首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: The 2-deoxyglucose autoradiographic method has been used to study activity in cerebellum of the weaver and nervous mutant mice. Patterns of 2-deoxyglucose incorporation into the cerebral hemispheres from weaver and nervous strains did not differ significantly from those of the controls. In the normal cerebellum, 2-deoxyglucose incorporation was maximal in the granular layer, where mossy fibers form synapses with the dendrites of granule cells. In the cerebellum of nervous mice, which lacks Purkinje cells, the incorporation of the 2-deoxyglucose was maximal in the granular layer, but the incorporation into the molecular layer appeared less than in the control. The incorporation into the cerebellum from weaver, which lacks granule cells, was much higher than that of the control, the maximal incorporation being found in the Purkinje cell layer and in cell masses located in the white matter. These data suggest that the heterologous synapses that mossy fibers or climbing fibers form with the cells in the Purkinje cell layer and the cells in the white matter in the weaver cerebellum are functional.  相似文献   

2.
The β4-and β10-thymosins, recently identified as actin monomer-sequestering proteins, are developmentally regulated in brain. Using specific mRNA and protein probes, we have used in situ hybridization and immunohis-tochemical techniques to investigate the distribution of the β-thymosin mRNAs and their proteins in developing rat cerebellum. Early in postnatal development, both β-thymosin mRNAs were expressed at highest levels in the postmitotic, premigratory granule cells of the external granular layer; expression diminished as granule cells migrated to and differentiated within the developing internal granular layer. In addition, both β-thymosin proteins were present in bundles of cerebellar afferent fibers in the white matter at this time. Throughout the maturation period, both proteins were present in elongating parallel fibers in the upper portion of the molecular layer. Later in cerebellar development, thymosin β4, but not thymosin β10, was expressed in Golgi epithelial cells and Bergmann processes. Thymosin β4 was expressed in a small population of cells with microglial morphology scattered throughout the gray and white matter. Thymosin β10 was detected in an even smaller population of glia. Expression of thymosin β4 and thymosin β10 in premigratory granule cells and in growing neuronal processes is consistent with the possibility that both β-thymosins are involved in the dynamics of actin polymerization during migration and process extension of neurons.  相似文献   

3.
The distribution of GM1 ganglioside in developing mouse cerebellum was monitored by indirect immunofluorescent detection of choleragenoid receptors. In frozen sections of cerebellum from mice 5 to 10 days old, fluorescence is observed on granule cells in the inner rows of the external granular layer, in the growing molecular layer, the Purkinje cell layer, and the internal granular layer. In sections of adult mice, fluorescence is restricted to the bodies of Purkinje and internal granule neurons. The percentage of fluorescent dissociated or cultured cerebellar cells increases with the postnatal age of the mouse or the duration of time in vitro. No fluorescence is observed in the absence of choleragenoid or if the test material is extracted with chloroform:methanol. To determine whether the expression of surface GM1 ganglioside in culture is a reflection of a developmental program, mice are injected at particular times with [3H]thymidine and cerebellar cultures processed for simultaneous autoradiography and immunofluorescence. Granule cells from 8-day-old mice having cholera toxin receptors at 20 hr in vitro are a distinct population born 1 day or earlier prior to sacrifice. Cells synthesizing DNA on the day of sacrifice are not fluorescent at 20 hr in vitro. This observation correlates well with immunohistological results showing a lack of fluorescence in the outer proliferative rows of the external granular layer. Therefore GM1 ganglioside is not present on granule cell precursors but is expressed at some time after the cells become postmitotic. GM1 ganglioside is detected on growing parallel fibers in situ and neurites in vitro but not on adult axons, suggesting differential localization at a later stage of development.  相似文献   

