首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For many migratory bird species, the latitudinal range of the winter distribution spans thousands of kilometres, thus encompassing considerable variation in individual migration distances. Pressure to winter near breeding areas is thought to be a strong driver of the evolution of migration patterns, as individuals undertaking a shorter migration are generally considered to benefit from earlier arrival on the breeding grounds. However, the influence of migration distance on timing of arrival is difficult to quantify because of the large scales over which individuals must be tracked. Using a unique dataset of individually‐marked Icelandic black‐tailed godwits Limosa limosa islandica tracked throughout the migratory range by a network of hundreds of volunteer observers, we quantify the consequences of migrating different distances for the use of stop‐over sites and timing of arrival in Iceland. Modelling of potential flight distances and tracking of individuals from across the winter range shows that individuals wintering further from the breeding grounds must undertake a stop‐over during spring migration. However, despite travelling twice the distance and undertaking a stop‐over, individuals wintering furthest from the breeding grounds are able to overtake their conspecifics on spring migration and arrive earlier in Iceland. Wintering further from the breeding grounds can therefore be advantageous in migratory species, even when this requires the use of stop‐over sites which lengthen the migratory journey. As early arrival on breeding sites confers advantages for breeding success, the capacity of longer distance migrants to overtake conspecifics is likely to influence the fitness consequences of individual migration strategies. Variation in the quality of wintering and stopover sites throughout the range can therefore outweigh the benefits of wintering close to the breeding grounds, and may be a primary driver of the evolution of specific migration routes and patterns.  相似文献   

2.
Global climate change can cause pronounced changes in species? migratory behaviour. Numerous recent studies have demonstrated climate‐driven changes in migration distance and spring arrival date in waterbirds, but detailed studies based on long‐term records of individual recapture or re‐sighting events are scarce. Using re‐sighting data from 430 marked individuals spanning a 60‐year period (winters 1956/1957 to 2015/2016), we assessed patterns in migration distance and spring arrival date, wintering‐site fidelity and survival in the increasing central European breeding population of Greylag Geese Anser anser. We demonstrate a long‐term decrease in migration distance, changes in the wintering range caused by winter partial short‐stopping, and the earlier arrival of geese on their breeding grounds. Greylag Geese marked on central Europe moulting grounds have not been recorded wintering in Spain since 1986 or in Tunisia and Algeria since 2004. The migration distance and spring arrival of geese indicated an effect of temperature at the breeding site and values of the NAO index. Greylag Geese migrate shorter distances and arrive earlier in milder winters. We suggest that shifts in the migratory behaviour of Central European Greylag Geese are individual temperature‐dependent decisions to take advantage of wintering grounds becoming more favourable closer to their breeding grounds, allowing birds to acquire breeding territories earlier.  相似文献   

3.
Sea ducks exhibit complex movement patterns throughout their annual cycle; most species use distinct molting and staging sites during migration and disjunct breeding and wintering sites. Although research on black scoters (Melanitta americana) has investigated movements and habitat selection during winter, little is known about their annual-cycle movements. We used satellite telemetry to identify individual variation in migratory routes and breeding areas for black scoters wintering along the Atlantic Coast, to assess migratory connectivity among wintering, staging, breeding, and molt sites, and to examine effects of breeding site attendance on movement patterns and phenology. Black scoters occupied wintering areas from Canadian Maritime provinces to the southeastern United States. Males used an average of 2.5 distinct winter areas compared to 1.1 areas for females, and within-winter movements averaged 1,256 km/individual. Individuals used an average of 2.1 staging sites during the 45-day pre-breeding migration period, and almost all were detected in the Gulf of St. Lawrence. Males spent less time at breeding sites and departed them earlier than females. During post-breeding migration, females took approximately 25 fewer days than males to migrate from breeding sites to molt and staging sites, and then wintering areas. Most individuals used molt sites in James and Hudson bays before migrating directly to coastal wintering sites, which took approximately 11 days and covered 1,524 km. Males tended to arrive at wintering areas 10 days earlier than females. Individuals wintering near one another did not breed closer together than expected by chance, suggesting weak spatial structuring of the Atlantic population. Females exhibited greater fidelity (4.5 km) to previously used breeding sites compared to males (60 km). A substantial number of birds bred west of Hudson Bay in the Barrenlands, suggesting this area is used more widely than believed previously. Hudson and James bays provided key habitat for black scoters that winter along the Atlantic Coast, with most individuals residing for >30% of their annual cycle in these bays. Relative to other species of sea duck along the Atlantic Coast, the Atlantic population of black scoter is more dispersed and mobile during winter but is more concentrated during migration. These results could have implications for future survey efforts designed to assess population trends of black scoters. © 2021 The Wildlife Society.  相似文献   

