首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background  

The second to fourth digit ratio (2D:4D) is used as a marker of prenatal sex hormone exposure. The objective of this study was to examine whether circulating concentrations of sex hormones and SHBG measured in adulthood was associated with 2D:4D.  相似文献   

2.

Background  

A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes.  相似文献   

3.
S. Li  J.C. Nunes  C. Toumoulin  L. Luo 《IRBM》2018,39(1):69-82

Background

3D reconstruction of the coronary arteries can provide more information in the interventional surgery. Motion compensation is one kind of the 3D reconstruction method.

Methods

We propose a novel and complete 2D motion compensated reconstruction method. The main components include initial reconstruction, forward projection, registration and compensated reconstruction. We apply the mutual information (MI) and rigidity penalty (RP) as registration measure. The advanced adaptive stochastic gradient descent (ASGD) is adopted to optimize this cost function. We generate the maximum forward projection by the simplified distance driven (SDD) projector. The compensated reconstruction adopts the MAP iterative reconstruction algorithm which is based on L0 prior.

Results

Comparing with the ECG-gating reconstruction and other reference method, the evaluation indicates that the proposed 2D motion compensation leads to a better 3D reconstruction for both the rest and stronger motion phases. The algorithm compensates the residual motion and reduces the artifact largely. As the gating window width increases, the overall image noise decreases and the contrast of the vessels improves.

Conclusions

The proposed method improved the 3D reconstruction quality and reduced the artifact level. The considerable improvement in the image quality results from motion compensation increases the clinical usability of 3D coronary artery.  相似文献   

4.

Background  

A wider biological role of 1alpha,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the active metabolite of vitamin D3, in tissues not primarily related to mineral metabolism was suggested. Recently, we evidenced the ultrastructural localization the 1,25(OH)2D3 receptor in the human sperm. However, the 1,25(OH)2D3 action in human male reproduction has not yet been clarified.  相似文献   

5.

Objective

Dopamine is an endogenous neuromodulator in cortical circuits and the basal ganglia. In animal models of temporal lobe epilepsy (TLE), seizure threshold is modulated to some extent by dopamine, with D1-receptors having a pro- and D2-receptors an anticonvulsant effect. We aimed to extend our previously reported results on decreased D2/D3 receptor binding in the lateral epileptogenic temporal lobe and to correlate them with demographic and seizure variables to gain a more comprehensive understanding of the underlying involvement of the dopaminergic system in the epileptogenesis of TLE.

Methods

To quantify D2/D3 receptor binding, we studied 21 patients with TLE and hippocampal sclerosis (13 left- and eight right-sided) and 18 controls using PET with the high-affinity dopamine D2/D3-receptor ligand 18F-Fallypride to image striatal and extrastriatal binding. TLE was defined by interictal and ictal video-EEG, MRI and 18F-Fluorodeoxyglucose PET. Voxel-based statistical and regions-of-interest analyses were performed.

Results

18F-Fallypride binding potential was significantly reduced in the affected temporal lobe and bilateral putamen. A positive correlation between age at onset of epilepsy and [18F]FP BPnd (binding potential non-displaceable) in temporal regions on the epileptogenic side was found, as well as a negative correlation between epilepsy duration and [18F]FP BPnd in the temporal pole on the epileptogenic side and a positive correlation between the estimated number of lifetime GTCS and [18F]FP BPnd in the hippocampus on the epileptogenic side.

Significance

The areas of reduced D2/D3 receptor availability correspond to “the irritative zone” surrounding the epileptogenic area. Moreover, reduced D2/D3 receptor availability was detectable in the basal ganglia, which are suspected to be involved in a control circuit for epileptic seizures. The correlational analysis additionally suggests that increased epilepsy duration leads to increasing impairment of the dopaminergic system.  相似文献   

6.

Background  

The protein folding problem is a fundamental problems in computational molecular biology and biochemical physics. Various optimisation methods have been applied to formulations of the ab-initio folding problem that are based on reduced models of protein structure, including Monte Carlo methods, Evolutionary Algorithms, Tabu Search and hybrid approaches. In our work, we have introduced an ant colony optimisation (ACO) algorithm to address the non-deterministic polynomial-time hard (NP-hard) combinatorial problem of predicting a protein's conformation from its amino acid sequence under a widely studied, conceptually simple model – the 2-dimensional (2D) and 3-dimensional (3D) hydrophobic-polar (HP) model.  相似文献   

7.