4.
The cerebellar external granule layer (EGL) is the site of the largest transit amplification in the developing brain, and an excellent model for studying neuronal proliferation and differentiation. In addition, evolutionary modifications of its proliferative capability have been responsible for the dramatic expansion of cerebellar size in the amniotes, making the cerebellum an excellent model for evo-devo studies of the vertebrate brain. The constituent cells of the EGL, cerebellar granule progenitors, also represent a significant cell of origin for medulloblastoma, the most prevalent paediatric neuronal tumour. Following transit amplification, granule precursors migrate radially into the internal granular layer of the cerebellum where they represent the largest neuronal population in the mature mammalian brain. In chick, the peak of EGL proliferation occurs towards the end of the second week of gestation. In order to target genetic modification to this layer at the peak of proliferation, we have developed a method for genetic manipulation through ex vivo electroporation of cerebellum slices from embryonic Day 14 chick embryos. This method recapitulates several important aspects of in vivo granule neuron development and will be useful in generating a thorough understanding of cerebellar granule cell proliferation and differentiation, and thus of cerebellum development, evolution and disease.  相似文献   

5.
A monoclonal antibody designated M2 arose from the fusion of mouse myeloma cells with splenocytes from a rat immunized with particulate fraction from early postnatal mouse cerebellum. Expression of M2 antigen was examined by indirect immunofluorescence on frozen sections of developing and adult mouse cerebellum and on monolayer cultures of early postnatal mouse cerebellar cells. In adult cerebellum, M2 staining outlines the cell bodies of granule and Purkinje cells. A weaker, more diffuse staining is seen in the molecular layer and white matter. In sections of newborn cerebellum, M2 antigen is weakly detectable surrounding cells of the external granular layer and Purkinje cells. The expression of M2 antigen increases during development in both cell types, reaching adult levels by postnatal day 14. At all stages of postnatal cerebellar development, granule cells that have completed migration to the internal granule layer are more heavily stained by M2 antibodies than are those before and in process of migration. In monolayer cultures, M2 antigen is detected on the cell surface Of all GFA protein-positive astrocytes and on more immature oligodendrocytes, that express 04 antigen but not 01 antigen. After 3 days in culture, tetanus toxinpositive neurons begin to express M2 antigen. The same delayed expression of M2 antigen on neurons is observed in cultures derived from mice ranging in age from postnatal day 0 to 10.  相似文献   

6.
We previously reported that CD44-positive cells were candidates for astrocyte precursor cells in the developing cerebellum, because cells expressing high levels of CD44 selected by fluorescence-activated cell sorting (FACS) gave rise only to astrocytes in vitro. However, whether CD44 is a specific cell marker for cerebellar astrocyte precursor cells in vivo is unknown. In this study, we used immunohistochemistry, in situ hybridization, and FACS to analyze the spatial and temporal expression of CD44 and characterize the CD44-positive cells in the mouse cerebellum during development. CD44 expression was observed not only in astrocyte precursor cells but also in neural stem cells and oligodendrocyte precursor cells (OPCs) at early postnatal stages. CD44 expression in OPCs was shut off during oligodendrocyte differentiation. Interestingly, during development, CD44 expression was limited specifically to Bergmann glia and fibrous astrocytes among three types of astrocytes in cerebellum, and expression in astrocytes was shut off during postnatal development. CD44 expression was also detected in developing Purkinje and granule neurons but was limited to granule neurons in the adult cerebellum. Thus, at early developmental stages of the cerebellum, CD44 was widely expressed in several types of precursor cells, and over the course of development, the expression of CD44 became restricted to granule neurons in the adult.  相似文献   

7.
GAP-43,netrin-1,collapsin-1和neuropilin-1被认为在成网络分布的神经联系中发挥重要的作用.在年幼的啮齿类动物中,小脑包含5种不同的集中分布层:白质、内颗粒细胞层(IGL)、浦肯野氏细胞层(PCL)、分子层(ML)和外颗粒细胞层(EGL).与浦肯野氏神经元在出生前产生这一点不同的是,EGL中的细胞在出生后产生,它们接受从前脑olivary核团发出的攀援纤维的主要神经投射,以及从内颗粒细胞发出的平行纤维的神经投射.这些神经投射主要在出生后的前3个星期内建立,同时还有浦肯野氏细胞的发育和成熟.而GAP-43,netrin-1,collapsin-1和neuropilin-1在出生后小脑发育的潜在作用仍然不清楚.为了更加清楚地探讨上述问题,检验了GAP-43,netrin-1,collapsin-1和neuropilin-1的mRNA与蛋白质在出生后5,10,20天和成年小鼠小脑中的表达情况.研究结果显示,这4种分子在小鼠出生后的小脑中有不同的时间和空间表达形式,这些结果与出生后发育和成年期间的轴突发生、延伸以及突触形成都有关联.通过免疫组织化学双标染色,发现小鼠出生后10天的小脑中,GAP-43阳性的浦肯野氏细胞也显示netrin-1或collapsin-1阳性,并且collapsin-1阳性的细胞也对 netrin-1 阳性.上述研究结果证明这4种分子可能参与了小脑的出生后发育.  相似文献   