4.
Recent climatic change is causing spring events in northern temperate regions to occur earlier in the year. As a result, migratory birds returning from tropical wintering sites may arrive too late to take full advantage of the food resources on their breeding grounds. Under these conditions, selection will favour earlier spring arrival that could be achieved by overwintering closer to the breeding grounds. However, it is unknown how daylength conditions at higher latitudes will affect the timing of life cycle stages. Here, we show in three species of Palaearctic-African migratory songbirds that a shortening of migration distance induces an advancement of springtime activities. Birds exposed to daylengths simulating migration to and wintering in southern Europe considerably advanced their spring migratory activity and testicular development. This response to the novel photoperiodic environment will enable birds wintering further north to advance spring arrival and to start breeding earlier. Thus, phenotypic flexibility in response to the photoperiod may reinforce selection for shorter migration distance if spring temperatures continue to rise.  相似文献   

5.
In migratory birds, the timing of departure from wintering grounds is often dependant on the quality of habitat on an individual's territory and may influence individual fitness, resulting in an interaction of life history stages across large geographical distances. American redstart Setophaga ruticilla males who overwinter in high quality habitats arrive early to breed and subsequently produce more offspring than late arrivers. Since many migratory species overlap vernal migration with the physiological transition to breeding, we examined if breeding preparation plays a role in this seasonal interaction. We tested the hypothesis that early arriving male redstarts from high quality winter habitats are in superior breeding condition by simultaneously measuring winter habitat quality (stable‐carbon isotopes) and breeding preparation (circulating androgen, cloacal protuberance (CP) diameter) upon arrival at breeding grounds. Compared with late arrivers, early arriving males were from higher quality winter habitats and had higher androgen, but smaller CPs. Males arriving with higher androgen were in more advanced physiological migratory condition, as measured by haematocrit. Early arrivers were more likely to successfully breed, but there was no significant relationship between androgen upon arrival and breeding success. One possible explanation for these relationships is that androgen measured during arrival is most relevant in a migratory context, such that birds with high androgen may benefit from effects on migratory condition, positively influencing fitness through earlier arrival.  相似文献   

6.
Long‐distance migration in birds is relatively well studied in nature; however, one aspect of this phenomenon that remains poorly understood is the pattern of distribution presented by species during arrival to and establishment of wintering areas. Some studies suggest that the selection of areas in winter is somehow determined by climate, given its influence on both the distribution of bird species and their resources. We analyzed whether different migrant passerine species of North America present climatic preferences during arrival to and departure from their wintering areas. We used ecological niche modeling to generate monthly potential climatic distributions for 13 migratory bird species during the winter season by combining the locations recorded per month with four environmental layers. We calculated monthly coefficients of climate variation and then compared two GLM (generalized linear models), evaluated with the AIC (Akaike information criterion), to describe how these coefficients varied over the course of the season, as a measure of the patterns of establishment in the wintering areas. For 11 species, the sites show nonlinear patterns of variation in climatic preferences, with low coefficients of variation at the beginning and end of the season and higher values found in the intermediate months. The remaining two species analyzed showed a different climatic pattern of selective establishment of wintering areas, probably due to taxonomic discrepancy, which would affect their modeled winter distribution. Patterns of establishment of wintering areas in the species showed a climatic preference at the macroscale, suggesting that individuals of several species actively select wintering areas that meet specific climatic conditions. This probably gives them an advantage over the winter and during the return to breeding areas. As these areas become full of migrants, alternative suboptimal sites are occupied. Nonrandom winter area selection may also have consequences for the conservation of migratory bird species, particularly under a scenario of climate change.  相似文献   

7.
Identifying the factors that control population dynamics in migratory animals has been constrained by our inability to track individuals throughout the annual cycle. Using stable carbon isotopes, we show that the reproductive success of a long-distance migratory bird is influenced by the quality of habitat located thousands of kilometres away on tropical wintering grounds. For male American redstarts (Setophaga ruticilla), winter habitat quality influenced arrival date on the breeding grounds, which in turn affected key variables associated with reproduction, including the number of young fledged. Based on a winter-habitat model, females occupying high-quality winter habitat were predicted to produce more than two additional young and to fledge offspring up to a month earlier compared with females wintering in poor-quality habitat. Differences of this magnitude are highly important considering redstarts are single brooded, lay clutches of only three to five eggs and spend only two-and-a-half months on the breeding grounds. Results from this study indicate the importance of understanding how periods of the annual cycle interact for migratory animals. Continued loss of tropical wintering habitat could have negative effects on migratory populations in the following breeding season, minimizing density-dependent effects on the breeding grounds and leading to further population declines. If conservation efforts are to be successful, strategies must incorporate measures to protect all the habitats used during the entire annual cycle of migratory animals.  相似文献   

