首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
After folding, many proteins must assemble into oligomeric complexes to become biologically active. Here we describe the role of RbcX as an assembly chaperone of ribulose-bisphosphate carboxylase/oxygenase (Rubisco), the enzyme responsible for the fixation of atmospheric carbon dioxide. In cyanobacteria and plants, Rubisco is an approximately 520 kDa complex composed of eight large subunits (RbcL) and eight small subunits (RbcS). We found that cyanobacterial RbcX functions downstream of chaperonin-mediated RbcL folding in promoting the formation of RbcL(8) core complexes. Structural analysis revealed that the 15 kDa RbcX forms a homodimer with two cooperating RbcL-binding regions. A central cleft specifically binds the exposed C-terminal peptide of RbcL subunits, enabling a peripheral surface of RbcX to mediate RbcL(8) assembly. Due to the dynamic nature of these interactions, RbcX is readily displaced from RbcL(8) complexes by RbcS, producing the active enzyme. The strategies employed by RbcX in achieving substrate specificity and efficient product release may be generally relevant in assisted assembly reactions.  相似文献   

2.
Rubisco is a very large, complex and one of the most abundant proteins in the world and comprises up to 50% of all soluble protein in plants. The activity of Rubisco, the enzyme that catalyzes CO2 assimilation in photosynthesis, is regulated by Rubisco activase (Rca). In the present study, we searched for hypothetical protein of Vitis vinifera which has putative Rubisco activase function. The Arabidopsis and tobacco Rubisco activase protein sequences were used as seed sequences to search against Vitis vinifera in UniprotKB database. The selected hypothetical proteins of Vitis vinifera were subjected to sequence, structural and functional annotation. Subcellular localization predictions suggested it to be cytoplasmic protein. Homology modelling was used to define the three-dimensional (3D) structure of selected hypothetical proteins of Vitis vinifera. Template search revealed that all the hypothetical proteins share more than 80% sequence identity with structure of green-type Rubisco activase from tobacco, indicating proteins are evolutionary conserved. The homology modelling was generated using SWISS-MODEL. Several quality assessment and validation parameters computed indicated that homology models are reliable. Further, functional annotation through PFAM, CATH, SUPERFAMILY, CDART suggested that selected hypothetical proteins of Vitis vinifera contain ATPase family associated with various cellular activities (AAA) and belong to the AAA+ super family of ring-shaped P-loop containing nucleoside triphosphate hydrolases. This study will lead to research in the optimization of the functionality of Rubisco which has large implication in the improvement of plant productivity and resource use efficiency.  相似文献   

3.
During the past few years the investigations concerning Rubisco and the changes of its activity and properties at elevated temperature were reconsidered with special reference to the important role of Rubisco activase and Rubisco binding protein. The major changes in Rubisco, Rubisco activase and Rubisco binding protein reported recently are presented in this review. New information on these proteins, including their changes under heat stress conditions, is discussed together with open questions.  相似文献   

4.
Regulation of Rubisco activase and its interaction with Rubisco   总被引:2,自引:0,他引:2  
The large, alpha-isoform of Rubisco activase confers redox regulation of the ATP/ADP response of the ATP hydrolysis and Rubisco activation activities of the multimeric activase holoenzyme complex. The alpha-isoform has a C-terminal extension that contains the redox-sensitive cysteine residues and is characterized by a high content of acidic residues. Cross-linking and site-directed mutagenesis studies of the C-terminal extension that have provided new insights into the mechanism of redox regulation are reviewed. Also reviewed are new details about the interaction between activase and Rubisco and the likely mechanism of 'activation' that resulted from mutagenesis in a 'Sensor 2' domain of activase that AAA(+) proteins often use for substrate recognition. Two activase residues in this domain were identified that are involved in Rubisco recognition. The results directly complement earlier studies that identified critical residues for activase recognition in the large subunit of Rubisco.  相似文献   

