首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioremediation methods that precipitate contaminants in situ as solid (mineral) phases can provide cost-effective options for removing dissolved metals in contaminated groundwater. The current field-scale experiments demonstrate that indigenous bacteria can be stimulated to remove metals by injection of electron-donating substrates and nutrients into a contaminated aquifer. Groundwater at the investigation site is aerobic and contains high levels of lead, cadmium, zinc, copper, and sulfuric acid (pH = 3.1) derived from a car-battery recycling plant. During the experiments, lead, cadmium, zinc, and copper were almost completely removed by precipitation of solid sulfide phases, as pH increased from 3 to ∼ 5 and Eh dropped from +400 mV to -150 mV. X-ray and transmission electron microscopy (TEM) analyses of filtered material from the treated groundwater indicated the presence of newly formed nanocrystalline metal sulfides. Genetic sequencing indicated that the principal species of sulfate-reducing bacteria involved in the bioremediation process was Desulfosporosinus orientis. Geochemical modeling shows that oxidation of added substrates and subsequent bacterial sulfate reduction produced desired geochemical conditions (i.e., decreasing Eh and increasing pH) for the precipitation and sorption of metal sulfides. Geophysical survey results suggest that bioremediation lowers electrical conductance of groundwater and possibly increases the magnetic susceptibility of porous media. This study demonstrates that integrated geochemical, geophysical, and microbiological analyses, combined with theoretical modeling, can successfully track and predict the progress of subsurface bioremediation.  相似文献   

2.
Saunders RJ  Paul NA  Hu Y  de Nys R 《PloS one》2012,7(5):e36470
Biosorption of heavy metals using dried algal biomass has been extensively described but rarely implemented. We contend this is because available algal biomass is a valuable product with a ready market. Therefore, we considered an alternative and practical approach to algal bioremediation in which algae were cultured directly in the waste water stream. We cultured three species of algae with and without nutrient addition in water that was contaminated with heavy metals from an Ash Dam associated with coal-fired power generation and tested metal uptake and bioremediation potential. All species achieved high concentrations of heavy metals (to 8% dry mass). Two key elements, V and As, reached concentrations in the biomass of 1543 mg.kg(-1) DW and 137 mg.kg(-1) DW. Growth rates were reduced by more than half in neat Ash Dam water than when nutrients were supplied in excess. Growth rate and bioconcentration were positively correlated for most elements, but some elements (e.g. Cd, Zn) were concentrated more when growth rates were lower, indicating the potential to tailor bioremediation depending on the pollutant. The cosmopolitan nature of the macroalgae studied, and their ability to grow and concentrate a suite of heavy metals from industrial wastes, highlights a clear benefit in the practical application of waste water bioremediation.  相似文献   

3.
High levels of heavy metals like copper ions in many industrial based effluents lead to serious environmental and health problems. Biosorption is a potential environmental biotechnology approach for biotreatment of aquatic sites polluted with heavy metal ions. Seaweeds have received great attention for their high bioremediation potential in recent years. However, the co-application of marine macroalgae for removal of heavy metals from wastewater is very limited. Thus, for the first time in literature, a coastal seaweed community composed of Chaetomorpha sp., Polysiphonia sp., Ulva sp. and Cystoseira sp. species was applied to remove copper ions from synthetic aqueous medium in this study. The biosorption experiments in batch mode were conducted to examine the effects of operating variables including pH, biosorbent amount, metal ion concentration and contact time on the biosorption process. The biosorption behavior of biosorbent was described by various equilibrium, kinetic and thermodynamic models. The biosorption of copper ions was strongly influenced by the operating parameters. The results indicated that the equilibrium data of biosorption were best modeled by Sips isotherm model. The values of mean free energy of biosorption computed from Dubinin-Radushkevich isotherm model and the standard Gibbs free energy change indicated a feasible, spontaneous and physical biotreatment system. The pseudo-second-order rate equation successfully defined the kinetic behavior of copper biosorption. The pore diffusion also played role in the control of biosorption process. The maximum copper uptake capacity of biosorbent was found to be greater than those of many other biosorbents. The obtained results revealed that this novel biosorbent could be a promising material for copper ion bioremediation implementations.  相似文献   

