首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Induction of hepatic 4-methylumbelliferone UDP-glucuronosyltransferase (EC 2.4.1.17) by polycyclic aromatic compounds, such as 3-methylcholanthrene or beta-naphthoflavone, occurs in C57BL/6N, A/J, PL/J, C3HeB/FeJ, and BALB/cJ but not in DBA/2N, AU/SsJ, AKR/J, or RF/J inbred strains of mice. This pattern of five responsive and five nonresponsive mouse strains parallels that of the Ah locus, which controls the induction of aryl hydrocarbon (benzo[alpha]pyrene) hydroxylase (EC 1.14.14.2). Induction of the transferase is maximal in C57BL/6N mice with 200 mg of 3-methylcholanthrene/kg body weight; no induction occurs in nonresponsive DBA/2N mice even at a dose of 400 mg/kg. The rise of inducible transferase activity lags 1 or more days behind the rise of inducible hydroxylase activity and peaks 5 days after a single dose of 3-methylcholanthrene. In offspring from the appropriate backcrosses and intercross between C57BL/6N and DBA/2N parent strains, the genetic expression of 3-methylcholanthrene-inducible transferase activity is inherited as an additive (co-dominant) trait. This expression differs distinctly from that of the inducible hydroxylase activity, which is inherited almost exclusively as a single autosomal dominant trait in these same animals. The more potent inducer 2,3,7,8-tetrachlorodibenzo-p-dioxin induces the transferase more than 3-fold in C57BL/6N mice and less than 2-fold in DBA/2N mice, whereas the hydroxylase is induced equally (about 8-fold) in both strains. A dose of 3-methylcholanthrene given 3 days after 2,3,7,8-tetrachlorodibenzo-p-dioxin, at a time when hydroxylase induction in both strains is very high, does not enhance the rise in inducible transferase activity seen in C57BL/6N or DBA/2N mice which have received 2,3,7,8-tetrachlorodibenzo-p-dioxin alone. These data indicate that (a) the inducibility of two metabolically coordinated membrane-bound enzyme activities may be regulated by a single genetic locus, and (b) although the hydroxylase can be fully induced in the nonresponsive DBA/2N strain by 2,3,7,8-tetrachlorodibenzo-p-dioxin prior to 3-methylcholanthrene treatment, metabolites of the 3-methylcholanthrene treatment, metabolites of the 3-methylcholanthrene treatment, metabolites of the 3-methylcholanthrene, presumably present in the liver, are incapable of inducing further the transferase activity. The difference in sensitivity between 3-methylcholanthrene and the more potent inducer 2,3,7,8-tetrachlorodibenzo-p-dioxin for both the hydroxylase and the transferase activities suggests the possibility of a common receptor in regulating both enzyme induction processes.  相似文献   

2.
Aryl hydrocarbon (benzo(a)pyrene) hydroxylase is present and inducible in Buffalo rat liver cells in culture. There is substantial variation in both basal and inducible hydroxylase activities among heteroploid subclones isolated from a heteroploid parent population, and among diploid subclones isolated from a diploid parent population. This variation is not related to differences in the growth characteristics of the subclones, or to differences in their chromosome number. The results indicate that substantial heterogeneity in both basal and induced hydroxylase activity develops during the growth of both heteroploid and diploid cell strains in culture. These findings indicate that diploid cell populations are not necessarily homogeneous with respect to aryl hydrocarbon hydroxylas activity. This observation may complicate the interpretation of experiments involving somatic cell hybridization or polycyclic hydrocarbon-induced transformation and/or cytotoxicity. This heterogeneity in hydroxylase activity develops rather rapidly (2-3 mo of culture), in the absence of any apparent mutational stress.  相似文献   