5.
Light Activation of Rubisco by Rubisco Activase and Thylakoid Membranes   总被引:1,自引:0,他引:1  
A reconstituted system comprising ribulose bisphosphate carboxylase/oxygenase(rubisco), rubisco activase, washed thylakoid membranes, andATP was used to demonstrate a light-dependent stimulation ofrubisco activation. ATP, ribulose bisphosphate, H+, and Mg2+concentrations are normally light-dependent variables in thechloroplast but were maintained at pre-determined levels. Resultsindicated that rubisco activase and washed thylakoid membranesare sufficient to catalyze light stimulation of rubisco activationwith the reconstituted system, and that rubisco activase isrequired for this light stimulation. The washed thylakoid membranesdid not exhibit rubisco activase activity, nor was rubisco activaseprotein detected immunologically. Light-dependent activationof rubisco in the reconstituted system was similar in whole-chainand PS I electron transport reactions, and saturated at approximately100 µmol photons m–2 s–1. 1 Present address: Department of Biological Sciences, LouisianaTech University, Ruston, LA 71272, U.S.A.  相似文献   

6.
Manipulation of Rubisco: the amount,activity, function and regulation   总被引:17,自引:0,他引:17  
Genetic modification to increase the specificity of Rubisco for CO(2) relative to O(2) and to increase the catalytic rate of Rubisco in crop plants would have great agronomic importance. The availability of three-dimensional structures of Rubisco at atomic resolution and the characterization of site-directed mutants have greatly enhanced the understanding of the catalytic mechanism of Rubisco. Considerable progress has been made in identifying natural variation in the catalytic properties of Rubisco from different species and in developing the tools for introducing both novel and foreign Rubisco genes into plants. The additional complexities of assembling copies of the two distinct polypeptide subunits of Rubisco into a functional holoenzyme in vivo (requiring sufficient expression, post-translational modification, interaction with chaperonins, and interaction with Rubisco activase) remain a major challenge. The consequences of changing the amount of Rubisco present in leaves have been investigated by the use of antisense constructs. The manipulation of genes encoding Rubisco activase has provided a means to investigate the regulation of Rubisco activity.  相似文献   

7.
Global warming and the rise in atmospheric CO(2) will increase the operating temperature of leaves in coming decades, often well above the thermal optimum for photosynthesis. Presently, there is controversy over the limiting processes controlling photosynthesis at elevated temperature. Leading models propose that the reduction in photosynthesis at elevated temperature is a function of either declining capacity of electron transport to regenerate RuBP, or reductions in the capacity of Rubisco activase to maintain Rubisco in an active configuration. Identifying which of these processes is the principal limitation at elevated temperature is complicated because each may be regulated in response to a limitation in the other. Biochemical and gas exchange assessments can disentangle these photosynthetic limitations; however, comprehensive assessments are often difficult and, for many species, virtually impossible. It is proposed that measurement of the initial slope of the CO(2) response of photosynthesis (the A/C(i) response) can be a useful means to screen for Rubisco activase limitations. This is because a reduction in the Rubisco activation state should be most apparent at low CO(2) when Rubisco capacity is generally limiting. In sweet potato, spinach, and tobacco, the initial slope of the A/C(i) response shows no evidence of activase limitations at high temperature, as the slope can be accurately modelled using the kinetic parameters of fully activated Rubisco. In black spruce (Picea mariana), a reduction in the initial slope above 30 degrees C cannot be explained by the known kinetics of fully activated Rubisco, indicating that activase may be limiting at high temperatures. Because black spruce is the dominant species in the boreal forest of North America, Rubisco activase may be an unusually important factor determining the response of the boreal biome to climate change.  相似文献   