8.
Several populations of long-distance migratory birds are currently suffering steep demographic declines. The identification of the causes of such declines is difficult because population changes may be driven by events occurring in distant geographical areas during different phases of the annual life-cycle of migrants. Furthermore, wintering areas and migration routes of populations of small-sized species are still largely unknown, with few exceptions. In this paper we identified the critical phases of the annual life-cycle that most influence the population dynamics of a small passerine, the Barn Swallow Hirundo rustica. We used information on temporal dynamics of a population breeding in Northern Italy, whose wintering range and timing of migration have been recently described by miniaturised tracking dataloggers. Our results indicated that primary productivity in the wintering grounds in the month when most individuals arrive from autumn migration and primary productivity in an area that is probably a stopover site during spring migration, influenced population dynamics more than habitat conditions at the breeding grounds. By using annual variation in primary productivity at the wintering grounds and stopover sites as predictors, we replicated the observed interannual population changes with great accuracy. However, the steep decline recently suffered by the population could be replicated only by including a constant annual decline in the model, suggesting that changes in primary productivity only predicted the interannual variation around the long-term trend. Our study therefore suggests the existence of critical periods during wintering and migration that may have large impact on population fluctuations of migrant birds.  相似文献   

9.
Events during the non-breeding season may affect the body condition of migratory birds and influence performance during the following breeding season. Migratory birds nesting in the Arctic often rely on endogenous nutrients for reproductive efforts, and are thus potentially subject to such carry-over effects. We tested whether king eider (Somateria spectabilis) arrival time and body mass upon arrival at breeding grounds in northern Alaska were affected by their choice of a winter region in the Bering Sea. We captured birds shortly after arrival on breeding grounds in early June 2002–2006 at two sites in northern Alaska and determined the region in which individuals wintered using satellite telemetry or stable isotope ratios of head feathers. We used generalized linear models to assess whether winter region explained variation in arrival body mass among individuals by accounting for sex, site, annual variation, and the date a bird was captured. We found no support for our hypothesis that either arrival time or arrival body mass of king eiders differed among winter regions. We conclude that wintering in different regions in the Bering Sea is unlikely to have reproductive consequences for king eiders in our study areas.  相似文献   

10.
For migratory birds, it is necessary to estimate annual and overwinter survival rates, identify factors that influence survival, and assess whether survival varies with age and sex if we are to understand population dynamics and thus inform conservation. This study is one of the first to document overwinter and annual survival from the wintering grounds of a declining Afro‐Palaearctic migrant bird, the Whinchat Saxicola rubetra. We monitored a population of marked individuals for which dispersal was low and detectability was high, allowing accurate estimates of survival. Annual survival was at least 52% and did not differ significantly across demographic groups or with habitat characteristics or residency time in the previous winter. Overwinter survival was very high and monthly survival at least 98% at some sites. Although winter residency varied spatially and with age, lower residency did not correlate with reduced annual survival, suggesting occupancy of multiple wintering sites rather than higher winter mortality of individuals with shorter residency. Our results suggest that mortality occurs primarily outside the wintering period, probably during migration, and that wintering conditions have minimal influence on survival. The similarity between survival rates for all age and sex classes when measured on the wintering grounds implies that any difference in survival with age or sex occurs only during the first migration or during the post‐fledging stage, and that selection of wintering habitat, or territory quality, makes little difference to survival in Whinchats. Our findings suggest that the wintering grounds do not limit populations as much as the migratory and breeding stages, with implications for the conservation of declining Afro‐Palaearctic migrants more widely.  相似文献   