3.
Ketone body formation from tyrosine was studied in rat liver in vitro with special references to the activities of tyrosine aminotransferse (EC 2.6.1.5) and p-hydroxyphenylpyruvate hydroxylase (EC 1.14.2.2). Liver was obtained from rats which had been given a high protein diet or cortisol to induce various levels of tyrosine aminotransferase. The enzyme activities of the preparations were plotted against the amounts of ketone body formed from tyrosine. It was found that over a low range of tyrosine aminotransferase activities, activity was proportional to the amount of ketone body formed. However, above this range, ketone body formation ceased to increase and p-hydroxyphenylpyruvate started to accumulate. This inhibition of ketone body formation and accumulation of the p-hydroxyphenylpyruvate could be prevented by addition of ascorbate. These results suggest that the primary factor regulating metabolism of tyrosine in vitro is tyrosine aminotransferase and when the activity of this is high so that it is no longer rate limiting, p-hydroxyphenylpyruvate hydroxylase becomes the rat limiting step because its activity is inhibited by the accumulation of p-hydroxyphenylpyruvate. For in vivo studies rats were given a high protein diet or cortisol to induce various levels of tyrosine aminotransferase and then injected with a tracer dose of [U- or 1- 14C]tyrosine. Then their respiratory 14CO2 and the incorporation of 14C into total lipids of liver were measured. The amounts of radioactivity in CO2 and lipids were found to be proportional to the tyrosine aminotransferase activity and were not affected by the free tyrosine concentration in the liver. After injection of [U- 14C]acetate the radioactivities in CO2 and lipids were not proportional to the tyrosine aminotransferase activity. These results indicate that the enzyme activity also regulates tyrosine metabolism in vivo. In vivo studied gave no evidence of the participation of p-hydroxyphenylpyruvate hydroxylase in regulation of tyrosine metabolism.  相似文献   

4.
The lack of aryl hydrocarbon (benzo[a]pyrene) hydroxylase (AHH) (EC 1.14.14.1) induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in a clone of rat hepatoma (HTC cl-1) cells is not caused by the lack of nuclear Ah receptor or by a deficiency in the activity of NADPH-cytochrome c (P-450) reductase. Treatment of HTC cl-1 cell line with TCDD for 18 h in culture resulted in a reproducible 500-600% increase in reductase activity without concomitant expression in AHH activity. These data suggests that TCDD induces cytochrome c reductase activity and that the lack of inducible AHH activity in rat hepatoma cells could reflect a defect in the structural gene (s) encoding for cytochrome P1-450, or an Ah receptor with a faulty DNA binding domain.  相似文献   

5.
We have analyzed wild type mouse hepatoma (Hepa 1c1c7) cells and variant cells which are defective in the induction of benzo(a)pyrene-metabolizing enzyme activity. One type of variant has no detectable basal or inducible aryl hydrocarbon hydroxylase activity. This class contains apparently normal cytosolic receptors for 2,3,7,8-tetrachlorodibenzo-p-dioxin, but is unable to translocate the inducer-receptor complex to the nucleus. The second type of variant has low levels of basal and inducible aryl hydrocarbon hydroxylase activity. This class contains cytosolic receptors which are decreased either in their number or in their ability to bind 2,3,7,8-tetrachlorodibenzo-p-dioxin; translocation of the inducer-receptor complex to the nucleus is apparently normal. Cell fusions indicate that both variant phenotypes are recessive with respect to wild type. Complementation analyses indicate that the defects are located on different genes.  相似文献   

6.
Variants of the mouse hepatoma cell clone inducible for aryl hydrocarbon (benzo(a)pyrene) hydroxylase (AHH) (EC 1. 14. 14.1) activity and deficient in hypoxanthine guanine phosphoribosyl-transferase (EC 2.4.2.8), and human primary lung carcinoma cell clone noninducible for AHH activity and deficient in thymidine kinase (EC 2.7.1.21) were isolated. The variant lines characterized for AHH inducibility and drug resistant phenotype were utilized to study somatic cell hybrids for the expression of AHH induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In two hybrids AHH activity was not expressed. In view of these results we conclude that aryl hydrocarbon hydroxylase activity is suppressed in AHH noninducible human lung carcinoma x AHH inducible mouse hepatoma cell hybrids.  相似文献   

7.
Rat cerebral cortex slices were incubated in vitro with [3H]dopamine (DA) or [3H]noradrenaline (NA) (10?7M), superfused by fresh buffer and stimulated by an electric field. The stimulation-induced overflow of [3H]DA and [3H]NA was determined. In slices from untreated rats about 16 ng [3H]NA/g tissue was formed from [3H]DA, corresponding to about 5 per cent of the endogenous NA concentration. Stimulation markedly enhanced the overflow of [3H]NA. The [3H]NA newly formed from [3H]DA was overflowing to a greater extent than [3H]NA previously taken up from the incubation medium, indicating a preferential release of newly synthesized transmitter. The stimulation-induced overflow of [3H]DA and [3H]NA was increased in slices of rats pretreated with a tyrosine hydroxylase inhibitor (H44/68). It seems that depletion of the endogenous NA stores of central NA neurons by tyrosine hydroxylase inhibition makes the [3H]cate-cholamines more available for release. Pretreatment of the rats with the DA-β-hydroxylase inhibitors FLA63 or FLA69 considerably diminished the formation of [3H]NA from [3H]DA. Stimulation markedly enhanced the overflow of [3H]DA indicating that DA can act as a ‘false transmitter’ in central NA neurons after DA-β-hydroxylase inhibition.  相似文献   

