首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ADP-ribosylation of membrane proteins from rabbit small intestinal epithelium was investigated following incubation of membranes with [32P]NAD and cholera toxin. Cholera toxin catalyzes incorporation of 32P into three proteins of 40 kDA, 45 kDa and 47 kDa located in the brush-border membrane. In contrast, basal lateral membranes do not contain any protein which becomes labeled in a toxin-dependent manner when incubated with cholera toxin and [32P]NAD. The modification of membrane proteins from brush border occurred in spite of the virtual absence in these membranes of adenylate cyclase activatable either by cholera toxin, vasoactive intestinal peptide (VIP) or fluoride. The three agents activated adenylate cyclase when crude plasma membrane were used. Cholera toxin activated fivefold at 10 micrograms/ml. Vasoactive intestinal peptide activated at concentrations from 10-300 nM, the maximal stimulation being sixfold. Fluoride activated 10-fold at 10 mM. When basal lateral membranes were assayed for adenylate cyclase it was found that, with respect to the crude membranes, the specific activity of fluoride-activated enzyme was 3.3-fold higher, VIP stimulated enzyme was maintained while cholera-toxin-stimulated enzyme showed half specific activity. Moreover, while fluoride stimulated ninefold and VIP stimulated fivefold, cholera toxin only stimulated twofold at the highest concentration. The results suggest that the activation by cholera toxin of adenylate cyclase located at the basal lateral membrane requires ADPribosylation of proteins in the brush border membrane.  相似文献   

2.
Cytochemical investigations showed adenylate cyclase in the rabbit small intestine enterocytes to be activated both with cholera toxin and sodium fluoride. Following double stimulation of adenylate cyclase in the intestinal enterocytes by the mentioned two substances maximal critical levels of cAMP were attained resulting in self-inhibition of adenylate cyclase; in this case only a low adenylate cyclase activity, if any, could be demonstrated by electron microscopy.  相似文献   

3.
Adenylate cyclase activation by GTP analogs   总被引:1,自引:0,他引:1  
Benznidazole (a nitroimidazole derivative used for the treatment of Chagas' disease) is reduced by rat liver microsomes to the nitro anion radical, as indicated by ESR spectroscopy. Addition of benznidazole to rat liver microsomes produced an increase of electron flow from NADPH to molecular oxygen, and generation of both superoxide anion and hydrogen peroxide. The benznidazole-stimulated O2 consumption and O2? formation was greatly inhibited by NADP+ and p-chloromercuribenzoate but not by SKF-525-A and metyrapone. The former inhibitions indicated the involvement of NADPH-cytochrome P-450 (c) reductase, while the lack of inhibition by SKF-525-A and metyrapone ruled out any major role for cytochrome P-450 in benznidazole reduction. In contrast to nifurtimox, a nitrofuran derivative (R. Docampo and A. O. M. Stoppani, 1979, Arch. Biochem. Biophys.197, 317–321), benznidazole was not reduced to the nitro anion radical, nor did it stimulate oxygen consumption, O2? production, and H2O2 generation by Trypanosoma cruzi cells or microsomal fractions. A different mechanism of benznidazole toxicity in T. cruzi and the mammalian host is postulated.  相似文献   

4.
Adenylate cyclase (AC) toxin from Bordetella pertussis interacts with and enters eukaryotic cells to catalyze the production of supraphysiologic levels of cyclic AMP. Although the calmodulin-activated enzymatic activity (ability to convert ATP to cyclic AMP in a cell-free assay) of this molecule is calcium independent, its toxin activity (ability to increase cyclic AMP levels in intact target cells) requires extracellular calcium. Toxin activity as a function of calcium concentration is biphasic, with no intoxication occurring in the absence of calcium, low level intoxication (200-300 pmol of cyclic AMP/mg of Jurkat cell protein) occurring with free calcium concentrations between 100 nM and 100 microM and a 10-fold increase in AC toxin activity at free calcium concentrations above 300 microM. The molecule exhibits a conformational change when free calcium concentrations exceed 100 microM as demonstrated by shift in intrinsic tryptophan fluorescence, an alteration in binding of one anti-AC monoclonal antibody, protection of a fragment from trypsin-mediated proteolysis, and a structural modification as illustrated by electron microscopy. Thus, it appears that an increase in the ambient calcium concentration to a critical point and the ensuing interaction of the toxin with calcium induces a conformational change which is necessary for its insertion into the target cell and for delivery of its catalytic domain to the cell interior.  相似文献   