Aim

To investigate the clinical application of a technique for patient set-up verification in breast cancer radiotherapy based on a 3D surface image registration system.

Background

Accurate and reproducible patient set-up is a prerequisite to correctly deliver fractionated radiotherapy. Various approaches are available to verify and correct patient setup for 3D image acquisition in a radiation treatment room.

Materials and methods

The study analyzed the setup reproducibility of 15 patients affected by breast cancer and candidates for conformal radiotherapy by using the AlignRT system (VisionRT, London, UK). At the initial setup, electronic portal imaging device (EPID) images were compared with Digitally Reconstructed Radiographs (DRRs) and a reference three-dimensional (3D) surface image was obtained by AlignRT. Surface images were acquired prior to every subsequent setup procedure. The systematic and random errors along longitudinal and vertical directions were measured and compared for the two systems.

Results

The procedure for surface registration, image acquisition and comparison with the reference image took less than 1 min on average. The T test for systematic error showed no significant difference between the 2 verification systems along the longitudinal (p = 0.69) and vertical (p = 0.67) axes. The T-test for random error showed a significant difference between the 2 systems along the vertical axis (p = 0.05).

Conclusion

AlignRT is fast, simple, non-invasive and seems to be reliable in detecting patient setup errors. Our results suggest that it could be used to assess the setup reproducibility for breast cancer patients.  相似文献   

8.

Background  

Reliable segmentation of cell nuclei from three dimensional (3D) microscopic images is an important task in many biological studies. We present a novel, fully automated method for the segmentation of cell nuclei from 3D microscopic images. It was designed specifically to segment nuclei in images where the nuclei are closely juxtaposed or touching each other. The segmentation approach has three stages: 1) a gradient diffusion procedure, 2) gradient flow tracking and grouping, and 3) local adaptive thresholding.  相似文献   

9.

Background  

Three dimensional biomedical image sets are becoming ubiquitous, along with the canonical atlases providing the necessary spatial context for analysis. To make full use of these 3D image sets, one must be able to present views for 2D display, either surface renderings or 2D cross-sections through the data. Typical display software is limited to presentations along one of the three orthogonal anatomical axes (coronal, horizontal, or sagittal). However, data sets precisely oriented along the major axes are rare. To make fullest use of these datasets, one must reasonably match the atlas' orientation; this involves resampling the atlas in planes matched to the data set. Traditionally, this requires the atlas and browser reside on the user's desktop; unfortunately, in addition to being monolithic programs, these tools often require substantial local resources. In this article, we describe a network-capable, client-server framework to slice and visualize 3D atlases at off-axis angles, along with an open client architecture and development kit to support integration into complex data analysis environments.  相似文献   

10.

Purpose

To investigate image quality and radiation dose of CT coronary angiography (CTCA) scanned using automatic tube current modulation (ATCM) and reconstructed by strong adaptive iterative dose reduction three-dimensional (AIDR3D).

Methods

Eighty-four consecutive CTCA patients were collected for the study. All patients were scanned using ATCM and reconstructed with strong AIDR3D, standard AIDR3D and filtered back-projection (FBP) respectively. Two radiologists who were blinded to the patients'' clinical data and reconstruction methods evaluated image quality. Quantitative image quality evaluation included image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). To evaluate image quality qualitatively, coronary artery is classified into 15 segments based on the modified guidelines of the American Heart Association. Qualitative image quality was evaluated using a 4-point scale. Radiation dose was calculated based on dose-length product.

Results

Compared with standard AIDR3D, strong AIDR3D had lower image noise, higher SNR and CNR, their differences were all statistically significant (P<0.05); compared with FBP, strong AIDR3D decreased image noise by 46.1%, increased SNR by 84.7%, and improved CNR by 82.2%, their differences were all statistically significant (P<0.05 or 0.001). Segments with diagnostic image quality for strong AIDR3D were 336 (100.0%), 486 (96.4%), and 394 (93.8%) in proximal, middle, and distal part respectively; whereas those for standard AIDR3D were 332 (98.8%), 472 (93.7%), 378 (90.0%), respectively; those for FBP were 217 (64.6%), 173 (34.3%), 114 (27.1%), respectively; total segments with diagnostic image quality in strong AIDR3D (1216, 96.5%) were higher than those of standard AIDR3D (1182, 93.8%) and FBP (504, 40.0%); the differences between strong AIDR3D and standard AIDR3D, strong AIDR3D and FBP were all statistically significant (P<0.05 or 0.001). The mean effective radiation dose was (2.55±1.21) mSv.

