首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endothelial loss provoked by the methods of vascular cryopreservation used at most human vessel banks is one of the main factors leading to the failure of grafting procedures performed using cryopreserved vessel substitutes. This study evaluates the effects of the storage temperature and thawing protocol on the endothelial cell loss suffered by cryopreserved vessels, and optimises the thawing temperature and protocol for cryopreserving arterial grafts in terms of that producing least endothelial loss. Segments of the common iliac artery of the minipig (n = 20) were frozen at a temperature reduction rate of 1 degrees C/min in a biological freezer. After storing the arterial fragments for 30 days, study groups were established according to the storage temperature (-80, -145 or -196 degrees C) and subsequent thawing procedure (slow or rapid thawing). Fresh vessel segments served as the control group. Once thawed, the specimens were examined by light, transmission, and scanning electron microscopy. The covered endothelial surface was determined by image analysis. Data for the different groups were compared by one way ANOVA. When cryopreservation at each of the storage temperatures was followed by slow thawing, the endothelial cells showed improved morphological features and viability over those of specimens subjected to rapid thawing. Rapidly thawed endothelial cells showed irreversible ultrastructural damage such as mitochondrial dilation and rupture, reticular fragmentation, and peripheral nuclear condensation. In contrast, slow thawing gave rise to changes compatible with reversible damage in a large proportion of the endothelial cells: general swelling, reticular dilation, mitochondrial swelling, and nuclear chromatin condensation. Gradually thawed cryopreserved arteries showed a lower proportion of damaged cells identified by the TUNEL method compared to the corresponding rapidly thawed specimens (p < 0.05, for all temperatures). In all the groups in which vessels underwent rapid thawing (except at -145 degrees C), significant differences (p < 0.05) in endothelial cover values were recorded with respect to control groups. Storage of cryopreserved vessels at -80 degrees C followed by rapid thawing led to greatest endothelial cell loss (61.36+/-9.06% covered endothelial surface), while a temperature of -145 degrees C followed by slow thawing was best at preserving the endothelium of the vessel wall (89.38+/-16.67% surface cover). In conclusion, storage at a temperature of -145 degrees C in nitrogen vapour followed by gradual automated thawing seems to be the best way of preserving the endothelial surface of the arterial cryograft. This method gives rise to best endothelial cell viability and cover values, with obvious benefits for subsequent grafting.  相似文献   

2.
Canine carotid arterial and external jugular venous endothelial cells were derived, cutured, passed, and pooled. Three X 10(6) cells were seeded into capped roller-bottles. Three roller-bottes were seeded with venous, and another three with arterial derived endothelial cells for each of three "oxygen saturations" 5, 20 and 50% O2 respectively, and incubated for seven days and then counted. Arterial endothelial cells showed no cell proliferation in high oxygen saturation compared to an 83% increase in cell numbers when oxygen supply had been held to 20%. Venous endothelial cells showed no cell proliferation in medium or high oxygen supply but low oxygen supply (5% O2) gave a 91% increase in cell counts. The small number of roller-bottles investigated does not allow firm conclusions but our results warrant further evaluation.  相似文献   

3.
Vein graft adaptation to the arterial environment is characterized by loss of venous identity, with reduced Ephrin type-B receptor 4 (Eph-B4) expression but without increased Ephrin-B2 expression. We examined changes of vessel identity of human saphenous veins in a flow circuit in which shear stress could be precisely controlled. Medium circulated at arterial or venous magnitudes of laminar shear stress for 24 hours; histologic, protein, and RNA analyses of vein segments were performed. Vein endothelium remained viable and functional, with platelet endothelial cell adhesion molecule (PECAM)-expressing cells on the luminal surface. Venous Eph-B4 expression diminished (p = .002), Ephrin-B2 expression was not induced (p = .268), and expression of osteopontin (p = .002) was increased with exposure to arterial magnitudes of shear stress. Similar changes were not found in veins placed under venous flow or static conditions. These data show that human saphenous veins remain viable during ex vivo application of shear stress in a bioreactor, without loss of the venous endothelium. Arterial magnitudes of shear stress cause loss of venous identity without gain of arterial identity in human veins perfused ex vivo. Shear stress alone, without immunologic or hormonal influence, is capable of inducing changes in vessel identity and, specifically, loss of venous identity.  相似文献   

