首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Joulean temperature jump from 4-7 degrees to 20-25 degrees completed in 0.2 ms was applied to suspended in the air chemically skinned Ca-activated (pCa = 5.5-6) skeletal muscle fibres of the frog 2 ms after stepwise length changes (duration 0.3 ms, amplitudes --6. +3 nm per half sarcomere). The temperature jump induced a biphasic rise of tension, as was described earlier. Neither the time constant of the 2nd slow phase, nor maximum tension after the temperature jump were dependent on the length step amplitude. The amplitude and time constant of the 1st phase (1.2-0.28 ms) decreased after the fibre release. It shows that the 1st phase of the tension rise induced by the temperature jump is due to conformation in cross-bridges attached to thin filaments.  相似文献   

2.
Thermoelastic properties of cross-bridges were measured by application of small sinusoidal length perfurbations and submillisecond Joulean temperature jump to chemically skinned muscle fibre removed from rigor solution. The thermal expansion coefficient of fibres was 4.2 +/- 1.0 X 10(-5) K-1. We have observed neither rubber-like stiffness increase, nor tension increase and stiffness decrease (which are expected if alpha-coil melting occurs) after temperature jump.  相似文献   

3.
The kinetics of the thermotropic lamellar gel (L beta')/lamellar liquid crystal (L alpha) and L alpha/inverted hexagonal (HII) phase transitions in fully hydrated dihexadecylphosphatidylethanolamine (DHPE) have been studied. Measurements were made by using time-resolved x-ray diffraction (TRXRD) to monitor progress of the transitions. In these studies microwave energy at 2.5 GHz was used to increase the sample temperature rapidly and uniformly through the phase transition regions. The L beta'/L alpha and L alpha/HII transitions of DHPE were examined under active microwave heating and passive cooling. The transitions were found to be repeatable and reversible, and to have an upper bound on the time required to complete the transition of less than 3 s. Regardless of the direction of the transition, both phase transitions appeared to be two-state with no accumulation of intermediates to within the sensitivity limits of the TRXRD method. The rate and amplitude of the temperature jump can be controlled by regulating microwave radiation input power. A temperature jump rate of 29 degrees C/s was obtained at a final microwave power setting of 120 W. Comparisons between previously reported fluid flow (Caffrey, M. 1985. Biochemistry. 24:4826-4844) and microwave heating studies suggest that the determination of limiting transit times will require faster heating.  相似文献   

4.
O N Bershitskaia 《Biofizika》1991,36(4):652-654
Experiments were performed on rat skinned trabecular muscles dissected from the right ventricles. They were activated (pCa = 5.9) at 10 C, 2.3 nm sarcomere length. The temperature jump induced the biexponential tension rise. The rate constant of the fast tension rise (k1) was 3-4.5 ms and that of the slow tension rise (k2) was about 15 ms. These values were slower (3 times) comparing with those of a single skeletal fibre. The discrepancy can be explained by different kinetic properties of heart and skeletal myosin or presents a well developed connection tissue (series elastic element) in the heart muscle.  相似文献   

5.
Abstrac Transient processes after off-axis ECR heating in the T-10 tokamak is switched on or off are analyzed. It is found that the transient processes have the following two characteristic features. First, transport coefficients undergo a jump, thereby driving the evolution of the initial steady-state distributions of the plasma parameters. Second, the evolution of the original configuration is accompanied by ECR heating of the plasma. A mathematical model is proposed that takes into account the jump in transport coefficients over the entire cross section of the plasma column and adequately describes this transient process. An analysis of the experimental data confirms the validity of the model equations formulated here. It is shown that, without invoking the jump in transport coefficients after off-axis ECR heating is switched on or off, it is impossible to describe the experimentally observed opposite-sign changes in the electron temperature at the center of the plasma column and in the ECR heating region. __________ Translated from Fizika Plazmy, Vol. 28, No. 5, 2002, pp. 403–418. Original Russian Text Copyright ? 2002 by Andreev, Dnestrovskij, Razumova, Sushkov.  相似文献   

6.
Temperature dependence of heat capacity of native and denatured collagen samples with different content of bound water (6 divided by 27%) has been studied by DSC method in the temperature range from -50 to 150 degrees C. Heat capacity of denatured samples demonstrates a jump of 0.50 J/g.grad. at temperature Tg, which depends on humidity of the sample. It has been shown that Tg value also depends on the heating rate and thermal history. Annealing at the temperature below Tg produces an additional maximum in the temperature dependence on heat capacity. The magnitude of this maximum, as well as the Tg value increase with the annealing time. It is concluded that these properties of heat capacity reflect glass transition in the denatured collagen.  相似文献   