Conclusion

Compared with standard AIDR3D and FBP, CTCA with ATCM and strong AIDR3D could significantly improve both quantitative and qualitative image quality.  相似文献   

11.

Background  

The ability to detect nuclei in embryos is essential for studying the development of multicellular organisms. A system of automated nuclear detection has already been tested on a set of four-dimensional (4D) Nomarski differential interference contrast (DIC) microscope images of Caenorhabditis elegans embryos. However, the system needed laborious hand-tuning of its parameters every time a new image set was used. It could not detect nuclei in the process of cell division, and could detect nuclei only from the two- to eight-cell stages.  相似文献   

12.

Purpose

Respiratory motion correction remains a challenge in coronary magnetic resonance imaging (MRI) and current techniques, such as navigator gating, suffer from sub-optimal scan efficiency and ease-of-use. To overcome these limitations, an image-based self-navigation technique is proposed that uses “sub-images” and compressed sensing (CS) to obtain translational motion correction in 2D. The method was preliminarily implemented as a 2D technique and tested for feasibility for targeted coronary imaging.

Methods

During a 2D segmented radial k-space data acquisition, heavily undersampled sub-images were reconstructed from the readouts collected during each cardiac cycle. These sub-images may then be used for respiratory self-navigation. Alternatively, a CS reconstruction may be used to create these sub-images, so as to partially compensate for the heavy undersampling. Both approaches were quantitatively assessed using simulations and in vivo studies, and the resulting self-navigation strategies were then compared to conventional navigator gating.

Results

Sub-images reconstructed using CS showed a lower artifact level than sub-images reconstructed without CS. As a result, the final image quality was significantly better when using CS-assisted self-navigation as opposed to the non-CS approach. Moreover, while both self-navigation techniques led to a 69% scan time reduction (as compared to navigator gating), there was no significant difference in image quality between the CS-assisted self-navigation technique and conventional navigator gating, despite the significant decrease in scan time.

Conclusions

CS-assisted self-navigation using 2D translational motion correction demonstrated feasibility of producing coronary MRA data with image quality comparable to that obtained with conventional navigator gating, and does so without the use of additional acquisitions or motion modeling, while still allowing for 100% scan efficiency and an improved ease-of-use. In conclusion, compressed sensing may become a critical adjunct for 2D translational motion correction in free-breathing cardiac imaging with high spatial resolution. An expansion to modern 3D approaches is now warranted.  相似文献   

13.

Background  

The developing mouse limb is widely used as a model system for studying tissue patterning. Despite this, few references are available that can be used for the correct identification of developing limb structures, such as muscles and tendons. Existing textual references consist of two-dimensional (2D) illustrations of the adult rat or mouse limb that can be difficult to apply when attempting to describe the complex three-dimensional (3D) relationship between tissues.  相似文献   

14.

Purpose

The aim of this study was the systematic image quality evaluation of coronary CT angiography (CTA), reconstructed with the 3 different levels of adaptive iterative dose reduction (AIDR 3D) and compared to filtered back projection (FBP) with quantum denoising software (QDS).

Methods

Standard-dose CTA raw data of 30 patients with mean radiation dose of 3.2 ± 2.6 mSv were reconstructed using AIDR 3D mild, standard, strong and compared to FBP/QDS. Objective image quality comparison (signal, noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), contour sharpness) was performed using 21 measurement points per patient, including measurements in each coronary artery from proximal to distal.

Results

Objective image quality parameters improved with increasing levels of AIDR 3D. Noise was lowest in AIDR 3D strong (p≤0.001 at 20/21 measurement points; compared with FBP/QDS). Signal and contour sharpness analysis showed no significant difference between the reconstruction algorithms for most measurement points. Best coronary SNR and CNR were achieved with AIDR 3D strong. No loss of SNR or CNR in distal segments was seen with AIDR 3D as compared to FBP.

Conclusions

On standard-dose coronary CTA images, AIDR 3D strong showed higher objective image quality than FBP/QDS without reducing contour sharpness.

Trial Registration

Clinicaltrials.gov NCT00967876  相似文献   

15.