4.
Ecosystem services provided by waterbirds   总被引:1,自引:0,他引:1  
Ecosystem services are ecosystem processes that directly or indirectly benefit human well‐being. There has been much recent literature identifying different services and the communities and species that provide them. This is a vital first step towards management and maintenance of these services. In this review, we specifically address the waterbirds, which play key functional roles in many aquatic ecosystems, including as predators, herbivores and vectors of seeds, invertebrates and nutrients, although these roles have often been overlooked. Waterbirds can maintain the diversity of other organisms, control pests, be effective bioindicators of ecological conditions, and act as sentinels of potential disease outbreaks. They also provide important provisioning (meat, feathers, eggs, etc.) and cultural services to both indigenous and westernized societies. We identify key gaps in the understanding of ecosystem services provided by waterbirds and areas for future research required to clarify their functional role in ecosystems and the services they provide. We consider how the economic value of these services could be calculated, giving some examples. Such valuation will provide powerful arguments for waterbird conservation.  相似文献   

5.
Over the past decades, comparative physiology and biochemistry approaches have played a significant role in understanding the complexity of metal bioaccumulation in aquatic animals. Such a comparative approach is now further aided by the biokinetic modeling approach which can be used to predict the rates and routes of metal bioaccumulation and assist in the interpretation of accumulated body metal concentrations in aquatic animals. In this review, we illustrate a few examples of using the combined comparative and biokinetic modeling approaches to further our understanding of metal accumulation in aquatic animals. We highlight recent studies on the different accumulation patterns of metals in different species of invertebrates and fish, and between various aquatic systems (freshwater and marine). Comparative metal biokinetics can explain the differences in metal bioaccumulation among bivalves, although it is still difficult to explain the evolutionary basis for the different accumulated metal body concentrations (e.g., why some species have high metal concentrations). Both physiological/biochemical responses and metal geochemistry are responsible for the differences in metal concentrations observed in different populations of aquatic species, or between freshwater and marine species. A comparative approach is especially important for metal biology research, due to the very complicated and potentially variable physiological handling of metals during their accumulation, sequestration, distribution and elimination in different aquatic species or between different aquatic systems.  相似文献   

6.
While large herbivores can have strong impacts on terrestrial ecosystems, much less is known of their role in aquatic systems. We reviewed the literature to determine: 1) which large herbivores (> 10 kg) have a (semi‐)aquatic lifestyle and are important consumers of submerged vascular plants, 2) their impact on submerged plant abundance and species composition, and 3) their ecosystem functions. We grouped herbivores according to diet, habitat selection and movement ecology: 1) Fully aquatic species, either resident or migratory (manatees, dugongs, turtles), 2) Semi‐aquatic species that live both in water and on land, either resident or migratory (swans), 3) Resident semi‐aquatic species that live in water and forage mainly on land (hippopotamuses, beavers, capybara), 4) Resident terrestrial species with relatively large home ranges that frequent aquatic habitats (cervids, water buffalo, lowland tapir). Fully aquatic species and swans have the strongest impact on submerged plant abundance and species composition. They may maintain grazing lawns. Because they sometimes target belowground parts, their activity can result in local collapse of plant beds. Semi‐aquatic species and turtles serve as important aquatic–terrestrial linkages, by transporting nutrients across ecosystem boundaries. Hippopotamuses and beavers are important geomorphological engineers, capable of altering the land and hydrology at landscape scales. Migratory species and terrestrial species with large home ranges are potentially important dispersal vectors of plant propagules and nutrients. Clearly, large aquatic herbivores have strong impacts on associated species and can be critical ecosystem engineers of aquatic systems, with the ability to modify direct and indirect functional pathways in ecosystems. While global populations of large aquatic herbivores are declining, some show remarkable local recoveries with dramatic consequences for the systems they inhabit. A better understanding of these functional roles will help set priorities for the effective management of large aquatic herbivores along with the plant habitats they rely on.  相似文献   