4.
Gradual Thawing Improves the Preservation of Cryopreserved Arteries   总被引:3,自引:0,他引:3  
This study was designed to test a slow, controlled, automated process for the thawing of cryopreserved arteries, whereby specimen warming is synchronized with the warming of its environment. Segments of minipig iliac artery, 4-5 cm in length, were subjected to controlled, automated cryopreservation in a biological freezer at a cooling rate of 1 degrees C/min to -120 degrees C, followed by storage in liquid nitrogen at -196 degrees C for 30 days. Following storage, the arterial segments were subjected to rapid (warming rate of approximately 100 degrees C/min) or gradual (1 degrees C/min) thawing. Thawed specimens were processed for light microscopy and for scanning and transmission electron microscopy, Cell death was determined by the TUNEL method. Metalloproteinase (MMP) expression was estimated by immunohistochemical analysis. Most of the cryopreserved vessels subjected to rapid thawing showed spontaneous fractures, mainly microfractures, whereas these were absent in slowly thawed specimens. In rapidly thawed vessels, the proportion of damaged cells was double that observed in those thawed more gradually. Increased intensity and extent of MMP-2 expression was shown by rapidly thawed specimens. The slow-thawing protocol tested avoids the formation of spontaneous fractures and microfractures and the accumulation of fluid within the arterial wall tissue. This results in improved tissue preservation.  相似文献   

5.
This study was aimed to establish whether the cryopreservation procedure we currently use in clinics can modify arterial homograft antigenicity. To this purpose, we performed an immunohistochemical study on fresh and cryopreserved human arterial homografts to visualize the expression of HLA class I heavy and light chains "in situ" by using the HC-10 and Namb-1 monoclonal antibodies. Human femoral arteries and thoracic aortas were harvested from 18 heart-beating donors and sampled before and after cryopreservation. Arterial segments were frozen in liquid nitrogen vapors in a controlled rate freezing system. After thawing, samples were processed for routine immunohistochemistry. To standardize immunostaining, flow-cytometry indirect immunofluorescence analysis was performed on HUVEC; immunohistochemistry of human ovarian cortical vessels was performed as an additional positive control. Negative controls were performed by omitting tissue incubation with primary antibodies. HLA-class I antigens were markedly expressed by endothelial cells lining surface intima and adventitial vasa vasorum; a moderate expression was found in medial smooth muscle cells. Except for the surface unreactivity caused by loss of endothelium, results from cryopreserved arterial allografts were strictly comparable to those observed in fresh, unfrozen tissues. These results support the view that cryopreserved arterial allografts are immunogenic as their fresh counterparts; apart from smooth muscle cells which retained a moderate expression of HLA class I antigens following cryopreservation, our study suggests that the highly HC-10 positive endothelial cells we found to line the rich adventitial network of vasa vasorum are expected to be one of the major targets of the serological response in the recipient.  相似文献   

6.
In occluded femoral artery segments, intimal thickening occurred and abundant neovascularization from the surrounding microcirculation developed. Under these conditions, the contribution of vasa-vasorum as a source of supplementary population of cells during the early intimal thickening formation was studied. Using a technique that specifically labels venules, predominantly postcapillary venules, a marker-Monastral Blue B-was used as a tracer to follow the pericyte, endothelial cell and monocyte/macrophage lineages. In the first two days of the experiment, the marker was restricted to the wall of the periarterial microcirculation, being incorporated by endothelial cells, pericytes and some monocytes/macrophages crossing the venule walls. Later, the marker continues to be observed in some of the following cells: endothelial cells and pericytes of the newly-formed vessels, fibroblast-like cells, transitional cells between pericytes and fibroblast-like cells, macrophages migrating into the interstitium, myointimal cells and neoendothelial cells of the arterial lumen. These findings provide evidence that, during arterial intimal thickening formation in occluded arterial segments, the periarterial microvascularization contributes, in addition to recruited macrophages, newly-formed endothelial cells and a supplementary population of fibroblast-like cells and myointimal cells.  相似文献   