8.
Tissue plasminogen activator (tPA) mRNA was localized in the developing cerebellum and the potentials role of tPA in migration of cerebellar granule cells was investigated. Proteolytic assays and Northern blots showed little variation in levels of tPA proteolytic activity or tPA mRNA expression in the developing cerebellum. The distribution of cerebellar tPA mRNA at different ages was visualized by in situ hybridization histochemistry. At postnatal day 7 (P7), most labeled cells were in the internal granule layer or developing white matter, and very few if any premigratory granule cells contained tPA mRNA. Although the molecular layer contained labeled cells at all ages, cell counts indicated that a greater percentage of cells in the molecular layer contained tPA mRNA during adulthood than during the period of granule cell migration. The most striking change in tPA mRNA expression was in Purkinje neurons, most of which began to express tPA mRNA between P7 and P14. The potential role of tPA in granule cell migration was investigated by performing migration assays in cerebellar slice explants in the presence or absence of protease inhibitors. The presence of inhibitors did not affect the distance that granule cells migrated. Data in the present study do not support a role for tPA in granule neuron migration; however, they do indicate that tPA is both spatially and temporally regulated during cerebellar development. Possible functions of tPA in the cerebellum are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
Vav3 is a guanosine diphosphate/guanosine triphosphate exchange factor for Rho/Rac GTPases that has been involved in functions related to the hematopoietic system, bone formation, cardiovascular regulation, angiogenesis, and axon guidance. We report here that Vav3 is expressed at high levels in Purkinje and granule cells, suggesting additional roles for this protein in the cerebellum. Consistent with this hypothesis, we demonstrate using Vav3-deficient mice that this protein contributes to Purkinje cell dendritogenesis, the survival of granule cells of the internal granular layer, the timely migration of granule cells of the external granular layer, and to the formation of the cerebellar intercrural fissure. With the exception of the latter defect, the dysfunctions found in Vav3−/− mice only occur at well-defined postnatal developmental stages and disappear, or become ameliorated, in older animals. Vav2-deficient mice do not show any of those defects. Using primary neuronal cultures, we show that Vav3 is important for dendrite branching, but not for primary dendritogenesis, in Purkinje and granule cells. Vav3 function in the cerebellum is functionally relevant, because Vav3−/− mice show marked motor coordination and gaiting deficiencies in the postnatal period. These results indicate that Vav3 function contributes to the timely developmental progression of the cerebellum.  相似文献   

10.
A procedure for the separation of cyclic AMP phosphodiesterase from a commercially available preparation and for raising antibodies against this enzyme in rabbits is described. An antiserum thus obtained was used for the immunocytochemical detection of cyclic nucleotide phosphodiesterase in rat cerebellum. The molecular layer, the granular layer and the cerebellar white matter exhibited different degrees of immunoreactivity. Only a few cell bodies (possibly glial cells) were stained. Most of the antigenic sites were present in the neuropil of the molecular layer and around Purkinje cells. Cerebellar glomeruli, sites of synaptic interactions between mossy fibres, Golgi cells and granule cells, were also stained by this antiserum. Control reactions using preimmune serum were consistently negative.  相似文献   