7.
A comprehensive overview of elements in bioremediation   总被引:3,自引:0,他引:3  
Sustainable development requires the development and promotion of environmental management and a constant search for green technologies to treat a wide range of aquatic and terrestrial habitats contaminated by increasing anthropogenic activities. Bioremediation is an increasingly popular alternative to conventional methods for treating waste compounds and media with the possibility to degrade contaminants using natural microbial activity mediated by different consortia of microbial strains. Many studies about bioremediation have been reported and the scientific literature has revealed the progressive emergence of various bioremediation techniques. In this review, we discuss the various in situ and ex situ bioremediation techniques and elaborate on the anaerobic digestion technology, phytoremediation, hyperaccumulation, composting and biosorption for their effectiveness in the biotreatment, stabilization and eventually overall remediation of contaminated strata and environments. The review ends with a note on the recent advances genetic engineering and nanotechnology have had in improving bioremediation. Case studies have also been extensively revisited to support the discussions on biosorption of heavy metals, gene probes used in molecular diagnostics, bioremediation studies of contaminants in vadose soils, bioremediation of oil contaminated soils, bioremediation of contaminants from mining sites, air sparging, slurry phase bioremediation, phytoremediation studies for pollutants and heavy metal hyperaccumulators, and vermicomposting.  相似文献   

8.
The biotic ligand model (BLM) and a cellular molecular mechanism approach represent two approaches to the correlation of metal speciation with observed toxicity to aquatic organisms. The two approaches are examined in some detail with particular reference to class B, or soft metals. Kinetic arguments are presented to suggest situations that can arise where the BLM criterion of equilibrium between all metal species in the bulk solution and the biotic ligand may not be satisfied and what might the consequences be to BLM predictive capability. Molecular mechanisms of toxicity are discussed in terms of how a class B metal might enter a cell, how it is distributed in a cell, and how the cell might respond to the unwanted metal. Specific examples are given for copper as an organism trace essential metal, which is toxic in excess, and for silver, a non-essential metal. As class B metals all bind strongly to sulfur, regulation of these metals requires that all S(II-) species be accounted for in aquatic systems, even under oxic conditions.  相似文献   

9.
ABSTRACT The metal bioadsorption potential of shell dust of the freshwater snail Melanoides tuberculata (MTSD) was evaluated under laboratory conditions using cadmium as a model metal. As bioadsorbent, MTSD exhibited a biosorption capacity of 27.03 mg g?1 at pH 6, indicating potential to remove cadmium from aqueous solution. The adsorption data fit more to the Langmuir (R2 = 0.998) equation than the Freundlich (R2 = 0.761) equation at equilibrium condition. The kinetics of biosorption followed the pseudo-second-order model (R2 = 0.999) better than the Lagergren model (R2 = 0.676), as was evident from the regression analysis. The presence of calcium ions appears to have facilitated ion exchange with cadmium along with the binding of different functional groups, as revealed through Fourier transform infrared (FT-IR) analysis. It is apparent from these observations that MTSD can act as low-cost and efficient bioadsorbent for cadmium bioremediation from aquatic habitats. Use of the shells of M. tuberculata for metal biosorption will promote the utility of a waste material of biological origin for bioremediation of heavy metals such as cadmium.  相似文献   