11.
Sex biases in distributions of migratory birds during the non‐breeding season are widespread; however, the proximate mechanisms contributing to broad‐scale sex‐ratio variation are not well understood. We analyzed a long‐term winter‐banding dataset in combination with spring migration data from individuals tracked by using geolocators to test three hypotheses for observed variation in sex‐ratios in wintering flocks of snow buntings Plectrophenax nivalis. We quantified relevant weather conditions in winter (temperature, snowfall and snow depth) at each banding site each year and measured body size and condition (fat scores) of individual birds (n > 5500). We also directly measured spring migration distance for 17 individuals by using light‐level geolocators. If the distribution pattern of birds in winter is related to interactions between individual body size and thermoregulation, then larger bodied birds (males) should be found in colder sites (body size hypothesis). Males may also winter closer to breeding grounds to reduce migration distance for early arrival at breeding sites (arrival timing hypothesis). Finally, males may be socially dominant over females, and thus exclude females from high‐quality wintering sites (social dominance hypothesis). We found support for the body size hypothesis, in that colder and snowier weather predicted both larger body size and higher proportions of males banded. Direct tracking revealed that males did not winter significantly closer to their breeding site, despite being slightly further north on average than females from the same breeding population. We found some evidence for social dominance, in that females tended to carry more fat than males, potentially indicating lower habitat quality for females. Global climatic warming may reduce temperature constraints on females and smaller‐bodied males, resulting in broad‐scale changes in distributional patterns. Whether this has repercussions for individual fitness, and therefore population demography, is an important area of future research.  相似文献   

12.
The migration of the great snipe Gallinago media was previously poorly known. Three tracks in 2010 suggested a remarkable migratory behaviour including long and fast overland non‐stop flights. Here we present the migration pattern of Swedish male great snipes, based on 19 individuals tracked by light‐level geolocators in four different years. About half of the birds made stopover(s) in northern Europe in early autumn. They left the breeding area 15 d earlier than those which flew directly to sub‐Sahara, suggesting two distinct autumn migration strategies. The autumn trans‐Sahara flights were on average 5500 km long, lasted 64 h, and were flown at ground speeds of 25 m s?1 (90 km h?1). The arrival in the Sahel zone of west Africa coincided with the wet season there, and the birds stayed for on average three weeks. The birds arrived at their wintering grounds around the lower stretches of the Congo River in late September and stayed for seven months. In spring the great snipes made trans‐Sahara flights of similar length and speed as in autumn, but the remaining migration through eastern Europe was notably slow. All birds returned to the breeding grounds within one week around mid‐May. The annual cycle was characterized by relaxed temporal synchronization between individuals during the autumn–winter period, with maximum variation at the arrival in the wintering area. Synchronization increased in spring, with minimum time variation at arrival in the breeding area. This suggests that arrival date in the breeding area is under strong stabilizing selection, while there is room for more flexibility in autumn and arrival to the wintering area. The details of the fast non‐stop flights remain to be elucidated, but the identification of the main stopover and wintering areas is important for future conservation work on this red‐listed bird species.  相似文献   

13.
Understanding what drives or prevents long‐distance migrants to respond to environmental change requires basic knowledge about the wintering and breeding grounds, and the timing of movements between them. Both strong and weak migratory connectivity have been reported for Palearctic passerines wintering in Africa, but this remains unknown for most species. We investigated whether pied flycatchers Ficedula hypoleuca from different breeding populations also differ in wintering locations in west‐Africa. Light‐level geolocator data revealed that flycatchers from different breeding populations travelled to different wintering sites, despite similarity in routes during most of the autumn migration. We found support for strong migratory connectivity showing an unexpected pattern: individuals breeding in Fennoscandia (S‐Finland and S‐Norway) wintered further west compared to individuals breeding at more southern latitudes in the Netherlands and SW‐United Kingdom. The same pattern was found in ring recovery data from sub‐Saharan Africa of individuals with confirmed breeding origin. Furthermore, population‐specific migratory connectivity was associated with geographical variation in breeding and migration phenology: birds from populations which breed and migrate earlier wintered further east than birds from ‘late’ populations. There was no indication that wintering locations were affected by geolocation deployment, as we found high repeatability and consistency in δ13C and δ15N stable isotope ratios of winter grown feathers of individuals with and without a geolocator. We discuss the potential ecological factors causing such an unexpected pattern of migratory connectivity. We hypothesise that population differences in wintering longitudes of pied flycatchers result from geographical variation in breeding phenology and the timing of fuelling for spring migration at the wintering grounds. Future research should aim at describing how temporal dynamics in food availability across the wintering range affects migration, wintering distribution and populations’ capacity to respond to environmental changes.  相似文献   