11.
Localization of arylsulphatase in neurons   总被引:2,自引:1,他引:1  
Abstract— Arylsulphatase activity, with 4-methylumbelliferone sulphate as substrate, was measured by a quantitative histochemical method in individual anterior horn nerve cell bodies and adjacent neuropil of man and monkey; and in molecular and granular layers and subjacent white matter of cerebellum of monkey, rat and guinea pig. The activity was much higher in neuronal perikarya than in neuropil, and higher in the granular layer of cerebellum than in the molecular or white matter, thus resembling the distinctive distribution, reported in monkey, of three other lysosomal enzymes, β-galactosidase, β-glucuronidase and α-naphthyl acid phosphatase. One exception was encountered: the white matter of guinea pig cerebellum had more arysulphatase activity than the granular layer. For comparison, other lysosomal enzymes also were measured in rat and guinea pig cerebellum; in these species, α-naphthyl acid phosphatase distribution was found to differ from that of β-galactosidase and arysulphatase, and from the pattern common to four lysosomal enzymes in the monkey.  相似文献   

12.
Monoclonal antibodies specific for unsulfated, 4-sulfated, and 6-sulfated disaccharide "stubs" that remain attached to the core protein after chondroitinase ABC digestion of chondroitin/dermatan sulfate proteoglycans have been used to study the localization of chondroitin and the two isomeric chondroitin sulfates in developing rat cerebellum. At 1-2 weeks postnatal, unsulfated chondroitin is present in the granule cell layer, molecular layer, and prospective white matter, but there was no staining of the external granule cell layer other than light staining of Bergmann glia fibers. By 3 weeks postnatal, staining of the molecular layer has disappeared and has diminished in the white matter, whereas in adult cerebellum only the granule cell layer remains stained. The staining pattern of chondroitin 4-sulfate is similar to that for chondroitin at 1-2 weeks postnatal, but in contrast to chondroitin, chondroitin 4-sulfate increases in the molecular layer at 3 weeks, and this becomes the most densely stained region of adult cerebellum. Chondroitin 6-sulfate is present predominantly in the prospective white matter of 1-2 week postnatal cerebellum, although significant staining of the granule cell layer is also seen. By 3 weeks postnatal the granule cell staining of chondroitin 6-sulfate has decreased, and in adult cerebellum staining is seen only in the white matter and to a lesser extent in the granule cell layer. Electron microscopy confirmed the presence of chondroitin sulfate in the cytoplasm of neurons and glia of adult brain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Summary A procedure for the separation of cyclic AMP phosphodiesterase from a commercially available preparation and for raising antibodies against this enzyme in rabbits is described. An antiserum thus obtained was used for the immunocytochemical detection of cyclic nucleotide phosphodiesterase in rat cerebellum. The molecular layer, the granular layer and the cerebellar white matter exhibited different degrees of immunoreactivity. Only a few cell bodies (possibly glial cells) were stained. Most of the antigenic sites were present in the neuropil of the molecular layer and around Purkinje cells. Cerebellar glomeruli, sites of synaptic interactions between mossy fibres, Golgi cells and granule cells, were also stained by this antiserum. Control reactions using preimmune serum were consistently negative.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday.  相似文献   

14.
This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In addition we observed reduced numbers and misplaced ectopic Purkinje cells that showed an altered structure of their dendritic arborizations in the hippocampus, while the overall cornus ammonis architecture appeared to be unchanged. In male mice lacking BRaf in the hippocampus the size of the granule cell layer was normal at postnatal day 12 (P12) but diminished at P21, as compared to control littermates. This defect was caused by a reduced ability of dentate gyrus progenitor cells to differentiate into NeuN positive granule cell neurons. In vitro cell culture of P0/P1 hippocampal cells revealed that BRaf deficient cells were impaired in their ability to form microtubule-associated protein 2 positive neurons. Together with the alterations in behaviour, such as autoaggression and loss of balance fitness, these observations indicate that in the absence of BRaf all neuronal cellular structures develop, but neuronal circuits in the cerebellum and hippocampus are partially disturbed besides impaired neuronal generation in both structures.  相似文献   