8.
Ketone body formation from tyrosine was studied in rat liver in vitro with special references to the activities of tyrosine aminotransferase (EC 2.6.1.5) and p-hydroxyphenylpyruvate hydroxylase (EC 1.14.2.2). Liver was obtained from rats which had been given a high protein diet or cortisol to induce various levels of tyrosine aminotransferase. The enzyme activities of the preparations were plotted against the amounts of ketone body formed from tyrosine. It was found that over a low range of tyrosine aminotransferase activities, activity was proportional to the amount of ketone body formed. However, above this range, ketone body formation ceased to increase and p-hydroxyphenylpyruvate started to accumulate. This inhibition of ketone body formation and accumulation of the p-hydroxyphenylpyruvate could be prevented by addition of ascorbate. These results suggest that the primary factor regulating metabolism of tyrosine in vitro is tyrosine aminotransferase and when the activity of this is high so that it is no longer rate limiting, p-hydroxyphenylpyruvate hydroxylase becomes the rate limiting step because its activity is inhibited by the accumulation of p-hydroxyphenylpyruvate.For in vivo studies rats were given a high protein diet or cortisol to induce various levels of tyrosine aminotransferase and then injected with a tracer dose of [U- or 1-14 C]tyrosine. Then their respiratory 14CO2 and the incorporation of 14C into total lipids of liver were measured. The amounts of radioactivity in CO2 and lipids were found to be proportional to the tyrosine aminotransferase activity and were not affected by the free tyrosine concentration in the liver. After injection of [U-14C] acetate the radioactivities in CO2 and lipids were not proportional to the tyrosine aminotransferase activity. These results indicate that the enzyme activity also regulates tyrosine metabolism in vivo. In vivo studies gave no evidence of the participation of p-hydroxyphenylpyruvate hydroxylase in regulation of tyrosine metabolism.  相似文献   

9.
The phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) caused phosphorylation of phosphoproteins of 56-kDa which co-migrated with and had identical pI values to subunits of tyrosine hydroxylase. The phosphorylation was closely correlated with an increase of [3H]3,4-dihydroxyphenylalanine (DOPA) production which is a reflection of increased tyrosine hydroxylase activity. Only those phorbol esters which activate protein kinase C induced phosphorylation of the 56-kDa proteins and increased [3H]DOPA production. Neither TPA-induced phosphorylation of the 56-kDa proteins nor TPA-induced enhancement of [3H] DOPA production required extracellular Ca2+. TPA caused increases in phosphorylation of the 56-kDa proteins and increases in [3H]DOPA production over similar concentration ranges (10-1000 nM). TPA did not increase cellular cAMP. The data suggest that phorbol ester-induced phosphorylation of intracellular tyrosine hydroxylase, possibly by protein kinase C, results in increased tyrosine hydroxylase activity.  相似文献   

10.
Summary We have studied the transamination pathway (3-mercaptopyruvate pathway) ofl-cysteine metabolism in rats. Characterization of cysteine aminotransferase (EC 2.6.1.3) from liver indicated that the transamination, the first reaction of this pathway, was catalyzed by aspartate aminotransferase (EC 2.6.1.1). 3-Mercaptopyruvate, the product of the transamination, may be metabolized through two routes. The initial reactions of these routes are reduction and transsulfuration, and the final metabolites are 3-mercaptolactate-cysteine mixed disulfide [S-(2-hydroxy-2-carboxyethylthio)cysteine, HCETC] and inorganic sulfate, respectively. The study using anti-lactate dehydrogenase antiserum proved that the enzyme catalyzing the reduction of 3-mercaptopyruvate was lactate dehydrogenase (EC 1.1.1.27). Formation of HCETC was shown to depend on low 3-mercaptopyruvate sulfurtransferase (EC 2.8.1.2) activity. Results were discussed in relation to HCETC excretion in normal human subjects and patients with 3-mercaptolactate-cysteine disulfiduria. Incubation of liver mitochondria withl-cysteine, 2-oxoglutarate and glutathione resulted in the formation of sulfate and thiosulfate, indicating that thiosulfate was formed by transsulfuration of 3-mercaptopyruvate and finally metabolized to sulfate.  相似文献   