10.
Enhanced bioremediation of phenanthrene-contaminated soil with Mycobacterium pallens was conducted. Kaolinite was used in the tests as a soil matrix and was artificially contaminated with phenanthrene at a concentration of 2 mg phenanthrene per gram dry soil. Mycobacterim pallens at concentration of 108 colony-forming units (CFU) per milliliter was used as a potential microorganism to degrade phenanthrene. Aspects of the study included evaluating efficacy of using Mycobacterium pallens for degrading phenanthrene, electrokinetics for delivering nutrients and microorganisms to contaminated soil, and solar panels for generating power for electrokinetic bioremediation. A novel anode-cathode configuration, in which the anode and cathode are placed in the same compartment, was implemented to control/minimize changes in pH during electrokinetic bioremediation. The nutrients (NO3?), electrical current, temperature, Mycobacterium pallens (CFU), and phenatherene concentration were evaluated. The results showed that solar panels generated sufficient power for electrokinetic bioremediation. The highest current obtained was generated when bacteria and nutrients were added to the soil. This was associated with the highest phenanthrene removal from the soil (50% of the initial concentration). Additionally, we determined that the novel anode-cathode configuration in the electrokinetic bioremediation cell was successful in delivering the bacteria and nutrients to the contaminated soil and in maintaining a relatively neutral pH around the electrode compartments, which improved the remediation. Overall, this study showed that the use of solar power with electrokinetic bioremediation can provide a cost-effective approach to reduce and remove hydrocarbon contaminations in soil.  相似文献   

11.
为何海洋中的昆虫种类如此稀少?   总被引:1,自引:0,他引:1  
昆虫种类丰富,占所有动物总数的23。已知的水生昆虫约30000种,而在海洋生活的昆虫仅为250~300种。根据在海洋中的栖息地不同,海洋昆虫一般可分为远洋昆虫、潮池昆虫和海滨昆虫。该文介绍了目前科学界对于海洋昆虫种类为何如此稀少的主流观点与假说,包括海水高渗管压、低氧、营养物质缺乏、昆虫与显花植物间的协同进化以及与甲壳类动物的生态位竞争等。  相似文献   

12.
Siderophores in environmental research: roles and applications   总被引:1,自引:0,他引:1  
Siderophores are organic compounds with low molecular masses that are produced by microorganisms and plants growing under low iron conditions. The primary function of these compounds is to chelate the ferric iron [Fe(III)] from different terrestrial and aquatic habitats and thereby make it available for microbial and plant cells. Siderophores have received much attention in recent years because of their potential roles and applications in various areas of environmental research. Their significance in these applications is because siderophores have the ability to bind a variety of metals in addition to iron, and they have a wide range of chemical structures and specific properties. For instance, siderophores function as biocontrols, biosensors, and bioremediation and chelation agents, in addition to their important role in weathering soil minerals and enhancing plant growth. The aim of this literature review is to outline and discuss the important roles and functions of siderophores in different environmental habitats and emphasize the significant roles that these small organic molecules could play in applied environmental processes.  相似文献   

13.
Aquatic Utricularia species usually grow in standing, nutrient-poor humic waters. They take up all necessary nutrients either directly from the water by rootless shoots or from animal prey by traps. The traps are hollow bladders, 1–6 mm long with elastic walls and have a mobile trap door. The inner part of the trap is densely lined with quadrifid and bifid glands and these are involved in the secretion of digestive enzymes, resorption of nutrients and pumping out the water. The traps capture small aquatic animals but they also host a community of microorganisms considered as commensals. How do these perfect traps function, kill and digest their prey? How do they provide ATP energy for their demanding physiological functions? What are the nature of the interactions between the traps and the mutualistic microorganisms living inside as commensals? In this mini review, all of these questions are considered from an ecophysiologist''s point of view, based on the most recent literature data and unpublished results. A new concept on the role of the commensal community for the plants is presented.Key words: aquatic carnivorous plants, bladderwort, bladders, firing, resetting, enzyme secretion, water pumping, microbial commensals  相似文献   