15.
Nuclear receptors and their coregulators play a critical role in brain development by regulating the spatiotemporal expression of their target genes. The arginine-glutamic acid dipeptide repeats gene (Rere) encodes a nuclear receptor coregulator previously known as Atrophin 2. In the developing cerebellum, RERE is expressed in the molecular layer, the Purkinje cell layer and the granule cell layer but not in granule cell precursors. To study RERE''s role in cerebellar development, we used RERE-deficient embryos bearing a null allele (om) and a hypomorphic allele (eyes3) of Rere (Rere om/eyes3). In contrast to wild-type embryos, formation of the principal fissures in these RERE-deficient embryos was delayed and the proliferative activity of granule cell precursors (GCPs) was reduced at E18.5. This reduction in proliferation was accompanied by a decrease in the expression of sonic hedgehog (SHH), which is secreted from Purkinje cells and is required for normal GCP proliferation. The maturation and migration of Purkinje cells in Rere om/eyes3 embryos was also delayed with decreased numbers of post-migratory Purkinje cells in the cerebellum. During the postnatal period, RERE depletion caused incomplete division of lobules I/II and III due to truncated development of the precentral fissure in the cerebellar vermis, abnormal development of lobule crus I and lobule crus II in the cerebellar hemispheres due to attenuation of the intercrural fissure, and decreased levels of Purkinje cell dendritic branching. We conclude that RERE-deficiency leads to delayed development of the principal fissures and delayed maturation and migration of Purkinje cells during prenatal cerebellar development and abnormal cerebellar foliation and Purkinje cell maturation during postnatal cerebellar development.  相似文献   

16.
Thyroid hormones are essential for correct brain development, and since vertebrates express two thyroid hormone receptor genes (TR alpha and beta), we investigated TR gene expression during chick brain ontogenesis. In situ hybridization analyses showed that TR alpha mRNA was widely expressed from early embryonic stages, whereas TR beta was sharply induced after embryonic day 19 (E19), coinciding with the known hormone-sensitive period. Differential expression of TR mRNAs was striking in the cerebellum: TR beta mRNA was induced in white matter and granule cells after the migratory phase, suggesting a main TR beta function in late, hormone-dependent glial and neuronal maturation. In contrast, TR alpha mRNA was expressed in the earlier proliferating and migrating granule cells, and in the more mature granular and Purkinje cell layers after hatching, indicating a role for TR alpha in both immature and mature neural cells. Surprisingly, both TR genes were expressed in early cerebellar outgrowth at E9, before known hormone requirements, with TR beta mRNA restricted to the ventricular epithelium of the metencephalon and TR alpha expressed in migrating cells and the early granular layer. The results implicate TRs with distinct functions in the early embryonic brain as well as in the late phase of hormone requirement.  相似文献   

17.

Background

During postnatal murine and rodent cerebellar development, cerebellar granule precursors (CGP) gradually stop proliferating as they differentiate after migration to the internal granule layer (IGL). Molecular events that govern this program remain to be fully elucidated. GPR3 belongs to a family of Gs-linked receptors that activate cyclic AMP and are abundantly expressed in the adult brain.

Methodology/Principal Findings

To investigate the role of this orphan receptor in CGP differentiation, we determined that exogenous GPR3 expression in rat cerebellar granule neurons partially antagonized the proliferative effect of Sonic hedgehog (Shh), while endogenous GPR3 inhibition by siRNA stimulated Shh-induced CGP proliferation. In addition, exogenous GPR3 expression in CGPs correlated with increased p27/kip expression, while GPR3 knock-down led to a decrease in p27/kip expression. In wild-type mice, GPR3 expression increased postnatally and its expression was concentrated in the internal granular layer (IGL). In GPR3 −/− mice, the IGL was widened with increased proliferation of CGPs, as measured by bromodeoxyuridine incorporation. Cell cycle kinetics of GPR3-transfected medulloblastoma cells revealed a G0/G1 block, consistent with cell cycle exit.