14.
Knowing the natural dynamics of pathogens in migratory birds is important, for example, to understand the factors that influence the transport of pathogens to and their transmission in new geographical areas, whereas the transmission of other pathogens might be restricted to a specific area. We studied haemosporidian blood parasites of the genera Plasmodium, Haemoproteus and Leucocytozoon in a migratory bird, the garden warbler Sylvia borin. Birds were sampled in spring, summer and early autumn at breeding grounds in Sweden, on migration at Capri, Italy and on arrival and departure from wintering staging areas in West Africa: mapping recoveries of garden warblers ringed in Fennoscandia and Capri showed that these sites are most probably on the migratory flyway of garden warblers breeding at Kvismaren. Overall, haemosporidian prevalence was 39%, involving 24 different parasite lineages. Prevalence varied significantly over the migratory cycle, with relatively high prevalence of blood parasites in the population on breeding grounds and at the onset of autumn migration, followed by marked declines in prevalence during migration both on spring and autumn passage. Importantly, we found that when examining circannual variation in the different lineages, significantly different prevalence profiles emerged both between and within genera. Our results suggest that differences in prevalence profiles are the result of either different parasite transmission strategies or coevolution between the host and the various parasite lineages. When separating parasites into common vs. rare lineages, we found that two peaks in the prevalence of rare parasites occur; on arrival at Swedish breeding grounds, and after the wintering period in Africa. Our results stress the importance of appropriate taxonomic resolution when examining host‐parasite interactions, as variation in prevalence both between and within parasite genera can show markedly different patterns.  相似文献   

15.
Migration is a widespread phenomenon among birds and is likely to be subject to strong selective pressures. Birds' annual routines and behaviors might be expected to change during their different life history stages, resulting in different, age‐related migration patterns. However, although migration has been the subject of many publications, age‐related differences in migration have received little attention. The present study examined age‐related changes in individual migration habits in lesser black‐backed gulls, Larus fuscus. We analyzed data from 10‐year (1998–2007) color‐ringing project in NW England, comprising more than 10 000 ringed individuals. Our results showed a latitudinal cline in age structure across the wintering range, with adults and gulls in their first breeding year wintering closer to the breeding grounds. Supporting this result we observed that individuals, as they get older, changed the migration behavior and winter closer to the breeding areas. Interestingly, we found no differences in survival rates across the wintering grounds. Thus differences in survival rates can not account for the latitudinal cline in age structure, and the observed findings seem to be best explained by the arrival time hypothesis, based on a mechanism whereby individuals are able to change their migratory behavior as result of the onset of sexual maturity and associated mating pressures.  相似文献   

16.
A broad range of migration strategies exist in avian species, and different strategies can occur in different populations of the same species. For the breeding Osprey Pandion haliaetus populations of the Mediterranean, sporadic observations of ringed birds collected in the past suggested variations in migratory and wintering behaviour. We used GPS tracking data from 41 individuals from Corsica, the Balearic Islands and continental Italy to perform the first detailed analysis of the migratory and wintering strategies of these Osprey populations. Ospreys showed heterogeneous migratory behaviour, with 73% of the individuals migrating and the remaining 27% staying all year round at breeding sites. For migratory individuals, an extremely short duration of migration (5.2 ± 2.6 days) was recorded. Mediterranean Ospreys were able to perform long non‐stop flights over the open sea, sometimes overnight. They also performed pre‐ and post‐migratory trips to secondary sites, before or after crossing the sea during both autumn and spring migration. Ospreys spent the winter at temperate latitudes and showed high plasticity in habitat selection, using marine bays, coastal lagoons/marshland and inland freshwater sites along the coasts of different countries of the Mediterranean basin. Movements and home‐range areas were restricted during the wintering season. The short duration of trips and high levels of variability in migratory routes and wintering grounds revealed high behavioural plasticity among individuals, probably promoted by the relatively low seasonal variability in ecological conditions throughout the year in the Mediterranean region, and weak competition for non‐breeding sites. We stress the importance of considering the diversity in migration strategies and the particular ecology of these vulnerable populations, especially in relation to proactive management measures for the species at the scale of the Mediterranean region.  相似文献   