14.
Marine environments accommodating diverse assortments of life constitute a great pool of differentiated natural resources. The cumulative need to remedy unpropitious effects of anthropogenic activities on estuaries and coastal marine ecosystems has propelled the development of effective bioremediation strategies. Marine bacteria producing biosurfactants are promising agents for bio-remediating oil pollution in marine environments, making them prospective candidates for enhancing oil recovery. Molecular omics technologies are considered an emerging field of research in ecological and diversity assessment owing to their utility in environmental surveillance and bioremediation of polluted sites. A thorough literature review was undertaken to understand the applicability of different omic techniques used for bioremediation assessment using marine bacteria. This review further establishes that for bioremediation of environmental pollutants (i.e. heavy metals, hydrocarbons, xenobiotic and numerous recalcitrant compounds), organisms isolated from marine environments can be better used for their removal. The literature survey shows that omics approaches can provide exemplary knowledge about microbial communities and their role in the bioremediation of environmental pollutants. This review centres on applications of marine bacteria in enhanced bioremediation, using the omics approaches that can be a vital biological contrivance in environmental monitoring to tackle environmental degradation. The paper aims to identify the gaps in investigations involving marine bacteria to help researchers, ecologists and decision-makers to develop a holistic understanding regarding their utility in bioremediation assessment.  相似文献   

15.
Milk is one of the most important nutrients for humans during lifetime. Farm animal milk in all its products like cheese and other fermentation and transformation products is a widespread nutrient for the entire life of humans. Proteins are key molecules of the milk functional component repertoire and their investigation represents a major challenge. Proteins in milk, such as caseins, contribute to the formation of micelles that are different from species to species in dimension and casein-type composition; they are an integral part of the MFGM (Milk Fat Globule Membrane) that has being exhaustively studied in recent years. Milk proteins can act as enzymes or have an antimicrobial activity; they could act as hormones and, last but not least, they have a latent physiological activity encoded in their primary structure that turns active when the protein is cleaved by fermentation or digestion processes. In this review we report the last progress in proteomics, peptidomics and bioinformatics. These new approaches allow us to better characterize the milk proteome of farm animal species, to highlight specific PTMs, the peptidomic profile and even to predict the potential nutraceutical properties of the analyzed proteins.  相似文献   

16.
Duckweeds as crop plants Members of the plant family Lemnaceae (duckweeds) are not only interesting because they represent the smallest flowering plants; they possess also the fastest rates of producing biomass. As aquatic plants, duckweed production is not in competition with other agricultural crops that require fertile land while the cultivation of duckweeds does not contribute to further eutrophication of surface water. Instead, they can be cultivated on municipal or agricultural waste water and remove the nutrients during their propagation and growth. Duckweeds can thus be used for cleaning of waste water and the resulting biomass can be valuable starting material for animal feeds and the production of biofuels. Research focusing on these goals has begun to transfer from research laboratories to pilot plants in different parts of the world, e.g. in New Jersey and North Carolina, USA; Chengdu, P. R. China; and Armidale, Australia.  相似文献   

17.
在实验室内利用人工模拟方法,选择水蕹菜(Ipomoea aquatica)、泥鳅(Misgurus anguillicaudatus)、沼泽红假单胞菌(Rhodopseudomonas palustris)为工程物种,构建一套水生经济植物-水生动物-微生物复合生物修复系统进行污水修复,研究该系统中动植物生物量及水质指标的变化。结果表明,在23d的实验周期中,水体铵态氮(NH4+-N)下降96.5%,硝态氮(NO3--N)下降82.2%,总磷(TP)下降53.2%,化学需氧量(CODMn)下降24.5%。水蕹菜平均增重31.2%,泥鳅平均增重6.1%。这种复合的生物修复模式具有较好的经济效益与环境效益。  相似文献   

18.
SUMMARY 1. Historical and recent data on the occurrence of macrophytes in twenty-eight lentic soft waters in The Netherlands are summarized. These waters were, and a few still are, characterized by a submerged vegetation of isoetid plants. Changes in the species composition of macrophytes are visualized by means of multivariate analysis and by shifts in species-spectra.
2. Ordination of the available data shows that the pH, alkalinity, acidity, contents of heavy metals, dissolved organic matter and some important salts and nutrients in water and interstitial water are strongly related to the recent distribution of aquatic plants in waters, which were originally of low alkalinity. In addition, the available inorganic carbon and the redox potential in the sediment are also important environmental parameters in explaining differences in aquatic vegetation.
3. The recorded changes in the macrophyte species composition can be attributed to the effects of acidification and eutrophication. The most important, overall change is a reduction of the number of species.
4. Hydrology proves to be important in controlling the sensitivity of a body of water for acidifying deposition.  相似文献   