11.
Hepatic microsomes isolated from untreated male rats or from rats pretreated with phenobarbital (PB) or 3-methylcholanthrene (3-MC) were labeled with the hydrophobic, photoactivated reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID). [125I]TID incorporation into 3-MC- and PB-induced liver microsomal protein was enhanced 5- and 8-fold, respectively, relative to the incorporation of [125I]TID into uninduced liver microsomes. The major hepatic microsomal cytochrome P-450 forms inducible by PB and 3-MC, respectively designated P-450s PB-4 and BNF-B, were shown to be the principal polypeptides labeled by [125I]TID in the correspondingly induced microsomes. Trypsin cleavage of [125I]TID-labeled microsomal P-450 PB-4 yielded several radiolabeled fragments, with a single labeled peptide of Mr approximately 4000 resistant to extensive proteolytic digestion. The following experiments suggested that TID binds to the substrate-binding site of P-450 PB-4. [125I]TID incorporation into microsomal P-450 PB-4 was inhibited in a dose-dependent manner by the P-450 PB-4 substrate benzphetamine. In the absence of photoactivation, TID inhibited competitively about 80% of the cytochrome P-450-dependent 7-ethoxycoumarin O-deethylation catalyzed by PB-induced microsomes with a Ki of 10 microM; TID was a markedly less effective inhibitor of the corresponding activity catalyzed by microsomes isolated from uninduced or beta-naphthoflavone-induced livers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A tridecapeptide containing tritium-labelled lysine and corresponding closely to residues 98 to 110 of the alpha chain of type I collagen was synthesized by the solid-phase method. Gly-Leu-Hyp-Gly-Nle-[4,5-3H]Lys-Gly-His-Arg-Gly-Phe-Ser-Gly was used as a substrate of human protocollagen lysyl hydroxylase (peptidyllysine, 2-oxoglutarate: oxygen 5-oxidoreductase, EC 1.14.11.4) obtained from dermal fibroblasts. L-[4,5-3H]Lysine was converted to N alpha-t-butyloxycarbonyl-N epsilon-o-chlorobenzyloxycarbonyl [3H]lysine which was incorporated during stepwise synthesis of the peptide. The chemical and radiochemical purities and specific activity of the completed peptide were characterized. A non-radiolabelled analogue of the peptide inhibited the hydroxylation of [3H]lysine-containing protocollagen by human lysyl hydroxylase, indicating that the synthetic peptide interacted with the enzyme. The peptide containing [3H]lysine was a substrate for lysyl hydroxylase and permitted direct measurement of enzyme activity in relatively crude cell extracts by a tritium-release assay. Extracts of cultured fibroblasts from a patient with an autosomal recessive pattern of inheritance for Ehlers-Danlos syndrome type VI had activities for tritium release from either the radiolabelled synthetic peptide or from [3H]lysine-containing protocollagen that were only 30% of those from control cells. These data indicate that a stable, well-defined synthetic peptide containing [3H]lysine is a useful substrate for studies of genetically variant lysyl hydroxylase from cultured human cells.  相似文献   

13.
Flux through, and maximal activities of, key enzymes of phenylalanine and tyrosine degradation were measured in liver cells prepared from adrenalectomized rats and from streptozotocin-diabetic rats. Adrenalectomy decreased the phenylalanine hydroxylase flux/activity ratio; this was restored by steroid treatment in vivo. Changes in the phosphorylation state of the hydroxylase may mediate these effects; there was no significant change in the maximal activity of the hydroxylase. Tyrosine metabolism was enhanced by adrenalectomy; this was not related to any change in maximal activity of the aminotransferase. Steroid treatment increased the maximal activity of the aminotransferase. Both acute (3 days) and chronic (10 days) diabetes were associated with increased metabolism of phenylalanine; insulin treatment in vivo did not reverse these changes. Although elevated hydroxylase protein concentration was a major factor, changes in the enzyme phosphorylation state may contribute to differences in phenylalanine degradation in the acute and chronic diabetic states. Tyrosine metabolism, increased by diabetes, was partially restored to normal by insulin treatment in vivo. These changes can, to a large extent, be interpreted in terms of changes in the maximal activity of the aminotransferase.  相似文献   

