检测体系为:dNTPS浓度为1 mmol·L~(-1),Mg~(2+)的浓度为5 mmol·L~(-1),不添加甜菜碱,反应时间为45 min。【结论】本实验建立的南方、花生、爪哇根结线虫LAMP快速分子检测方法,具有特异性强、灵敏度高、简单、快速、经济等特征,能够从罹病植物组织中快速准确地检测出南方、花生和爪哇根结线虫,具有极高的实践应用价值。  相似文献   

10.
Due to the high diversity of bacteria in many ecosystems, their slow generation times, specific but mostly unknown nutrient requirements and syntrophic interactions, isolation based approaches in microbial ecology mostly fail to describe microbial community structure. Thus, cultivation independent techniques, which rely on directly extracted nucleic acids from the environment, are a well-used alternative. For example, bacterial automated ribosomal intergenic spacer analysis (B-ARISA) is one of the widely used methods for fingerprinting bacterial communities after PCR-based amplification of selected regions of the operon coding for rRNA genes using community DNA. However, B-ARISA alone does not provide any taxonomic information and the results may be severely biased in relation to the primer set selection. Furthermore, amplified DNA stemming from mitochondrial or chloroplast templates might strongly bias the obtained fingerprints. In this study, we determined the applicability of three different B-ARISA primer sets to the study of bacterial communities. The results from in silico analysis harnessing publicly available sequence databases showed that all three primer sets tested are specific to bacteria but only two primers sets assure high bacterial taxa coverage (1406f/23Sr and ITSF/ITSReub). Considering the study of bacteria in a plant interface, the primer set ITSF/ITSReub was found to amplify (in silico) sequences of some important crop species such as Sorghum bicolor and Zea mays. Bacterial genera and plant species potentially amplified by different primer sets are given. These data were confirmed when DNA extracted from soil and plant samples were analyzed. The presented information could be useful when interpreting existing B-ARISA results and planning B-ARISA experiments, especially when plant DNA can be expected.  相似文献   

11.
Recent increasing number of travelers, immigrants and foreign workers from schistosomiasis endemic area has thus resulted in the importation of schistosomiasis to non-endemic countries. To avoid ova-induced pathogenicity, sensitive and specific diagnostic means at an early stage of infection are therefore crucial. In this study, we developed polymerase chain reaction (PCR) primers specific for human schistosome species. The PCR products were obtained in a species-specific manner (479 bp, Schistosoma mansoni; 365 bp, S. haematobium; 614 bp, S. japonicum; 303 bp, S. mekongi) and were detectable from 0.01 pg of total worm DNA (S. haematobium, S. japonicum, S. mekongi). The primer sets were also available for multiplex use. Although some difficulties were experienced in amplifying the parasite DNA from the infected animals, schistosome DNA could be detected from one day post infection. The PCR method described herein will therefore be beneficial to detect human schistosomiasis, after some improvements in this method.  相似文献   

12.
13.
Accurate identification and differentiation of species of the genus Chironomus based on their morphological features is a difficult problem. Unambiguous species identification by means of molecular markers is possible at any stage of the life cycle. Polymerase chain reaction (PCR) with species-specific primers was used to develop molecular markers (amplicons) for identification of Chironomus piger, Ch. dorsalis, and Ch. pseudothummi. Nucleotide sequences of the internal transcribed spacer region (ITS) of the locus coding for ribosomal RNA were used to design species-specific primers for these target species. Each of the species-specific primer pairs yielded species-specific amplicons (molecular markers) only with the DNA of target species: Ch. piger, Ch. dorsalis, and Ch. pseudothummi. Test PCRs with the DNA of eighteen Chironomus species confirmed the specificity of the primers obtained. The molecular markers produced in PCR with the designed species-specific primers permit reliable identification of Ch. piger, Ch. dorsalis, and Ch. pseudothummi and their differentiation from other species of the genus Chironomus.  相似文献   

14.
Several species in the genus Origanum L. are important among culinary herbs in the world and local markets as raw materials in herb and spices, pharmaceutical and cosmetic industries. Microsatellites also known as simple sequence repeats are routinely being utilized in many plant species. However, the use of microsatellites has still been limited in the genus Origanum due to the scarcity of specific primer pairs. Until recently, there were only 13 microsatellite primer pairs used in two species of Origanum. This study reported 30 primer pairs for development of microsatellite and CAPS-microsatellite markers in 8 different Origanum species. Microsatellite and CAPS-microsatellite markers were utilized to test whether they were useful in species identification and phylogenetic studies in 65 individual samples representing 8 Origanum species. Results indicated that these markers were very useful to clarify taxonomic uncertainties within the genus since some of the markers produced species-specific amplification fashions. Reported DNA markers could be useful in Origanum breeding studies to select desirable chemotypes and tracing adulteration in commercial herbal materials.  相似文献   

15.
The availability of sequenced genomes has generated a need for experimental approaches that allow the simultaneous analysis of large, or even complete, sets of genes. To facilitate such analyses, we have developed GST-PRIME, a software package for retrieving and assembling gene sequences, even from complex genomes, using the NCBI public database, and then designing sets of primer pairs for use in gene amplification. Primers were designed by the program for the direct amplification of gene sequence tags (GSTs) from either genomic DNA or cDNA. Test runs of GST-PRIME on 2000 randomly selected Arabidopsis and Drosophila genes demonstrate that 93 and 88% of resulting GSTs, respectively, fulfilled imposed length criteria. GST-PRIME primer pairs were tested on a set of 1900 Arabidopsis genes coding for chloroplast-targeted proteins: 95% of the primer pairs used in PCRs with genomic DNA generated the correct amplicons. GST-PRIME can thus be reliably used for large-scale or specific amplification of intron-containing genes of multicellular eukaryotes.  相似文献   