7.
Phenotypic diversity of endothelial cells that line the various vascular spaces has been well established. However, it is not known if biochemical differences also exist, particularly in the numbers of receptors for plasma proteins. Equilibrium binding techniques were used to assess potential differences in the binding of 125I-labelled plasminogen to cultured human umbilical arterial endothelial cells and capillary endothelium, as compared with umbilical venous cells. The kinetic behaviour of plasminogen binding to all three types of cells was similar, with optimal binding occurring between 20 and 30 min of incubation. Binding of plasminogen to arterial, capillary, and venous cells was concentration dependent and reversible upon addition to excess unlabelled plasminogen. Scatchard analyses showed that artery, capillary, and venous endothelial cells all possess low affinity sites for plasminogen with Kd values of 0.30 +/- 0.07, 0.40 +/- 0.06, and 0.40 +/- 0.08 microM, respectively. Vein cells also possess an additional higher affinity binding site with a Kd of 0.07 +/- 0.01 microM, exhibiting a 6-fold greater affinity for plasminogen than the lower affinity sites on capillary and arterial endothelial cells. Assuming a stoichiometry of 1:1 for binding, the data indicate that arterial and capillary endothelial cells contain approximately 4.2 (+/- 0.9) x 10(6) and 4.1 (+/- 0.6) x 10(6) plasminogen receptors per cell. Venous cells contain both low and high density binding sites with 6.2 (+/- 0.8) x 10(6) and 12.4 (+/- 2.4) x 10(6) sites per endothelial cell. The presence of a higher affinity site on vein cells, but not on artery or capillary cells, may signal functional differences relating to fibrinolytic activity on the surface of these cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The concept of endothelium-derived relaxing factor (EDRF) implies that nitric oxide (NO) produced by NO synthase (NOS) in the endothelium in response to vasorelaxants such as acetylcholine (ACh) acts on the underlying vascular smooth muscle cells (VSMC) inducing vascular relaxation. The EDRF concept was derived from experiments on denuded blood vessel strips and, in frames of this concept, VSMC were regarded as passive recipients of NO from endothelial cells. However, it was later found that VSMC express NOS by themselves, but the principal question remained unanswered, is the NO generation by VSMC physiologically relevant? We hypothesized that the destruction of the vascular wall anatomical integrity by rubbing off the endothelial layer might increase vascular superoxides that, in turn, reduced the NO bioactivity as a relaxing factor. To test our hypothesis, we examined ACh-induced vasorelaxation under protection against oxidative stress and found that superoxide scavengers restored vasodilatory responses to ACh in endothelium-deprived blood vessels. These findings imply that VSMC can release NO in amounts sufficient to account for the vasorelaxatory response and challenge the concept of the obligatory role of endothelial cells in the relaxation of arterial smooth muscle.  相似文献   

9.
Growing interest in the sources of origin of blood vessel related diseases has led to an increasing knowledge about the heterogeneity and plasticity of endothelial cells lining arteries and veins. So far, most of these studies were performed on animal models. Here, we hypothesized that the plasticity of human fetal endothelial cells depends on their vascular bed of origin i.e. vein or artery and further that the differences between arterial and venous endothelial cells would extend to phenotype and genotype. We established a method for the isolation of fetal arterial and venous endothelial cells from the human placenta and studied the characteristics of both cell types. Human placental arterial endothelial cells (HPAEC) and human placental venous endothelial cells (HPVEC) express classical endothelial markers and differ in their phenotypic, genotypic, and functional characteristics: HPAEC are polygonal cells with a smooth surface growing in loose arrangements and forming monolayers with classical endothelial cobblestone morphology. They express artery-related genes (hey-2, connexin 40, depp) and more endothelial-associated genes than HPVEC. Functional testing demonstrated that vascular endothelial growth factors (VEGFs) induce a higher proliferative response on HPAEC, whereas placental growth factors (PlGFs) are only effective on HPVEC. HPVEC are spindle-shaped cells with numerous microvilli at their surface. They grow closely apposed to each other, form fibroblastoid swirling patterns at confluence and have shorter generation and population doubling times than HPAEC. HPVEC overexpress development-associated genes (gremlin, mesenchyme homeobox 2, stem cell protein DSC54) and show an enhanced differentiation potential into adipocytes and osteoblasts in contrast to HPAEC. These data provide collective evidence for a juvenile venous and a more mature arterial phenotype of human fetal endothelial cells. The high plasticity of the fetal venous endothelial cells may reflect their role as tissue-resident endothelial progenitors during embryonic development with a possible benefit for regenerative cell therapy.  相似文献   