7.
Laser temperature-jump apparatus for the study of force changes in fibers   总被引:4,自引:0,他引:4  
An iodine photodissociation laser generates the 1.315-micron infrared light used to heat the fiber and solvent. Heating of the cell contents by the direct absorption of laser energy is complete within the 100-microseconds rise time of the force transducer. A 5 degrees C temperature jump was usual. Interference with the force record by shock waves, electromagnetic disturbances, and uneven heating of fiber and solvent is minimal and close to the normal background noise of the transducer output. The postjump temperature of the cell remains static for a minimum of 400 ms before evidence of cooling is seen. The temperature of the cell could be changed rapidly. The cuvette contents could therefore be rapidly raised to, and lowered from, elevated prejump temperatures. As a result, sensitive biological samples are subjected to potentially denaturing conditions for the minimum length of time required for the temperature jump. Experiments on collagen and muscle fibers in which normal and rubber-like thermoelastic responses are kinetically resolved from each other are presented. The instrument offers substantial improvements in performance over other currently available designs.  相似文献   

8.
Mechanically skinned single fibres of the semitendinosus muscles of Rana esculenta were investigated at ca. 4 degrees C. The fibres were activated by a Ca2+ jump technique, which allowed the development of a steady isometric tension within several seconds of entering a calcium rich solution at 4 degrees C. Sequences of length changes of different duration and amplitude were applied to the fibre. It could be demonstrated that the fibre behaved as a Hookean spring in the case of small amplitude length changes (up to 0.5% L0, ramp duration 0.5 ms) and that a sequence of length changes induced reversible changes in fibre state. In contrast, large stretches (greater than 1% L0) induced a muscle "give" if the stretch were not immediately preceded by a release. The data was interpreted on the basis of a strain induced detachment of cross bridges in combination with a rapid reattachment of presumably the same cross bridges in a discharged position. The rates of strain induced detachment and reattachment depended on the stretch amplitude. At amplitudes exceeding 2% L0 the rates were estimated to be at least several thousands per second.  相似文献   

9.
A laser temperature jump apparatus is constructed where the T-jump is achieved by means of the direct absorption of continuous laser radiation of low intensity by a solid sample. The final temperature in the irradiated volume element is reached when the absorbed radiation power equals the dissipation of heat by heat conduction. The time range from the beginning of irradiation to the stationary state depends on the geometry of the irradiated volume element and is less than 10 ms. The heating laser beam is simultaneously used to detect the relaxation to the new chemical equilibrium in the sample. Relaxation processes with relaxation rates between 10(2) s-1 and less than 10(-3) s-1 on samples with volumes less than 10(-3) mm3 may be investigated using this T-jump method. One application of this method is the determination of reaction rates of ligand reactions in hemoglobin single crystals. Rate constants obtained for the reaction of thiocyanate with crystallized horse methemoglobin are presented.  相似文献   

10.
Joulean temperature jump from 4--7 degrees to 10--25 degrees C completed in 0.2 ms induced biphasic rise of tension in suspended in the air segments of chemically skinned Ca-activated (pCa = 5.5 divided by 6) muscle fibres of the frog. Amplitudes of the 1st and 2nd phases grew up to 30--40% and 60--70% of the initial tension correspondingly when the amplitude of temperature jump increased to 17--21 degrees C. The time constant of the 1st phase (1.3--0.5 ms) decreased with temperature (Q10 = 1.8). The time constant of the 2nd phase was about 10 ms.  相似文献   

11.
New thermothickening copolymers were synthesized by grafting responsive poly(ethylene oxide-co-propylene oxide) [PEPO] onto three different polysaccharide backbones: carboxymethylcellulose [CMC], alginate [ALG], and carboxylated dextran [DEX]. The coupling reaction between carboxylic groups of biopolymers and the terminal amine of PEPO was activated at low temperature ( T < 10 degrees C) in water by using carbodiimide and N-hydroxysuccinimide. In these conditions it was shown that the formation of amide bonds strongly depends on the concentration of reactive groups, which is limited by the viscosity of the polymer sample. While a full conversion was obtained for the low molecular weight dextran, the efficiency of grafting remains low (between 30 to 40%) for CMC and alginate, which give a solution of high viscosity even at low concentration. When studied in the semidilute regime, all the copolymer solutions clearly exhibit thermothickening behavior with a large and reversible increase of viscosity upon heating. The association temperature and the gelation threshold were shown to depend on polymer concentration as it is expected from the phase diagram of PEPO precursor. Similarly, the influence of added salt on PEPO solubility in water has been used to control the self-assembling behavior of copolymer formulations. The relative comparison between the three copolymers reveals that the amplitude of the viscosity jump induced by heating mainly depends on the proportion of responsive material inside the macromolecular architecture rather than the dimensions of the main chain. The high increase of viscosity, which can reach several orders of magnitude between 20 degrees C and body temperature, clearly demonstrates the potentiality of these copolymers in biomedical applications like injectable gels for tissue engineering.  相似文献   