14.
The biosynthesis and secretion of dopamine beta-hydroxylase were investigated by radiolabeling rat pheochromocytoma (PC12) cells in culture. Intracellular dopamine beta-hydroxylase from a crude chromaffin vesicle fraction and secreted dopamine beta-hydroxylase from culture medium were immunoprecipitated using antiserum made against purified bovine soluble dopamine beta-hydroxylase. Analysis of the immunoprecipitated enzyme on sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that: 1) the membrane-bound form of the hydroxylase from crude secretory vesicle membrane extracts contained two nonidentical subunits in approximately stoichiometric amounts (Mr = 77,000 and 73,000); 2) the soluble hydroxylase from the lysate of these secretory vesicles was composed predominantly of a single subunit (Mr = 73,000); and 3) the hydroxylase secreted into the medium under resting conditions was also composed of a single subunit (approximate Mr = 73,000). All subunits of the multiple forms of hydroxylase were glycoproteins. Under resting conditions, the rate of secretion of hydroxylase was approximately 6% of total cellular enzyme/15 min. The secreted form of the hydroxylase incorporated [35S]sulfate, whereas no significant [35S]sulfate was incorporated into the cellular forms of enzyme. We propose that in addition to the dopamine beta-hydroxylase which is found in catecholamine storage vesicles and released during stimulus-coupled exocytosis, PC12 cells also have a constitutive secretory pathway for dopamine beta-hydroxylase and that the enzyme released by this second pathway is sulfated.  相似文献   

15.
Rivoal J  Hanson AD 《Plant physiology》1994,106(3):1187-1193
Choline-O-sulfate is a compatible osmolyte accumulated under saline conditions by members of the halophytic genus Limonium and other Plumbaginaceae. A choline sulfotransferase (EC 2.8.2.6) responsible for the formation of choline-O-sulfate was characterized in Limonium species. A simple radiometric assay was developed in which [14C]choline was used as substrate, and the h [14C]choline-O-sulfate product was isolated by ion-exchange chromatography. The choline sulfotransferase activity was soluble, required 3[prime]-phosphoadenosine-5[prime]-phosphosulfate as the sulfate donor, and showed a pH optimum at 9.0. Apparent Km values were 25 [mu]M for choline and 5.5 [mu]M for 3[prime]-phosphoadenosine-5[prime]-phosphosulfate. Choline sulfotransferase activity was detected in various Limonium species but was very low or absent from species that do not accumulate choline-O-sulfate. In roots and leaves of Limonium perezii, the activity was increased at least 4-fold by salinization with 40% (v/v) artificial sea water. Choline sulfotransferase activity was also induced in cell cultures of L. perezii following salt shock with 20% (v/v) artificial sea water or osmotic shock with 19% (w/v) polyethylene glycol 6000. Labeling experiments with [14C]choline confirmed that the enzyme induced in cell cultures was active in vivo.  相似文献   

16.
1. Tyrosine aminotransferase activity in the liver increased about fourfold after 9h, on exposure of rats to stress of low pressure. 2. The phenylalanine hydroxylase activity increased about 60% on exposure for 24h or more. 3. An environmental pressure decrease of about 0.033 MN/m2 is needed to increase the activity of tyrosine aminotransferase. 4. Adrenalectomy completely abolished the increase in activity of tyrosine aminotransferase obtained on exposure to low pressure. 5. Treatment with cycloheximide or actinomycin D prevented the increase in activity of tyrosine aminotransferase. 6. Treatment with cycloheximide at the early part of exposure to stress prevented the increase in activity of phenylalanine hydroxylase obtained after 24h.  相似文献   

17.
The mutagenic activity of the pyrolysis products 2-amino-3-methylimidazo[4,5-f]-quinoline and 2-amino-3,4-dimethylimidazo[4,5-f]-quinoline in Salmonella typhimurium TA98 using rat intestinal and renal subcellular fractions as activation systems was approximately 1 and 5 revertants per nmol, respectively. This was 1,000 times less than the activity with a subcellular fraction from rat liver. The mutagenic activity of both compounds was considerably increased using intestinal, renal and hepatic preparations isolated from PCB (Aroclor 1254)-pretreated rats, compared to preparations from control animals. In addition, both compounds displayed a moderate direct-acting mutagenic activity at concentrations above 10-5 M. Isolated cells from small intestine, kidney and liver incubated in nucleopore chambers were able to convert both compounds into products which mutated bacteria outside the chambers. The concentrations of chemicals required to yield responses of a similar magnitude were approximately 3 orders of magnitude higher in the intestinal and renal systems compared to the hepatic system. The formation of metabolites mutagenic for Salmonella typhimurium by hepatic subcellular and cellular systems was shown to be superior to the respective intestinal and renal systems.Abbreviations AHH arylhydrocarbon hydroxylase - IQ 2-amino-3-methylimidazo[4,5-f]-quinoline - MC 3-methylcholanthrene - MeIQ 2-amino-3,4-dimethylimidazo[4,5-f]-quinoline - PCB polychlorinated biphenyls (Aroclor 1254) - S9 the 9,000 g supernatant tissue fraction - TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin  相似文献   