10.
Summary In the present study the expression of insulin-like growth factor I (IGF-I; somatomedin C) immunoreactivity was examined in endothelial cells during repair after injury to the intima in the femoral artery of adult rats. Two types of injury were examined: (1) endothelial denudation induced by the use of a catheter, and (2) vessel compression by short-term ligation. In untreated rats, arterial endothelial cells showed no or, only infrequently, low IGF-I immunoreactivity in their cytoplasm. Endothelial cells at the border to the denuded area showed increased IGF-I immunoreactivity one day after injury to the intima of the femoral artery. Thrombocytes and fibrin deposits as well as vital endothelial cells, covered by clots, were immunonegative. The maximal intensity of IGF-I immunoreactivity was reached within 3 days after insult. The IGF-I immunoreactivity in the endothelial cells remained elevated for at least 4 weeks, compared to the controls. Intimai thickenings appeared within a week after injury and many cells in these thickenings showed intense IGF-I immunoreactivity as did the covering endothelial cells. Smooth muscle cells in the media were generally immunonegative during control conditions and after endothelial denudation. Spontaneously hypertensive rats (SHR) showed, similarly to their matched controls (WKY), approximately the same patterns of IGF-I immunoreactivity in their endothelial cells both under normal conditions and after injury. It is concluded that IGF-I is likely to be involved in the repair of the intima in injured arteries.  相似文献   

11.
Branching morphogenesis is a key process in the formation of vascular networks. To date, little is known regarding the molecular events regulating this process. We investigated the involvement of synectin in this process. In zebrafish embryos, synectin knockdown resulted in a hypoplastic dorsal aorta and hypobranched, stunted, and thin intersomitic vessels due to impaired migration and proliferation of angioblasts and arterial endothelial cells while not affecting venous development. Synectin(-/-) mice demonstrated decreased body and organ size, reduced numbers of arteries, and an altered pattern of arterial branching in multiple vascular beds while the venous system remained normal. Murine synectin(-/-) primary arterial, but not venous, endothelial cells showed decreased in vitro tube formation, migration, and proliferation and impaired polarization due to abnormal localization of activated Rac1. We conclude that synectin is involved in selective regulation of arterial, but not venous, growth and branching morphogenesis and that Rac1 plays an important role in this process.  相似文献   

12.
Delivery of a heterogeneous population of cells with endothelial phenotype derived from peripheral blood has been shown to improve vascular responses after balloon arterial injury in an endothelium-dependent manner. Refinement of culture techniques has enabled the generation of outgrowth endothelial cells (OECs), a homogeneous population of distinctly endothelial cells expanded from circulating progenitor cells. The present study tested the hypothesis that OEC delivery would confer vascular protection after balloon arterial injury in a rabbit model. Rabbit peripheral blood mononuclear cells (PBMCs) were cultured in endothelial growth medium for 4-5 wk, yielding proliferative OECs with distinct endothelial phenotype (morphology, incorporation of acetylated LDL, and expression of endothelial nitric oxide synthase and caveolin-1 but not CD14). Animals underwent balloon carotid injury immediately followed by local delivery of autologous OECs for 20 min. Fluorescent-labeled OECs were detected in all layers at 4 wk, with immunostaining revealing maintenance of endothelial phenotype (von Willebrand factor-positive and RAM-11-negative) by luminal and nonluminal cells. To evaluate functional effects, additional animals received autologous OECs, saline, or freshly harvested PBMCs as noncultured cell controls by local dwell after balloon injury. Local OEC delivery improved endothelium-dependent vasoreactivity (P < 0.05 vs. saline and PBMC) and similarly reduced neointimal formation (P < 0.05 vs. saline and PBMC). These data suggest that OECs can be detected in injured arterial segments at 4 wk. Moreover, delivery of OECs confers greater vascular protection than PBMCs or saline controls and may thus offer a novel, autologous strategy to limit the response to mechanical injury.  相似文献   