12.
Escherichia coli OmpA can be solubilized by sodium dodecyl sulfate (SDS) in its folded structure, and it unfolds upon heating. Although the heat-denatured OmpA remains unfolded after lowering the temperature, the addition of a non-ionic surfactant, octyl glucoside results in refolding of unfolded OmpA. In the present study, we investigated the refolding kinetics of OmpA in a mixed surfactant system of SDS and octyl glucoside using far- and near-UV circular dichroism and fluorescence spectroscopies. We found four kinetic phases in the refolding reaction, which logarithmically depended on the weight fraction of octyl glucoside. We also examined the unfolding kinetics of OmpA upon heating in the presence of SDS by temperature jump experiments. A comparison of the rate constants for the refolding and the unfolding reactions in SDS-only solution at 30 degrees C revealed that the folded form of OmpA in SDS solution is less stable than the unfolding form, and that the unfolding is virtually unobservable near room temperature due to a high kinetic barrier.  相似文献   

13.
The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study.  相似文献   

14.
Local tissue temperature and blood perfusion rate were measured simultaneously to study thermoregulation in the canine prostate during transurethral radio-frequency (RF) thermal therapy. Thermistor bead microprobes measured interstitial temperatures and a thermal clearance method measured the prostatic blood perfusion rate under both normal and hyperthermic conditions. Increase in local tissue temperature induced by the RF heating increased blood perfusion throughout the entirety of most prostates. The onset of the initial increase in blood perfusion was sometimes triggered by a temporal temperature gradient at low tissue temperatures. When tissue temperature was higher than 41°C, however, the magnitude and the spatial gradient of temperature may play significant roles. It was found that the temperature elevation in response to the RF heating was closely coupled with local blood flow. The resulting decrease in or stabilization of tissue temperature suggested that blood flow might act as a negative feedback of tissue temperature in a closed control system. Results from this experiment provide insights into the regulation of local perfusion under hyperthermia. The information is important for accurate predictions of temperature during transurethral RF thermal therapy.  相似文献   

15.
The maximum velocity of shortening of a muscle is an important parameter in musculoskeletal models. The most commonly used values are derived from animal studies; however, these values are well above the values that have been reported for human muscle. The purpose of this study was to examine the sensitivity of simulations of maximum vertical jumping performance to the parameters describing the force–velocity properties of muscle. Simulations performed with parameters derived from animal studies were similar to measured jump heights from previous experimental studies. While simulations performed with parameters derived from human muscle were much lower than previously measured jump heights. If current measurements of maximum shortening velocity in human muscle are correct, a compensating error must exist. Of the possible compensating errors that could produce this discrepancy, it was concluded that reduced muscle fibre excursion is the most likely candidate.  相似文献   

16.
Multiple ablation technologies are used to treat atrial fibrillation during cardiac operations. All such ablation technologies use locally induced temperature extremes (>50°C or <-20°C) to kill tissue and create a lesion pattern in the atria which blocks activation pathways that initiate and sustain atrial fibrillation. The technologies used to heat tissue have included radiofrequency (RF), microwave, high-intensity focused ultrasound, and infrared laser. RF accounts for more than 95% of the heating-based ablation technology used by cardiac surgeons. Energy delivery with RF is easier to control than with some other technologies, the heating produced by the energy source is well understood, and manufacturing costs are not excessive. Whichever heating technology is used, control of energy delivery is required to ensure both safe and effective heating of the targeted tissue. All targeted tissue needs to be heated above 50°C to achieve cell death. However, the targeted tissue should not be heated above 100°C, as this can cause perforation due to a steam pop. In addition, adjacent noncardiac tissues must not be damaged during the ablation procedure. The best method to achieve this control uses direct measurement of tissue temperature, because the tissue temperature defines both the safe and effective limits for the ablative process.  相似文献   