Background  

The visual combination of different modalities is essential for many medical imaging applications in the field of Computer-Assisted medical Diagnosis (CAD) to enhance the clinical information content. Clinically, incontinence is a diagnosis with high clinical prevalence and morbidity rate. The search for a method to identify risk patients and to control the success of operations is still a challenging task. The conjunction of magnetic resonance (MR) and 3D ultrasound (US) image data sets could lead to a new clinical visual representation of the morphology as we show with corresponding data sets of the female anal canal with this paper.  相似文献   

16.

Objective

To assess the advantages of Adaptive Iterative Dose Reduction using Three Dimensional Processing (AIDR3D) for image quality improvement and dose reduction for chest computed tomography (CT).

Methods

Institutional Review Boards approved this study and informed consent was obtained. Eighty-eight subjects underwent chest CT at five institutions using identical scanners and protocols. During a single visit, each subject was scanned using different tube currents: 240, 120, and 60 mA. Scan data were converted to images using AIDR3D and a conventional reconstruction mode (without AIDR3D). Using a 5-point scale from 1 (non-diagnostic) to 5 (excellent), three blinded observers independently evaluated image quality for three lung zones, four patterns of lung disease (nodule/mass, emphysema, bronchiolitis, and diffuse lung disease), and three mediastinal measurements (small structure visibility, streak artifacts, and shoulder artifacts). Differences in these scores were assessed by Scheffe''s test.

Results

At each tube current, scans using AIDR3D had higher scores than those without AIDR3D, which were significant for lung zones (p<0.0001) and all mediastinal measurements (p<0.01). For lung diseases, significant improvements with AIDR3D were frequently observed at 120 and 60 mA. Scans with AIDR3D at 120 mA had significantly higher scores than those without AIDR3D at 240 mA for lung zones and mediastinal streak artifacts (p<0.0001), and slightly higher or equal scores for all other measurements. Scans with AIDR3D at 60 mA were also judged superior or equivalent to those without AIDR3D at 120 mA.

Conclusion

For chest CT, AIDR3D provides better image quality and can reduce radiation exposure by 50%.  相似文献   

17.

Background  

In order to perform a 3D reconstruction of electron microscopic images of viruses, it is necessary to determine the orientation (Euler angels) of the 2D projections of the virus. The projections containing high resolution information are usually very noisy. This paper proposes a new method, based on weighted-projection matching in wavelet space for virus orientation determination. In order to speed the retrieval of the best match between projections from a model and real virus particle, a hierarchical correlation matching method is also proposed.  相似文献   

18.

Introduction

The ratio of the length of the second finger to the fourth finger (2D:4D) in humans is considered as a putative marker of prenatal exposure to testosterone, and has been progressively adopted as one useful tool to evaluate the effect of prenatal hormones in some traits such as physical ability. Handgrip strength is one authentic measure of physical ability and is generally used on the anthropological research within an evolutionary viewpoint.

Methods

Here we present the first evidence on 2D:4D and handgrip strength on adult participants of Hani ethnicity and explore the relationship between digit ratio (2D:4D) and handgrip strength. We examined 2D:4D and handgrip strength of 80 males and 60 females at Bubeng village, in the Yunnan province of China.

Results

The mean 2D:4D in females was higher than that in males for each hand. Females showed significantly higher 2D:4D than males in the right hand rather than in the left hand. Males displayed significantly higher handgrip strength than females for both hands. Handgrip strength decreased with age for both sexes. A significant negative correlation between 2D:4D and handgrip strength was found in the right hand of males.

Conclusion

The relationship between 2D:4D and handgrip strength may be attributed to evolutionary drive of sexual selection operating on fetal programming.  相似文献   

19.

Background  

Conventional cell culture studies have been performed on 2D surfaces, resulting in flat, extended cell growth. More relevant studies are desired to better mimic 3D in vivo tissue growth. Such realistic environments should be the aim of any cell growth study, requiring new methods for culturing cells in vitro. Cell biology is also tending toward miniaturization for increased efficiency and specificity. This paper discusses the application of a self-assembling peptide-derived hydrogel for use as a 3D cell culture scaffold at the microscale.  相似文献   

20.

Introduction  

We compared the odds of vitamin D deficiency in three chronic diseases: systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and type 2 diabetes (T2DM), adjusting for medications, demographics, and laboratory parameters, common to all three diseases. We also designed multivariate models to determine whether different factors are associated with vitamin D deficiency in different racial/ethnic groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号