19.
Managing water quality with aquatic macrophytes   总被引:2,自引:0,他引:2  
The principal sources of water for human use are lakes, rivers, soil moisture and relatively shallow groundwater basins. Water quality in lakes and reservoirs is subjected to the natural degradation, processes of eutrophication and the impacts of human activities. Water quality problems can often be as severe as those of water availability but less attention has been paid to them, particularly in developing countries. Currently additional sustainable ways to mitigate the degradation of water quality are being researched all over the world. Phytoremediation is one of the serious efforts towards the sustainability. Most of the aquatic macrophytes are naturally occurring and well adapted for their surroundings. Aquatic macrophytes have the capability to remove excessive nutrient load from the water that otherwise cause eutrophication of the water body. Aquatic macrophytes absorb nutrient mineral ions from water column and influence metal retention indirectly by acting as traps for particulate matter, by slowing the water current and favoring sedimentation of suspended particles. Aquatic macrophytes also reduce sediment resuspension by offering wind protection. The use of aquatic macrophyte for treatment of wastewater to mitigate variety of pollution level is one of the most researched issues all over the world. Aquatic plant species are very specific for the uptake of nutrients. Owing to this specificity, the selection of the aquatic plant species is one of the skilled tasks prior to the design of a water treatment facility. An effort has been made in this review to cover the most researched aquatic flora for mitigation purposes and their possible use in a mesocosm as the selection of an appropriate aquatic plant specie reduce the time and cost of the treatment processes.  相似文献   

20.
High levels of nutrients in fish ponds by fish farming may cause significant eutrophication leading to a loss in species richness and a decrease of cover of aquatic plants to phytoplankton dominance. This shift can be represented by a tipping point where a significant change in the state of the ecosystem is observed such as a change from high to low aquatic plants species richness and cover. A total of 100 fish ponds were studied during five years in the Dombes region, France, to determine tipping points in aquatic plant richness and cover using chlorophyll α (CHL), water transparency, Total N (TN) and Total P (TP) gradients with two statistical methods. The relationships between tipping points, nutrient loads and yearly variations in weather conditions were also evaluated. Looking at the five years data, tipping points were observed in aquatic plant richness at 6 and 60 μg/L for CHL, and at 3.90 mg/L for TN concentration; as well as at 70 cm for water transparency, but no tipping point was found with TP. For aquatic plant cover, tipping points were observed at 11 μg/L for CHL, 2.42 mg/L for TN, 0.05 mg/L for TP, and at 62 cm for water transparency. These tipping points showed a significant decrease of aquatic plant species richness and cover, linked to the nutrient concentrations which drive the competition between the primary producers phytoplankton and aquatic plants. However, tipping points could vary significantly between years. The inter-annual variability may be due to an early occurrence of phytoplankton blooms in some ponds in a year preventing the establishment of aquatic plants, and thus influencing the value of tipping points. Weather conditions influence the competition between primary producers by impacting chlorophyll α and nutrients concentrations. When weather conditions supported increased nutrient concentrations, the development of phytoplankton and aquatic plants was facilitated and tipping points in aquatic plant richness and cover occurred with relatively high values. Thus, a significant decrease of plant cover and richness occurred at higher level of nutrients compared to the other years. In these cases, aquatic plants dominated over phytoplankton for the spring period, and also often during summer. In conclusion, tipping points observed are mainly linked to the competition between aquatic plants and phytoplankton. In shallow and eutrophic systems like fish ponds where nutrients are not a limiting resource, weather conditions act temporarily during spring as the main regulator of this competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号