17.
A method is proposed to ease the overcoming of the impurity radiation barrier during current drive in tokamaks, as well as in alternative fusion and plasmochemical systems with ECR plasma heating. The method is based on the fact that the dependence of the ionization rate on the electron temperature is strongly nonlinear and the dependence of the recombination rate on the latter is weaker. The result is that, during temperature oscillations, the effective temperature for ionization-recombination processes is higher than that in a steady state, so the ionization equilibrium is shifted and strongly emitting ions are stripped more rapidly. Thereby, ECR plasma heating in the initial discharge stage can be made more efficient by modulating the heating power at a low frequency. The evolution of the electron temperature in a homogeneous hydrogen plasma with a carbon impurity and in small ISX-scale tokamaks is simulated numerically, as well as the evolution of the electron and ion temperatures and of the current during discharge startup in the ITER device. Numerical simulations of the effect of modulation of the ECR heating power on the rate of heating of nitrogen, oxygen, and argon plasmas were also carried out. The assumption of coronal equilibrium is not used. It is shown that the low-frequency modulation of the heating power can substantially ease the overcoming of the radiation barrier.  相似文献   

18.
A Blume  J Tuchtenhagen 《Biochemistry》1992,31(19):4636-4642
The heat of dissociation of the second proton of 1,2-dimyristoylphosphatidic acid (DMPA) was studied as a function of temperature using titration calorimetry. The dissociation of the second proton of DMPA was induced by addition of NaOH. From the calorimetric titration experiment, the intrinsic pK0 for the dissociation reaction could be determined by applying the Gouy-Chapman theory. pK0 decreases with temperature from ca. 6.2 at 11 degrees C to 5.4 at 54 degrees C. From the total heat of reaction, the dissociation enthalpy, delta Hdiss, was determined by subtracting the heat of neutralization of water and the heat of dilution of NaOH. In the temperature range between 2 and 23 degrees C, delta Hdiss is endothermic with an average value of ca. 2.5 kcal.mol-1 and shows no clear-cut temperature dependence. In the temperature range between 23 and 52 degrees C, delta Hdiss calculated after subtraction of the heat of neutralization and dilution is not the true dissociation enthalpy but includes contributions from the phase transition enthalpy, delta Htrans, as the pH jump induces a transition from the gel to the liquid-crystalline phase. The delta Cp for the reaction enthalpy observed in this temperature range is positive. Above 53 degrees C, the pH jump induces again only the dissociation of the second proton, and the bilayers stay in the liquid-crystalline phase. In this temperature range, delta Hdiss seems to decrease with temperature. The thermodynamic data from titration calorimetry and differential scanning calorimetry as a function of pH can be combined to construct a complete enthalpy-temperature diagram of DMPA in its two ionization states.  相似文献   

19.
The secondary structural changes of the membrane protein, bacteriorhodopsin, are studied during the premelting reversible transition by using laser-induced temperature jump technique and nanosecond time-resolved Fourier transform infrared spectroscopy. The helical structural changes are triggered by using a 15 degrees C temperature jump induced from a preheated bacteriorhodopsin in D2O solution at a temperature of 72 degrees C. The structural transition from alphaII- to alphaI-helices is observed by following the change in the frequency of the amide I band from 1667 to 1651 cm-1 and the shift in the frequency of the amide II vibration from 1542 cm-1 to 1436 cm-1 upon H/D exchange. It is found that although the amide I band changes its frequency on a time scale of <100 ns, the H/D exchange shifts the frequency of the amide II band and causes a complex changes in the 1651-1600 cm-1 and 1530-1430 cm-1 frequency region on a longer time scale (>300 ns). Our result suggests that in this "premelting transition" temperature region of bacteriorhodopsin, an intrahelical conformation conversion of the alphaII to alphaI leads to the exposure of the hydrophobic region of the protein to the aqueous medium.  相似文献   

20.
Clinical and experimental studies indicate that hyperthermia can cause heatstroke with cerebral ischemia and brain damage. However, no study has examined the direct effects of heating carotid artery smooth muscle and tested the hypothesis that hyperthermia induces arterial vasoconstriction and, thereby, decreases cerebral blood flow. We recorded isometric tension of rabbit carotid artery strips in organ baths during stepwise temperature elevation. The heating responses were tested at basal tone, in norepinephrine- and KCl-precontracted vessels, and after electrical field stimulation. Stepwise heating from 37 degrees C to 47 degrees C induced reproducible graded contraction proportional to temperature. The responses could be elicited at basal tone and in precontracted vessels. Heating decreased the contractile responses to norepinephrine and electrical field stimulation but increased contraction to KCl. These responses were not eliminated by pretreatment with the neuronal blocker tetrodotoxin. Our results demonstrate that heating carotid artery preparations above 37 degrees C (normothermia) induced a reversible graded vasoconstriction proportional to temperature. In vivo this reaction may lead to a decrease in cerebral blood flow and cerebral ischemia with brain damage as in heatstroke. The heating-induced contraction is not mediated by a neurogenic process but is due to altered transcellular Ca2+ transport. Cooling, in particular of the neck area, therefore, should be used in the treatment of heatstroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号