16.
17.
Environmental stewardship requires timely, accurate information related to the status of a given ecosystem and the species that occupy it. Recent advances in the application of the highly sensitive real-time quantitative polymerase chain reaction (qPCR) towards identification of constituents within environmental DNA (eDNA) now allow targeted detection of the presence of species-specific biological material within a localized geographic region. However, as with all molecular techniques predicated on the specificity and sensitivity of the PCR assay, careful validation of each eDNA qPCR assay in development must be performed both under controlled laboratory conditions and when challenged with field-derived eDNA samples. Such a step-wise approach forms the basis for incorporation of innovative qPCR design features that strengthen the implementation and interpretation of the eDNA assay. This includes empirical determination that the qPCR assay is refractory to the presence of human DNA and the use of a tripartite assay approach comprised of 1) a primer set targeting plant chloroplast that evaluates the presence of amplifiable DNA from field samples to increase confidence in a negative result, 2) an animal group primer set to increase confidence in the assay result, and 3) a species-specific primer set to assess presence of DNA from the target species. To demonstrate this methodology, we generated eDNA assays specific for the North American bullfrog (Lithobates (Rana) catesbeiana) and the Rocky Mountain tailed frog (Ascaphus montanus) and characterized each with respect to detection sensitivity and specificity with demonstrated performance in a field survey scenario. The qPCR design features presented herein address specific challenges of eDNA assays thereby increasing their interpretative power.  相似文献   

18.
Desert truffles, hypogeous Pezizales (Ascomycota), are difficult to identify due to evolutionary convergence of morphological characters among taxa that share a similar habitat and mode of spore dispersal. Also, during their symbiotic phase, these are barely distinguishable morphologically, and molecular probes are needed for their identification. We have developed a PCR-based method for the identification of Picoa juniperi and Picoa lefebvrei based on internal transcribed spacers of rDNA. Two PCR primers specific for P. lefebvrei (FLE/RLE) and two specific for P. juniperi (FJU/RJU) were designed. A collection of samples from different geographical areas representing diversity of these species were examined for unique regions of internal transcribed spacers 1, 2 and 5.8S gene of rDNA (ITS) compared to other closely related species. Annealing temperatures and extension times were optimized for each set of primers for maximum specificity and efficiency. They proved to be efficient to specifically detect the presence of P. juniperi and P. lefebvrei by PCR and neither set amplified purified DNA from other truffle species as well as some ascomycetous fungi. The partial small subunit of ribosomal DNA genes of P. juniperi were amplified with the genomic DNA extracted from Helianthemum ledifolium var. ledifolium roots by nested polymerase chain reaction (PCR) using the universal fungal primer pair ITS1/ITS4 and specific primer pair FTC/RTC, which was designed based on internal transcribed spacer 1, 2 and 5.8S gene of rDNA sequences of P juniperi. The nested-PCR was sensitive enough to re-amplify the direct-PCR product, resulting in a DNA fragment of 426 bp. The efficacy of nested-PCR showed that it could re-amplify the direct-PCR product and detect 200 fg genomic DNA.  相似文献   

19.
《Journal of Asia》2022,25(1):101848
The Philippine coconut production has been greatly affected by the recent devastating infestation of Aspidiotus spp. However, identification of the outbreak species, Aspidotus rigidus, has been a challenge using morphological approaches. Molecular identification via PCR sequencing of insect barcoding genes has been implemented, but the overall process is time-consuming and costly. Thus, we developed and optimized a species-specific PCR-based molecular marker for rapid, efficient and cost-effective molecular identification of A. rigidus. The molecular marker was designed based on the sequences of the partial 28S ribosomal RNA gene from species of Aspidiotus that feed on coconut in the Philippines, A. rigidus, A. destructor and A. excisus. Multiple alignment of nucleotide sequences revealed a conserved 16-bp insertion-deletion (InDel) site common to all A. rigidus specimens identified from which the A. rigidus-specific oligonucleotide (RIG1) primer targeting an approximately 570 bp fragment size was designed. Results showed that the species-specific DNA marker technology consistently delineated laboratory-reared and field-collected A. rigidus samples from A. destructor and A. excisus. The protocol offers a rapid and reliable method for the early detection of A. rigidus infestation in high-risk areas planted with coconut in the country.  相似文献   

20.
The iap gene encodes the protein p60, which is common to all Listeria species. A previous comparison of the DNA sequences indicated conserved and species-specific gene portions. Based on these comparisons, a combination consisting of only five different primers that allows the specific detection and differentiation of Listeria species with a single multiplex PCR and subsequent gel analysis was selected. One primer was derived from the conserved 3′ end and is specific for all Listeria species; the other four primers are specific for Listeria monocytogenes, L. innocua, L. grayi, or the three grouped species L. ivanovii, L. seeligeri, and L. welshimeri, respectively. The PCR method, which also enables the simultaneous detection of L. monocytogenes and L. innocua, was evaluated against conventional biotyping with 200 food hygiene-relevant Listeria strains. The results indicated the superiority of this technique. Thus, this novel type of multiplex PCR may be useful for rapid Listeria species confirmation and for identification of Listeria species for strains isolated from different sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号