5.
6.
The activation of adenylate cyclase in lysed pigeon erythrocytes requires, among several cofactors, a nucleotide which may be ATP, GTP, or many other triphosphates. However, after removal of endogenous nucleotides by gel filtration or by adsorption onto charcoal the requirement can be met only by GTP, or an analog of GTP. The GTP is required during the activation of the cyclase by toxin even if GTP is also included during the subsequent adenylate cyclase assay, conducted without toxin. In the presence of GTP it is possible to assay for the cytosolic protein that is also required for the action of cholera toxin. By gel filtration, its apparent molecular weight is 15,000–20,000.  相似文献   

7.
An adenylate cyclase activity stimulated by serotonin and calmodulin is present in the segmental ganglia of the leech Hirudo medicinalis. Removal of the endogenous calcium binding protein does not alter the responsiveness of the enzyme to serotonin. The calmodulin antagonist, trifluoperazine, drastically reduces the amine stimulatory effect on both intact and calmodulin-depleted membranes. We suggest that calmodulin-sensitive and serotonin-stimulated adenylate cyclase are, at least functionally, independent.  相似文献   

8.
The effect of cholera toxin (CT)-challenge on histochemically demonstrable activities of adenylatecyclase and alkaline phosphatase was investigated in rat small intestine, using an intestinal loop model. CT-challenge increased the activities of adenylatecyclase and alkaline phosphatases within 15 minutes, and the changes were confined to enterocytes in the upper third parts of the villi. There was no change in the staining of the crypt cells. There was an increased basal activity of both adenylatecyclase and alkaline phosphatases in animals desensitized to cholera toxin by multiple peroral exposures. CT-challenge in the desensitized rats did not further increase the enzyme activity. It is concluded that desensitization to secretagogues induces profound alterations in the cell systems responsible for fluid secretion.  相似文献   

9.
Cholera toxin, through adenylate cyclase activation reproduced cyclic AMP-mediated effects of thyroid-stimulating hormone (TSH) in dog thyroid slices, i.e protein iodination, [1-14C]glucose-oxidation and hormone secretion. Iodide and carbamylcholine decreased the cyclic AMP accumulation induced by cholera toxin as well as by TSH, which supports the hypothesis of an action of these agents beyond the steps of hormone-receptor and receptor-adenylate cyclase interaction. Cooling to 20°C did not impair the TSH induced cyclic AMP accumulation in thyroid slices, but completely suppressed the cholera toxin effect.This observation has been extended to other hormones and target tissues, such as the parathyroid hormone (PTH) (kidney cortex), adrenocorticotropic hormone (ACTH) (adrenal cortex)_and luteinizing hormone (LH) (ovary systems). As in thyroid, cooling dissociated the cholera toxin and hormonal effects on cyclic AMP accumulation. In homogenate, cooling decreased cyclic AMP generation in the presence of cholera toxin but at 20°C and 16°C a cholera toxin stimulation was still observed. These results bear strongly against the hypothesis that the glycoprotein hormones TSH and LH activate adenylate cyclase by a mechanism identical to cholera toxin.  相似文献   

10.
Cholera toxin, or peptide A1 from the toxin, activates adenylate cyclase solubilized from rat liver with Lubrol PX, provided that cell sap, NAD+, ATP and thiol-group-containing compounds are present. The activation is abolished by antisera to whole toxin, but not to subunit B.  相似文献   

11.
A study was made of the uptake of Ca2+ by brush-border membrane vesicles prepared from rabbit small intestine. The process was found to be time, temperature and substrate concentration dependent, displayed saturability, did not depend on added energy sources and occurred optimally in a pH range of 7.5-8.0. Although the transport of D-glucose by these membrane vesicles responded to changes in osmotic pressure as modified by adding cellobiose to the medium, the uptake of Ca2+ was found not to be osmotically-sensitive. Moreover, the equilibrium uptake value obtained when vesicles were exposed to 0.36 mM Ca2+ was some 60-fold higher than the amount that could have been accommodated by the intravesicular space, calculated from the equilibrium uptake of D-glucose. It was concluded from these results that the uptake involved complete binding of the Ca2+ to the membrane. The ionophore A23187 enhanced the rates of uptake and efflux of Ca2+ without affecting equilibrium values, which suggests that the binding of Ca2+ measured under our conditions was to interior sites of the membrane. The binding capacity was decreased in the presence of 10 mM lidocaine as indicated by a diminution of the equilibrium binding values. Generating an electrochemical potential (negative inside) by addition of valinomycin to vesicles pre-equilibrated with K2SO4, enhanced the rate of uptake of Ca2+. Addition of metal ions, on the other hand, inhibited the uptake, La3+ and Tb3+ being most effective followed by Mn2+, Ba2+ and Mg2+. Na+ and K+ were the least inhibitory. The properties of the Ca2+ uptake process found in rabbit brush-border membranes were compared to those of similar processes occurring in other species.  相似文献   