Conclusions/Significance

These results thus indicate that GPR3 is a novel antiproliferative mediator of CGPs in the postnatal development of murine cerebellum.  相似文献   

18.
Summary Rats were dosed with methylmercuric chloride, either by gastric gavage (5 × 10 mg kg-1 body weight over a 15-day period), or in their drinking water (20 mg methylmercuric chloride l–1 for 14 or 42 days). Localization of mercury within the cerebellum was performed with a silver physical development technique, and metallothionein with dinitrophenyl hapten-sandwich immunohistochemistry. Mercury was detected in structurally undamaged Purkinje neurones and adjacent Bergmann glial cells; no mercury was detected in granule cells even though these small cells nearest the Purkinje layer had a high incidence of pyknotic nuclei. In general, metallothionein was detected mainly in Bergmann glial cells, Purkinje cells, astrocytes and glial cells of white matter; no metallothionein was detected in granule cells. We hypothesized that the resistance of Purkinje cells to methylmercuric chloride reflects their ability to transform organic mercurials to inorganic mercury that, in turn, induces the synthesis of radical-scavenging metallothionein molecules.  相似文献   

19.
Engulfment and cell motility (ELMO) proteins bind to Dock180, a guanine nucleotide exchange factor (GEF) of the Rac family, and regulate GEF activity. The resultant ELMO/Dock180/Rac module regulates cytoskeletal reorganization responsible for the engulfment of apoptotic cells, cell migration, and neurite extension. The expression and function of Elmo family proteins in the nervous system, however, are not yet fully understood. Here, we characterize the comparative gene expression profiles of three Elmo family members (Elmo1, Elmo2, and Elmo3) in the brain of C57BL/6J mice, a widely used inbred strain, together with reeler mutant mice to understand gene expression in normal laminated brain areas compared with abnormal areas. Although all three Elmo genes showed widespread mRNA expression over various mouse tissues tested, Elmo1 and Elmo2 were the major types expressed in the brain, and three Elmo genes were up-regulated between the first postnatal week (infant stage) and the third postnatal week (juvenile, weaning stage). In addition, the mRNAs of Elmo genes showed distinct distribution patterns in various brain areas and cell-types; such as neurons including inhibitory interneurons as well as some non-neuronal cells. In the cerebral cortex, the three Elmo genes were widely expressed over many cortical regions, but the predominant areas of Elmo1 and Elmo2 expression tended to be distributed unevenly in the deep (a lower part of the VI) and superficial (II/III) layers, respectively, which also changed depending on the cortical areas and postnatal stages. In the dentate gyrus of the hippocampus, Elmo2 was expressed in dentate granule cells more in the mature stage rather than the immature-differentiating stage. In the thalamus, Elmo1 but not the other members was highly expressed in many nuclei. In the medial habenula, Elmo2 and Elmo3 were expressed at intermediate levels. In the cerebellar cortex, Elmo1 and Elmo2 were expressed in differentiating-mature granule cells and mature granule cells, respectively. In the Purkinje cell layer, Elmo1 and Elmo2 were expressed in Purkinje cells and Bergmann glia, respectively. Disturbed cellular distributions and laminar structures caused by the reeler mutation did not severely change expression in these cell types despite the disturbed cellular distributions and laminar structures, including those of the cerebrum, hippocampus, and cerebellum. Taken together, these results suggested that these three Elmo family members share their functional roles in various brain regions during prenatal-postnatal development.  相似文献   

20.
Cerebellar granule cells (CGCs) are the most abundant neuronal type in the mammalian brain, and their differentiation is regulated by the basic helix-loop-helix gene, Math1. However, little is known about downstream genes of Math1 and their functions in the cerebellum. To investigate them, we have here established an electroporation-based in vivo gene transfer method in the developing mouse cerebellum. Misexpression of Math1 ectopically induced expression of Bar-class homeobox genes, Mbh1 and Mbh2, which are expressed by CGCs. Conversely, their expression was repressed in CGCs by knockdown of Math1. These findings, taken together with chromatin immunoprecipitation assays, suggest that Math1 directly regulates the Mbh genes in CGCs. Furthermore, a dominant-negative form of the Mbh proteins disrupted proper formation of the external granule layer and differentiation of CGCs, whereas misexpression of the Mbh genes ectopically induced expression of a CGC marker in nonneuronal cells, indicating that the Mbh proteins are required for the differentiation of CGCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号