18.
A pigmented subclone of Cloudman S91 melanoma cells, PS1-wild type, can grow in medium lacking tyrosine. This ability is conferred by phenylalanine hydroxylase activity, and not by tryptophan hydroxylase, tyrosine hydroxylase or tyrosinase activities, although the latter activity is also present in these cells. Conversion of phenylalanine to tyrosine was measured in living cells by chromatographic identification of the metabolites of [14C]phenylalanine and in cell extracts using a sensitive assay for phenylalanine hydroxylase. Phenylalanine hydroxylase activity in melanoma cell extracts was identified by its inhibition with p-chlorophenylalanine and not with 6-fluorotryptophan, 3-iodotyrosine, phenylthiourea, tyrosine or tryptophan; and by adsorption with antiserum prepared against purified rat liver phenylalanine hydroxylase, and migration of immunoprecipitable activity with authentic phenylalanine hydroxylase subunits in sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

19.
Rat mammary epithelial cells grown in primary culture contain the microsomal enzyme, aryl hydrocarbon (benzo[a]pyrene) hydroxylase (AHH), which catalyses the oxidative conversion of polycyclic aromatic hydrocarbons (PAH) to more polar derivatives. Constitutive AHH activity, measured with an established fluorometric method, was 46 pmol/mg protein/h in homogenates of rat mammary epithelial cells after 5 days in culture. The addition of dimethylbenz[a]anthracene (DMBA), benz[a]anthracene (BA), or 3-methylcholanthrene (3-MC) to the cell culture medium increased AHH activity 5.3-, 4.7- and 2.4-fold, respectively. Kinetic studies revealed that maximal hydroxylase induction occurred 16 h after 1 micro M DMBA was added to the culture medium. The decay of the DMBA-induced hydroxylase was biphasic: one component had a t1/2 of 15--30 min and another a t1/2 of 4 h. Norepinephrine, 17 beta-estradiol and 5,6-benzoflavone also increased AHH activity in mammary epithelial cells in vitro, however, sodium phenobarbital had no effect. Fetal bovine serum (FBS), previously shown to be a potent in vitro inducer of AHH activity, had no effect on either constitutive or DMBA-induced mammary epithelial hydroxylase activities following treatment with 1% activated charcoal. Metyrapone and 7,8-benzoflavone, inhibitors of microsomal mixed function oxidase activity, reduced both constitutive and DMBA-induced AHH activities when added to homogenates of untreated and DMBA-treated mammary epithelial cells. The addition of 7,8-benzoflavone reduced both constitutive and DMBA-induced hydroxylase activities by approx. 80%, whereas metyrapone addition inhibited these activities by 20%. The study demonstrates several in vitro factors which alter AHH activity in primary cultures of rat mammary epithelial cells.  相似文献   

20.
It has previously been reported that Friend mouse erythroleukemia (MEL) cells synthesize hemoglobin when exposed to 2% dimethylsulfoxide, and that hybrids between MEL cells and fibroblasts (or other nonerythroid cells) do not synthesize hemoglobin. We have been successful in obtaining hybrids (3/15) between MEL cells and mouse L-cell fibroblasts that maintain hemoglobin inducibility by preserving nonadherent cells after fusion. The proportion of hemoglobin inducible hybrids can be increased (8/11) by using a stable 2S (pseudotetraploid) MEL parent in addition to preserving nonadherent cells after fusion. All hybrids which were nonadherent were hemoglobin inducible, and all hybrids which were adherent were not. Five nonadherent hybrid clones were analyzed from fusions between a stable 2S MEL parent and a human fibroblast (WI-38, VA-2). All these clones were inducible for hemoglobin. It is concluded that gene dosage is effective in increasing the proportion of hemoglobin inducible hybrids, but hybrid morphology is the phenotype characteristic that correlates most closely with expression of hemoglobin inducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号