12.
Cholera toxin, through adenylate cyclase activation reproduced cyclic AMP-mediated effects of thyroid-stimulating hormone (TSH) in dog thyroid slices, i.e. protein iodination, [1-14C]glucose-oxidation and hormone secretion. Iodide and carbamylcholine decreased the cyclic AMP accumulation induced by cholera toxin as well as by TSH, which supports the hypothesis of an action of these agents beyond the steps of hormone-receptor and receptor-adenylate cyclase interaction. Cooling to 20 degrees C did not impair the TSH induced cyclic AMP accumulation in thyroid slices, but completely suppressed the cholera toxin effect. This observation has been extended to other hormones and target tissues, such as the parathyroid hormone (PTH) (kidney cortex), adrenocorticotropic hormone (ACTH) (adrenal cortex) and luteinizing hormone (LH) (ovary systems). As in thyroid, cooling dissociated the cholera toxin and hormonal effects on cyclic AMP accumulation. In homogenate, cooling decreased cyclic AMP generation in the presence of cholera toxin but at 20 degrees C and 16 degrees C a cholera toxin stimulation was still observed. These results bear strongly against the hypothesis that the glycoprotein hormones TSH and LH acetivate adenylate cyclase by a mechanism identical to cholera toxin.  相似文献   

13.
Adenylate cyclase toxin (CyaA or ACT) is a key virulence factor of pathogenic Bordetellae. It penetrates phagocytes expressing the alpha(M)beta(2) integrin (CD11b/CD18, Mac-1 or CR3) and paralyzes their bactericidal capacities by uncontrolled conversion of ATP into a key signaling molecule, cAMP. Using pull-down activity assays and transfections with mutant Rho family GTPases, we show that cAMP signaling of CyaA causes transient and selective inactivation of RhoA in mouse macrophages in the absence of detectable activation of Rac1, Rac2, or RhoG. This CyaA/cAMP-induced drop of RhoA activity yielded dephosphorylation of the actin filament severing protein cofilin and massive actin cytoskeleton rearrangements, which were paralleled by rapidly manifested macrophage ruffling and a rapid and unexpected loss of macropinocytic fluid phase uptake. As shown in this study for the first time, CyaA/cAMP signaling further caused a rapid and near-complete block of complement-mediated phagocytosis. Induction of unproductive membrane ruffling, hence, represents a novel sophisticated mechanism of down-modulation of bactericidal activities of macrophages and a new paradigm for action of bacterial toxins that hijack host cell signaling by manipulating cellular cAMP levels.  相似文献   

14.
Results of cholera toxin exposure in rabbit small intestinal epithelial cells, following 4 to 6 hours of incubation, indicate that there is simultaneous dose-dependent activation of adenylate cyclase and deactivation of guanylate cyclase. In addition, cyclic GMP phosphodiesterase activity is repressed. These data indicate that cholera toxin interacts with a binding site of dissociation constant Kd=3.8±1.3 × 10?9M to produce multiple coordinated events in the cells.  相似文献   

15.
The stimulation of intestinal adenylate cyclase by cholera toxin (CT) was studied in normal and malnourished rats 4 to 24 hr after a 30-min incubation of intestinal loops with the toxin. Whereas in control rats the enzyme activity returned to basal levels after 12 hr of incubation, in malnourished rats the activity of the enzyme remained significantly elevated even after 24 hr of the initial incubation. Malnourished animals had a reduced turnover rate of intestinal cells as determined by thymidine kinase activity. The delayed turnover of intoxicated cells may account for continuous activation of mucosal adenylate cyclase and possibly for prolongation of diarrhea in malnutrition.  相似文献   