17.
A novel migratory polymorphism evolved within the last 60 years in blackcaps (Sylvia atricapilla) breeding sympatrically in southwestern Germany. While most individuals winter in the traditional areas in the Mediterranean, a growing number of blackcaps started migrating to Britain instead. The rapid microevolution of this new strategy has been attributed to assortative mating and better physical condition of birds wintering in Britain. However, the isolating barriers as well as the physical condition of birds are not well known. In our study, we examined whether spatial isolation occurred among individuals with distinct migratory behaviour and birds with different arrival dates also differed in physical and genetic condition. We caught blackcaps in six consecutive years upon arrival on the breeding grounds and assigned them via stable isotope analysis to their wintering areas. Analysis of the vegetation structure within blackcap territories revealed different microhabitat preferences of birds migrating to distinct wintering areas. Blackcaps arriving early on the breeding grounds had higher survival rates, better body condition and higher multilocus heterozygosities than later arriving birds. We did however not find an effect of parasite infection status on arrival time. Our results suggest that early arriving birds have disproportionate effects on population dynamics. Allochrony and habitat isolation may thus act together to facilitate ongoing divergence in hybrid zones, and migratory divides in particular.  相似文献   

18.
The successful use of stable isotopes to track migratory animals between different seasons of the annual cycle depends, in part, on the turnover rate of isotopes in sample tissue. We examined whether stable-carbon isotopes in the blood of a long-distance migratory bird, the American redstart Setophaga ruticilla , sampled upon arrival to the temperate breeding grounds could be used to track the quality of habitat used the previous season on the tropical wintering grounds. Stable-carbon isotopes in red-blood cells sampled upon arrival (δ13CRBC) were significantly less negative relative to: 1) plasma sampled upon arrival from the same individuals, 2) red-blood cells of redstarts recaptured more than a month later on the breeding grounds, and 3) nestling feathers grown at the same breeding location. δ13CRBC was also significantly different between sexes, consistent with findings from the wintering grounds where sex-biased habitat use is known to occur. Although individuals likely integrate some isotopic signatures during migration, we provide evidence that cellular blood can be used to track the relative habitat use of migratory birds during the wintering period. Non-destructive methods of sampling stable-isotopes, such as this, are particularly useful because it provides a technique for tracking the patterns of habitat use and/or geographic location of migratory animals. Such approaches allow researchers to understand how events throughout the annual cycle interact to influence population dynamics.  相似文献   

19.
Dunlin Calidris alpina is one of the most abundant shorebirds using coastal habitats in the East Atlantic migratory flyway, that links arctic breeding locations (Greenland to Siberia) with wintering grounds (West Europe to West Africa). Differential migration and winter segregation between populations have been indicated by morphometrics and ringing recoveries. Here, we analyse the potential of genetic markers (mitochondrial DNA – mtDNA) to validate and enhance such findings. We compared mtDNA haplotypes frequencies at different wintering sites (from north-west Europe to West Africa). All birds from West Africa had western (European) haplotypes, while the eastern (Siberian) haplotypes were only present in European winter samples, reaching higher frequencies further north in Europe. Compilation of published results from migrating birds also confirmed these differences, with the sole presence of European haplotypes in Iberia and West Africa and increasingly higher frequencies of Siberian haplotypes from south-west to north-west Europe. Comparison with published haplotype frequencies of breeding populations shows that birds from Greenland, Iceland, and North Europe were predominant in wintering grounds in West Africa, while populations wintering in West Europe originated from more eastern breeding grounds (e.g. North Russia). These results show that genetic markers can be used to enhance the integrative monitoring of wintering and breeding populations, by providing biogeographical evidence that validate the winter segregation of breeding populations.  相似文献   

20.
Migration is fundamental in the life of many birds and entails significant energetic and time investments. Given the importance of arrival time in the breeding area and the relatively short period available to reproduce (particularly at high latitudes), it is expected that birds reduce spring migration duration to a greater extent than autumn migration, assuming that pressure to arrive into the wintering area might be relaxed. This has previously been shown for several avian groups, but recent evidence from four tracked Icelandic whimbrels Numenius phaeopus islandicus, a long distance migratory wader, suggests that this subspecies tends to migrate faster in autumn than in spring. Here, we 1) investigate differences in seasonal migration duration, migration speed and ground speed of whimbrels using 56 migrations from 19 individuals tracked with geolocators and 2) map the migration routes, wintering and stopover areas for this population. Tracking methods only provide temporal information on the migration period between departure and arrival. However, migration starts with the fuelling that takes place ahead of departure. Here we estimate the period of first fuelling using published fuel deposition rates and thus explore migration speed using tracking data. We found that migration duration was shorter in autumn than in spring. Migration speed was higher in autumn, with all individuals undertaking a direct flight to the wintering areas, while in spring most made a stopover. Wind patterns could drive whimbrels to stop in spring, but be more favourable during autumn migration and allow a direct flight. Additionally, the stopover might allow the appraisal of weather conditions closer to the breeding areas and/or improve body condition in order to arrive at the breeding sites with reserves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号