13.
In vertebrate embryos, the dorsal aorta and the posterior cardinal vein form in the trunk to comprise the original circulatory loop. Previous studies implicate Hedgehog (Hh) signaling in the development of the dorsal aorta. However, the mechanism controlling specification of artery versus vein remains unclear. Here, we investigated the cell-autonomous mechanism of Hh signaling in angioblasts (endothelial progenitor cells) during arterial-venous specification utilizing zebrafish mutations in Smoothened (Smo), a G protein-coupled receptor essential for Hh signaling. smo mutants exhibit an absence of the dorsal aorta accompanied by a reciprocal expansion of the posterior cardinal vein. The increased number of venous cells is equivalent to the loss of arterial cells in embryos with loss of Smo function. Activation of Hh signaling expands the arterial cell population at the expense of venous cell fate. Time-lapse imaging reveals two sequential waves of migrating progenitor cells that contribute to the dorsal aorta and the posterior cardinal vein, respectively. Angioblasts deficient in Hh signaling fail to contribute to the arterial wave; instead, they all migrate medially as a single population to form the venous wave. Cell transplantation analyses demonstrate that Smo plays a cell-autonomous role in specifying angioblasts to become arterial cells, and Hh signaling-depleted angioblasts differentiate into venous cells instead. Collectively, these studies suggest that arterial endothelial cells are specified and formed via repressing venous cell fate at the lateral plate mesoderm by Hh signaling during vasculogenesis.  相似文献   

14.
Differential protein profiling by 2‐D PAGE is generally useful in biomarker discovery, proteome analysis and routine sample preparation prior to analysis by MS. The goal of this study was to compare 2‐D PAGE‐resolved protein profile of lymphatic endothelial cells to those of venous, and arterial endothelial cells isolated from lymphatic and blood vessels of bovine mesentery (bm). Three 2‐D PAGE electrophoretograms were produced for each of the three cell types and quantitatively analyzed. Protein identification by LC‐MS/MS was performed to identify 39 proteins found to be present at statistically significantly different levels in the three cell types (p<0.05). Most of the 39 proteins have not been previously reported in EC proteomic studies of 2‐D PAGE electrophoretograms. Three proteins, HSPA1B (HSP70 family member), HSPB1 (HSP27 family member), and UBE2D3 (a member of E2 ubiquitin‐conjugating enzymes) found to be at highest levels in bm arterial endothelial cells, bm venous endothelial cells, and bm lymphatic endothelial cells, respectively, were validated by immunoblotting with appropriate antibodies. The lack of substantial overlap between our results and those of other groups' comparative studies are discussed. Functional implications of differences in levels of various proteins identified in the three cell types are also discussed.  相似文献   