8.
We have utilized the cellular differentiation gradient and photomorphogenic responses of the first leaf of 7-day-old barley (Hordeum vulgare L.) to examine the accumulation of mRNA and protein encoded by the ribulose-1,5-biphosphate carboxylase holoenzyme (rubisco) activase gene (rca). Previous studies have revealed a pattern of coordinate expression of rubisco subunit polypeptides during development. We compared the expression of rubisco polypeptides and mRNAs with those encoded by rca. The mRNAs encoding both rubisco activase and rubisco are expressed exclusively in leaf tissue of 7-day-old barley seedlings; mRNAs and polypeptides of rca accumulate progressively from the leaf base in a pattern that is qualitatively similar to that of rubisco subunit mRNAs and polypeptides. The parallel pattern of rca protein and mRNA accumulation indicate that a primary control of rca gene expression in this system lies at the level of mRNA production. Light-induced expression of rca in etiolated barley follows a different pattern from that of the acropetal barley leaf gradient, however. Etiolated, 7-day-old barley seedlings contain levels of rca mRNA near the limit of detection in Northern blot hybridization assays. White light induces a 50- to 100-fold accumulation of rca mRNA, which is detectable within 30 min after the onset of illumination. In contrast, steady state levels of mRNAs encoding the small rubisco subunit are affected little by light, and mRNAs encoding the large subunit accumulate about 5-fold in response to illumination. While rca mRNA levels are low in etiolated barley leaves, levels of the protein are approximately 50 to 75% of those found in fully green leaves.  相似文献   

9.
Rubisco activase   总被引:5,自引:0,他引:5  
  相似文献   

10.
We compared the heat-denaturation profiles of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase and further examined the ability of Rubisco activase to restore the activity of heat-denatured Rubisco originally reported (E. Sanchez de Jimenez, L. Medrano, and E. Martinez-Barajas [1995] Biochemistry 34: 2826-2831). Rubisco was heat-treated in both the carbamylated and uncarbamylated forms and in the presence and absence of 10 mM dithiothreitol (DTT). Both forms were highly resistant to heat denaturation and further protection was gained in the presence of DTT. A 50% loss in total activity occurred after 1 h at 57.5 and 55.2[deg]C for uncarbamylated Rubisco and at 60.2 and 59.6[deg]C for carbamylated Rubisco, in each case with and without DTT, respectively. In contrast, Rubisco activase lost 50% activity after only 5 min at 33[deg]C and the loss in activity was not affected by the presence of Rubisco. When Rubisco, heat-denatured to various extents, was incubated at room temperature with Rubisco activase or bovine serum albumin as a control, Rubisco activase did not have a significant specific ability to restore Rubisco activity. We conclude that Rubisco activase alone does not have the ability to restore the activity of heat-denatured Rubisco and is unlikely to protect or restore Rubisco activity from heat denaturation in vivo because it is more heat-labile than Rubisco.  相似文献   

11.
低温弱光对黄瓜幼苗Rubisco与Rubisco活化酶的影响   总被引:6,自引:0,他引:6  
以‘津优3号'黄瓜幼苗为试材,研究弱光(100 μmol·m-2·s-1)下适温(WL:25℃/18℃)、亚适温(ST+WL:18℃/12℃)和低温(LT+WL:10℃/5℃)对黄瓜幼苗光合速率(Pn)、核酮糖-1,5-二磷酸羧化/加氧酶(Rubisco)、Rubisco活化酶(RCA)活性及其基因表达量的影响.结果表明:与对照(25℃/18℃,400 μmol·m-2·s-1)相比,WL、ST+WL和LT+WL处理的单株叶面积和干物质量均明显减小.处理初期,Pn、Rubisco活性及其大亚基基因(rbcL)、小亚基基因(rbcS)表达、RCA活性与基因(CsRCA)表达量大幅度降低,5~7 d后,WL处理趋于平稳,ST+WL处理缓慢回升,而LT+WL处理持续下降,表明黄瓜光合机构对适温弱光和亚适温弱光环境有逐步适应机制.Rubisco和RCA活性及其基因表达对低温弱光的响应与Pn基本一致,表明低温弱光下RCA和Rubisco活性及其基因表达量下降是黄瓜幼苗Pn降低的重要原因.  相似文献   

