首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
Seven protein-binding sites on the immunoglobulin heavy-chain (IgH) enhancer element have been identified by exonuclease III protection and gel retardation assays. It appears that the seven sites bind a minimum of four separate proteins. Three of these proteins also bind to other enhancers or promoters, but one protein seems to recognize exclusively IgH enhancer sequences. A complex of four binding sites, recognized by different proteins, is located within one 80-base-pair region of IgH enhancer DNA. Close juxtaposition of enhancer proteins may allow protein-protein interactions or be part of a mechanism for modulating enhancer protein activity. All IgH enhancer-binding proteins identified in this study were found in extracts from nonlymphoid as well as lymphoid cells. These data provide the first direct evidence that multiple proteins bind to enhancer elements and that while some of these proteins recognize common elements of many enhancers, others have more limited specificities.  相似文献   

3.
4.
5.
6.
7.
8.
We have identified multiple distinct splicing enhancer elements within protein-coding sequences of the constitutively spliced human β-globin pre-mRNA. Each of these highly conserved sequences is sufficient to activate the splicing of a heterologous enhancer-dependent pre-mRNA. One of these enhancers is activated by and binds to the SR protein SC35, whereas at least two others are activated by the SR protein SF2/ASF. A single base mutation within another enhancer element inactivates the enhancer but does not change the encoded amino acid. Thus, overlapping protein coding and RNA recognition elements may be coselected during evolution. These studies provide the first direct evidence that SR protein-specific splicing enhancers are located within the coding regions of constitutively spliced pre-mRNAs. We propose that these enhancers function as multisite splicing enhancers to specify 3′ splice-site selection.  相似文献   

9.
Keplinger BL  Guo X  Quine J  Feng Y  Cavener DR 《Genetics》2001,157(2):699-716
The Drosophila melanogaster Gld gene has multiple and diverse developmental and physiological functions. We report herein that interactions among proximal promoter elements and a cluster of intronically located enhancers and silencers specify the complex regulation of Gld that underlies its diverse functions. Gld expression in nonreproductive tissues is largely determined by proximal promoter elements with the exception of the embryonic labium where Gld is activated by an enhancer within the first intron. A nuclear protein, GPAL, has been identified that binds the Gpal elements in the proximal promoter region. Regulation of Gld in the reproductive organs is particularly complex, involving interactions among the Gpal proximal promoter elements, a unique TATA box, three distinct enhancer types, and one or more silencer elements. The three somatic reproductive organ enhancers each activate expression in male and female pairs of reproductive organs. One of these pairs, the male ejaculatory duct and female oviduct, are known to be developmentally homologous. We report evidence that the other two pairs of organs are developmentally homologous as well. A comprehensive model to explain the full developmental regulation of Gld and its evolution is presented.  相似文献   

10.
11.
12.
The human metallothionein IIA (hMT-IIA) gene contains two enhancer elements whose activity is induced by heavy-metal ions such as Cd2+. To determine the nature of the relationship between the metal-responsive elements and the element(s) responsible for the basal activity of the enhancers, the basal-level enhancer element(s), the hMT-IIA enhancers were subjected to mutational analysis. We show that deletion of the metal-responsive elements had no effect on the basal activity of the enhancer but prevented further induction by Cd2+. On the other hand, replacement of the basal-level enhancer element with linker DNA led to inactivation of the enhancer both before and after treatment with Cd2+. Therefore, the metal-responsive elements seems to act as a positive modulator of enhancer function in the presence of heavy-metal ions. In addition to the two enhancers, the hMT-IIA promoter contained one other element, the GC box, required for its basal expression. Unlike deletion of the basal-level enhancer element, replacement of the GC box with linker DNA had no effect on the ability of the promoter to be induced by Cd2+.  相似文献   

13.
14.
15.
16.
17.
A series of plasmids was constructed to study the effect of two enhancers, the simian virus 40 72-base-pair repeat and the Harvey sarcoma virus 73-base-pair repeat, on the mouse beta maj-globin promoter. These plasmids contain the mouse beta maj-globin promoter linked to the Escherichia coli galK gene, thus allowing galactokinase enzyme activity to be used as a measure of promoter function. In CV-1 (primate) cells, it was found that an enhancer is required for optimal promoter activity and that the simian virus 40 (primate) enhancer increases galactokinase fourfold more than the Harvey sarcoma virus (mouse) enhancer. In L (mouse) cells, however, the Harvey sarcoma virus enhancer is 1.3-fold stronger than the simian virus 40 enhancer. These data support the hypothesis that enhancer activity can be species specific. Furthermore, when both enhancers are present on the same plasmid, their effect is additive on the beta-globin promoter whether the plasmid is in CV-1 cells or L cells.  相似文献   

18.
19.
20.
Promoter dependence of enhancer activity.   总被引:12,自引:4,他引:8       下载免费PDF全文
The interaction of enhancers with different promoters was studied by measuring the influence of two enhancers (from simian virus 40 and from Harvey sarcoma virus) on the activity of expression vectors that are identical except for their promoter region. The promoters examined were from the simian virus 40 early region, with or without its own 72-base-pair repeat, and the mouse beta major-globin gene. It is clear that the promoter acted upon strongly influences the level of activity of an enhancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号