15.
The surgical options in arterial reconstruction are: the use of autologous arteries; autologous veins; or expanded polytetrafluoroethylene (ePTFE) grafts. However, the development of intimal hyperplasia when using veins or ePTFE grafts has been associated with graft failure. Since autologous arteries are not always available, the use of cryopreserved arteries has to be considered. The aims of this study were: (a) to compare the viscoelastic properties of stored cryopreserved arteries and fresh arteries by in vitro analysis; and (b) to compare the viscoelastic properties of arteries measured non-invasively in normotensive patients, with fresh arteries, cryopreserved arteries, and ePTFE segments. The viscoelastic studies were performed in normotensive patients using stress-strain analysis with non-invasive measurement of pressure and diameter in the common carotid artery, and in vitro measurements of pressure and diameter in arteries and prostheses. The in vitro studies showed that the elastic modulus (E), viscous modulus (eta), Stiffness Index (SI), Peterson modulus (Ep), and the pulse wave velocity (PWV) values for human cryopreserved carotid arteries were similar to the values obtained non-invasively in normotensive subjects (P>0.05) and to human fresh vessels (P>0.05). In vitro, the SI, Ep, PWV, and E values of ePTFE were significantly higher than the observed values in subjects and with fresh and cryopreserved arteries (P<0.05); on the other hand the ePTFE eta values were the lowest (P<0.05). We concluded that cryopreserved arteries have similar viscoelastic properties to those obtained in vivo in the arteries of normotensive subjects and in vitro in fresh arteries. Consequently, we conclude that the cryopreservation procedure does not modify the mechanical properties of the arterial wall.  相似文献   

16.
Shi L  Yue W  Zhang J  Lv L  Ren Y  Yan P 《Animal reproduction science》2009,113(1-4):299-304
The objective of this study was to investigate the influence of ovarian cortex cells (OCCs) monolayers on the nuclear maturation of sheep oocytes with or without cumulus cells during IVM. Sheep ovaries collected from a local abattoir were transported to the laboratory in warm PBS containing antibiotics within 2-3h after collection. Cumulus-oocyte complexes (COCs) were obtained by aspiration and evaluated in a pre-incubated Hepes-modified TCM 199 medium. The selected COCs were randomly divided into six treatment groups: group 1 (control group): oocytes enclosed by cumulus cells were cultured in maturation medium; group 2 (co-culture group): oocytes enclosed by cumulus cells co-cultured with OCCs monolayers; group 3 (conditioned group): oocytes enclosed by cumulus cells were cultured in OCCs-conditioned medium; group 4 (denuded group): denuded oocytes were cultured in the maturation medium; group 5 (denuded co-culture group): denuded oocytes co-cultured with OCCs monolayers in maturation medium; group 6 (denuded conditioned group): denuded oocytes were cultured in OCCs-conditioned medium. After maturation for 24h, the oocytes in each treatment group were fixed, stained and the nuclear status of the oocytes were assessed under an inverted microscope. The highest percentage of metaphase II (M-II) stage oocyte was observed in group 2 (86.3%) and the lower percentage was observed in the denuded groups (group 4-6). The removal of cumulus cells dramatically decreased the percentage of M-II stage oocyte. The comparison of the nuclear maturation status in group 4-6 showed that the co-culture of oocyte with OCCs monolayers resulted in progression to completing the GVBD stage to reach the M-II stage. The results demonstrated that the presence of OCCs could positively influence the meiotic resumption and progression of sheep oocytes during IVM.  相似文献   

17.
Results of previous in vivo experiments indicated that the presence of arterial endothelium modifies cholesteryl ester (CE) metabolism and the retention of low density lipoproteins (LDL) in injured arteries. We describe herein the effects of bovine arterial endothelial cells (ENDO) on the CE cycle, fluid phase endocytosis, and cell proliferation in co-cultured bovine arterial smooth muscle cells (SMC). Following several days of cultivation on confluent SMC, ENDO were removed from SMC by treatment of the co-cultures with 1.0% collagenase (type II). Removal of only ENDO from the co-culture dishes was confirmed by immunofluorescent staining for Factor VIII antigen, hemotoxylin-eosin staining, and biochemical analyses. We observed that ENDO grown to 75% confluency on confluent SMC induced: 1) a reduction of CE hydrolysis as a result of decreased lysosomal CE hydrolytic activity in SMC as compared to SMC cultured alone; and 2) an increase in the rate of incorporation of labeled oleate into CE as a result of increased acyl CoA:cholesterol O-acyltransferase activity in SMC as compared to SMC cultured alone. Neither endothelial cell-derived culture media (ECDM) nor fibroblasts modulated CE metabolism in co-cultured SMC. Additional experiments showed that the presence of endothelial cells or ECDM decreased the proliferation of co-cultured SMC by 50%, but enhanced the endocytotic rate of labeled sucrose into SMC threefold. Results of experiments described herein demonstrate that, in addition to providing a thrombo-resistant surface and regulating permeability, endothelial cells may also serve to modulate cholesteryl ester metabolism in smooth muscle cells derived from the arterial wall.  相似文献   