16.
Incubation of fat cell ghosts with activated cholera toxin, nucleoside triphosphate, cytosol, and NAD results in increased adenylate cyclase activity and the transfer of ADP-ribose to membrane proteins. The major ADP-ribose protein comigrates on sodium dodecyl sulfate-polyacrylamide gels with the putative GTP-binding protein of pigeon erythrocyte membranes (Mr 42 000), which is also ADP-ribosylated by cholera toxin. The treatment with cholera toxin enhances the stimulation of the fat cell membrane adenylate cyclase by GTP, but the stimulation by guanyl-5'-yl imidodiphosphate is unaltered. Subsequent stimulation of fat cell adenylate cyclase by 10 micrometers epinephrine is not particularly affected. These changes were qualititatively the same for membranes isolated from fat cells of hypothyroid rats. Although the cyclase of these membranes has a reduced response to epinephrine, guanyl-5'-yl imidodiphosphate or GTP, as compared to euthyroid rat fat cell membranes, the defect is not rectified by toxin treatment and cannot be explained by a deficiency in the cholera toxin target.  相似文献   

17.
Bordetella pertussis adenylate cyclase (AC) toxin is a calmodulin-activated adenylate cyclase enzyme which has the capacity to enter eukaryotic target cells and catalyze the conversion of endogenous ATP into cyclic AMP. In this work, the AC holotoxin molecule is identified and isolated. It is a single polypeptide of apparent 216 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Monoclonal antibodies which immunoprecipitate AC activity from extracts of wild type B. pertussis (BP338) react with this 216-kDa band on Western blots, and it is absent from a transposon Tn5 mutant (BP348) specifically lacking AC toxin. Isolation of the 216-kDa protein to greater than 85% purity by hydrophobic chromatography, preparative sucrose gradient centrifugation, and affinity chromatography using either calmodulin-Sepharose or monoclonal antibody coupled to Sepharose 4B yields stepwise increases in AC toxin potency, to a maximum of 88.3 mumol of cAMP/mg of target cell protein/mg of toxin. Electroelution of the 216-kDa band following sodium dodecyl sulfate-polyacrylamide gel electrophoresis yields a preparation with both AC enzyme and toxin activities. These data indicate that this protein represents the AC holotoxin molecule.  相似文献   

18.
The uptake of a variety of fatty acids by isolated brush-border membranes from rabbit small intestine was studied. This uptake increased with acyl chain-length and was not diminished by washing of the lipid-treated membranes with 0.25 M CsBr. The binding of fatty acid was not accompanied by a decrease in endogenous acyl groups or of cholesterol and therefore corresponded to a net uptake accountable qualitatively and quantitatively by the fatty acid added to the membranes. The uptake of Ca2+ was stimulated by treatment of the membranes with low concentrations of unsaturated fatty acids (0.05 mM) as well as with various concentrations of caprylic acid (0.10-3.00 mM) and inhibited by treatment with higher concentrations of unsaturated fatty acids (0.20-0.60 mM). Saturated fatty acids had no marked effects on Ca2+ uptake. The stimulatory concentrations of unsaturated fatty acids did not change the Ca2+-binding characteristics of the membranes, whereas the higher concentrations decreased equilibrium binding of Ca2+ and very probably the number of high-affinity binding sites. The results of this study are assessed in terms of the effects of normal fatty acids found in the diet on the absorptive properties of the brush-border membranes.  相似文献   

19.
20.
The effect of calcium on adenylate cyclase from rabbit small intestine has been studied using a particulate preparation obtained from isolated epithelial cells. Both basal and vasoactive intestinal peptide-stimulated activities were inhibited by calcium concentrations in the micromolar range. In the presence of calmodulin, a biphasic response was obtained. At low calcium concentration (4 X 10(-9)-6 X 10(-8) M) the enzyme was activated up to 50%. As the Ca2+ concentration was increased, the enzyme was concomitantly inhibited. Half-maximal inhibition of calmodulin-dependent activity was obtained at 1 microM free Ca2+. The activation of the enzyme was also dependent on the concentration of Mg2+. At less than 1 microM Ca2+, the enzyme exhibited a biphasic response, being activated at below 3 mM Mg2+ and inhibited at higher concentrations. At Ca2+ concentrations that were inhibitory, the enzyme did not show the biphasic response to Mg2+. At concentrations above 3 mM, the maximal rate (Vmax) remained constant. Vmax was inversely proportional to the concentration of Ca2+ present. Calmodulin altered Vmax when acting on vasoactive intestinal peptide-stimulated enzyme. Calmodulin had no effect on the Km for hormone activation. The calmodulin-dependent activity was inhibited by incubation with trifluoperazine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号