12.
Jin SH  Hong J  Li XQ  Jiang DA 《Annals of botany》2006,97(5):739-744
BACKGROUND AND AIMS: Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase (RCA) is a nuclear-encoded chloroplast protein that modifies the conformation of Rubisco, releases inhibitors from active sites, and increases enzymatic activity. It appears to have other functions, e.g. in gibberellin signalling and as a molecular chaperone, which are related to its distribution within the chloroplast. The aim of this research was to resolve uncertainty about the localization of RCA, and to determine whether the distributions of Rubisco and RCA were altered when RCA content was reduced. The monocotyledon, Oryza sativa was used as a model species. METHODS: Gas exchange and Rubisco were measured, and the sub-cellular locations of Rubisco and RCA were determined using immunogold-labelling electron microscopy, in wild-type and antisense rca rice plants. KEY RESULTS: In antisense rca plants, net photosynthetic rate and the initial Rubisco activity decreased much less than RCA content. Immunocytolocalization showed that Rubisco in wild-type and antisense plants was localized in the stroma of chloroplasts. However, the amount of Rubisco in the antisense rca plants was greater than in the wild-type plants. RCA was detected in both the chloroplast stroma and in the thylakoid membranes of wild-type plants. The percentage of RCA labelling in the thylakoid membrane was shown to be substantially decreased, while the fraction in the stroma was increased, by the antisense rca treatment. CONCLUSIONS: From the changes in RCA distribution and alterations in Rubisco activity, RCA in the stroma of the chloroplast probably contributes to the activation of Rubisco, and RCA in thylakoids compensates for the reduction of RCA in the stroma, allowing steady-state photosynthesis to be maintained when RCA is depleted. RCA may also have a second role in protecting membranes against environmental stresses as a chaperone.  相似文献   

13.
Jiang ZS  Sun XQ  Ai XZ  Wang ML  Bi HG  Wang HT 《应用生态学报》2010,21(8):2045-2050
Using 'Jinyou 3' cucumber seedlings as test materials, this paper studied their photosynthetic rate (P(n)), Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase (RCA) activities, and gene expression of Rubisco and RCA under optimal temperature and weak light (WL: 25 degrees C/18 degrees C, 100 micromol x m(-2) x s(-1)), suboptimal temperature and weak light (ST+WL: 18 degrees C/12 degrees C, 100 micromol x m(-2) x s(-1)), and low temperature and weak light (LT+WL: 10 degress C/5 degrees C, 100 micromol x m(-2) x s(-1)). Comparing with the control (25 degrees C/18 degrees C, 400 micromol x m(-2) x s(-1)), treatments WL, ST+WL, and LT+WL all led to a remarkable decrease in leaf area and dry matter mass. At initial stage, the P(n), Rubisco activity, rbcL and rbcS expression, RCA activity, and CsRCA expression in the three treatments declined by a big margin; 5-7 days later, these parameters tended to be less changed in treatment WL, ascended slowly in treatment ST+WL, and decreased continuously in treatment LT+WL. These results suggested that the photosynthetic apparatus of test cucumber seedlings could gradually adapt to weak light or suboptimal temperature and weak light. The Rubisco and RCA activities and the gene expression of Rubisco and RCA showed the similar responses to low temperature and weak light as the P(n), suggesting that the decline in Rubisco and RCA activities and gene expression in cucumber seedlings under low temperature and weak light could be the important reason leading to the decrease of P(n).  相似文献   

14.
There are four forms of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) found in nature. Forms I, II, and III catalyse the carboxylation and oxygenation of ribulose 1,5-bisphosphate, while form IV, also called the Rubisco-like protein (RLP), does not catalyse either of these reactions. There appear to be six different clades of RLP. Although related to bona fide Rubisco proteins at the primary sequence and tertiary structure levels, RLP from two of these clades is known to perform other functions in the cell. Forms I, II, and III Rubisco, along with form IV (RLP), are thought to have evolved from a primordial archaeal Rubisco. Structure/function studies with both archaeal form III (methanogen) and form I (cyanobacterial) Rubisco have identified residues that appear to be specifically involved with interactions with molecular oxygen. A specific region of all form I, II, and III Rubisco was identified as being important for these interactions.  相似文献   