18.
We have constructed an in vitro arterial wall model by coculturing bovine arterial endothelial cells (ECs) and smooth muscle cells (SMCs). When ECs were seeded directly over SMCs and cocultured in an ordinary culture medium, ECs grew sparsely and did not form a confluent monolayer. Addition of ascorbic acid to the culture medium at concentrations greater than 50 μg/ml increased the production of type IV collagen by the SMCs, and ECs formed a confluent monolayer covering the entire surface of SMCs. Histological studies showed that the thickness of the cell layer composed of ECs and SMCs increased with increasing duration of coculture. This arterial wall model, prepared by our method, may serve as a simple and good in vitro model to study the effects of factors such as biological chemicals and shear stress on cell proliferation and other physiological functions of arterial walls.  相似文献   

19.
Schwann cell transplantation following neuronal injury could encourage regeneration of spinal cord as well as improving peripheral nerve gap repair. In order to gain a better understanding of the role of transplanted Schwann cells in vivo, it is essential to be able to follow their behaviour after transplantation. Our aim was to evaluate the suitability of two vital fluorescent labels on the proliferation rate and phenotypic stability of Schwann cells, in either pure culture or mixed co-culture. Primary cultures of Schwann cells were obtained from Dark Agouti and Lewis neonatal rats and labelled with H33342 and PKH26, respectively. In mixed cultures, a 50:50 mixture of Dark Agouti and Lewis Schwann cells was present. Labelled cultured cells were examined at 1, 2 and 4 weeks for viability and phenotypic marker expression of S100, GFAP, p75, MHC I, MHC II and compared with corresponding unlabelled cells. The results showed that although there was no deleterious interaction in the mixed cultures, the viability was reduced by the labelling after 2 weeks. Labelled cells could be distinguished up to 4 weeks, but there was leakage of H33342 label after 2 weeks. Labelled Schwann cells showed reduced expression of phenotypic markers, especially p75 when labelled with H33342. In conclusion, H33342 and PKH26 can be used as fluorescent markers of Schwann cells for short-term studies, for a maximum of 2 weeks, but different markers may be needed for longer experiments.  相似文献   

20.
Subendothelial invasion by leukocytes is a sign of intimal thickening in arteriosclerosis and in the response of a vessel to mechanical damage. Our study was designed to establish whether these cells are implicated in the formation of a neointima in an autologous arterial graft model in the rat and to evaluate the effects of cyclosporin A (CsA). Three study groups were established according to whether the animals were treated with CsA-Cp (Sandimmun), CsA-Et (ethanol vehicle) or received no treatment (control group). Both drug forms were administered (5 mg/kg/day, s.c.) from 4 days prior to surgery until the time of sacrifice. Antibodies specific for lymphocytes (CD4, CD8), monocytes/macrophages-ED1, smooth muscle alpha-actin and the von Willebrand factor (vWF) were used to identify the cells in the grafted arterial wall. In control grafts, the neointima had formed by 2 weeks post-implant. However, the cells comprising this layer generally presented no positivity whatsoever towards the antibodies employed. At 50 days, the new layer was observed to be formed by a vWF-positive endothelium and alpha-actin-positive cells. In all three groups, several polymorphonuclear (PMN) cells adhered to the denuded luminal surface from 7 days onwards. In the treated animals, neutrophils and monocytes were seen to infiltrate intimal and medial layers during the later post-implant stages. Around the third week post-implant, the neointima had reached the grafted segment from the distal portion of the recipient artery, and by 50 days it was similar to that seen in control specimens. Our findings suggest that: a) neutrophils play a role in neointimal thickening in this arterial autograft model; and b) CsA promotes the adhesion and infiltration of neutrophils in the injured arterial wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号