15.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the incorporation of inorganic CO(2) into the organic molecules of life. Rubisco is extremely inefficient as a catalyst and its carboxylase activity is compromised by numerous side-reactions including oxygenation of its sugar phosphate substrate by atmospheric O(2). The reduction in the catalytic efficiency as a result of these processes has implications for crop yield, nitrogen and water usage, and for the global carbon cycle. Several aspects of Rubisco including its complex biosynthesis and multi-step catalytic reaction are subject to tight control involving light, cellular metabolites, and molecular chaperones. Numerous high-resolution crystal structures of different forms of Rubisco are now available, including structures of mutant enzymes. These provide a molecular framework for the understanding of these processes at the molecular level.  相似文献   

16.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the predominant protein in photosynthesizing plant parts and the most abundant protein on earth. Amino acids deriving from its net degradation during senescence are transported to sinks (e.g. developing leaves, fruits). Rubisco catabolism is not controlled only by the overall sink demand. An accumulation of carbohydrates may also accelerate senescence and Rubisco degradation under certain conditions. Amino acids produced by proteolysis are rapidly redistributed in plants with proper source-sink relationships. In leaves of wheat plants with reduced sink capacity (e.g. sink removal, phloem interruption by steam girdling at the leaf base), Rubisco is degraded and free amino acids accumulate. They may be washed out in the rain during late senescence. In leaves of depodded soybeans, Rubisco is degraded and amino acids can be reutilized in these leaves for the synthesis of special vacuolar proteins in the paraveinal mesophyll (vegetative storage proteins). Nitrogen deriving from Rubisco degradation in older (senescing) leaves of annual crops is integrated to some extent again in newly synthesized Rubisco in younger leaves or photosynthesizing tissues of fruits. Finally, a high percentage of this nitrogen is accumulated in protein bodies (storage proteins). At the subcellular level, Rubisco can be degraded in intact chloroplasts. Reactive oxygen species may directly cleave the large subunit or modify it to become more susceptible to proteolysis. A metalloendopeptidase may play an important role in Rubisco degradation within intact chloroplasts. Additionally, the involvement of vacuolar endopeptidase(s) in Rubisco catabolism (at least under certain conditions) was postulated by various laboratories.  相似文献   

17.
Arabidopsis Rubisco activase was recently shown to be regulated by redox changes in the larger (46-kDa) isoform specifically mediated by thioredoxin-f [Zhang and Portis (1999) Proc Natl Acad Sci USA 96: 9438–9443]. Reduction greatly increases the activity of the 46-kDa isoform and the native protein at physiological ATP/ADP ratios. In this study we conducted additional experiments to characterize the regulation of Rubisco activase by thioredoxin-f. The Km for both ATP hydrolysis and Rubisco activation by the 46-kDa isoform was lowered by 4 to 5-fold after reduction, but the maximum activity was increased by only 10%. Only 0.35 μM thioredoxin-f was required for a half-maximal activity change after a 10 min preincubation and activation with 1 μM was complete after 10 min. Equal amounts of 46-kDa and 43-kDa isoforms were required for a complete inhibition of the Rubisco activation activity after a reduction-oxidation cycle and assay at an ATP/ADP ratio of 3:1, whereas activity was only inhibited by 50% at a 2:1 ratio (43-/46-kDa) of the isoforms. This requirement is consistent with the fact that Arabidopsis normally contains about a 1:1 ratio of the two isoforms at both the mRNA and protein levels. Redox titrations indicated a midpoint potential of −344 mV for the 46-kDa isoform as compared to −342 mV for spinach fructose 1,6-bisphosphatase at pH 7.9, consistent with previous reports indicating that these proteins are co-regulated by light intensity in a similar manner. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
19.
Structure and function of lipopolysaccharides   总被引:5,自引:0,他引:5  
The lipopolysaccharides of Gram-negative bacteria have a profound effect on the mammalian immune system and are of great significance in the pathophysiology of many disease processes. Consideration is given in this review to the relationship between structure and function of these lipopolysaccharides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号