首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel method for the observation of recruitment of fluorescent taxa was developed combining fluorescence census techniques with conventional microscopic examination. The new technique was used to observe coral recruitment on natural limestone plates over a period of 4 months on Meras reef, North Sulawesi, Indonesia. During this period, fluorescence photos were taken of each plate on a weekly basis. This allowed for the detailed observation of fluorescent coral recruitment in-situ. After specific time periods, the plates were sampled and the detected recruits were categorized to family level using their skeletal structure. The fluorescence census technique detected 97.6% of all coral recruits bigger than one millimetre in diameter. The diameter measurements of the recruit's skeletons were used to estimate growth rates at family level. Using the photo series method, the time of settlement of fluorescent recruits on the plates was determined. The results showed roughly linear diameter growth of recruits in the first two months. Acroporidae-polyps were 1.14 mm in diameter when they settled and grew at rate of approximately 0.18 mm in diameter per week. Pocilloporidae-polyps settled at approximately 1.14 mm and showed a growth rate of approximately 0.23 mm in diameter per week. Recruits of three families were observed in detail over time on the artificial plates using this method. While recruitment was fairly continuous, an increase in pocilloporid recruits was observed during the month of September. Similar increases were observed for acroporid recruits during the middle of November and the second quarter of December. This method identifies the limits of detection for the fluorescence census technique used and represents a useful method for the temporal fine scale observation of recruitment in situ.  相似文献   

2.
Short-term experiments were used to isolate the detrimental effects of grazer disturbance on young corals, and determine the stage of development at which recruits are no longer susceptible to this disturbance. Artificial substrata containing an algal matrix and coral recruits of different life stages were exposed to grazing by epilithic algal matrix (EAM) feeding combtoothed blennies, Salarias fasciatus. Single polyp recruits were vulnerable to grazer disturbance, while multi-polyp recruits (ca. 6–8 polyps) survived with evidence of minor damage in the form of tissue and polyp loss. The result indicates that blennies, although small and possessing weak dentition, can negatively influence the survival of young coral recruits. The protruding structure of micro-nubbins, representing juvenile corals were not damaged, suggesting that coral achieving that size and form can escape such damage. Communicated by Ecology Editor Prof. Peter Mumby  相似文献   

3.
Cryptic species diversity is thought to be common within the class Insecta, posing problems for basic ecological and population genetic studies and conservation management. Within the temperate bumble bee (Bombus spp.) fauna, members of the subgenus Bombus sensu stricto are amongst the most abundant and widespread. However, their species diversity is controversial due to the extreme difficulty or inability morphologically to identify the majority of individuals to species. Our character-based phylogenetic analyses of partial CO1 (700 bp) from 39 individuals spread across their sympatric European ranges provided unequivocal support for five taxa (3–22 diagnostic DNA base pair sites per species). Inclusion of 20 Irish specimens to the dataset revealed ≥2.3% sequence divergence between taxa and ≤1.3% within taxa. We developed a PCR-RFLP based method for unequivocally distinguishing amongst the four cryptic European taxa of this subgenus, B. cryptarum, B. lucorum, B. magnus and B. terrestris, and used it to analyse 391 females of the former three species collected across Ireland, all of which could be unambiguously assigned to species. Bombus lucorum was the most widely distributed and abundant of the cryptarum–lucorum–magnus species complex, comprising 56% of individuals, though it was significantly less abundant at higher altitudes (>200 m) whilst B. cryptarum was relatively more abundant at higher altitudes. Bombus magnus was rarely encountered at urban sites. Both B. lucorum and B. terrestris are nowadays reared commercially for pollination and transported globally. Our RFLP approach to identify native fauna can underpin ecological studies of these important cryptic species as well as the impact of commercial bumble bees on them.  相似文献   

4.
Indo-Pacific lionfishes generally exhibit cryptic behaviours and so can be missed when conducting non-targeted surveys. Here, the authors report the results from targeted surveys of lionfish at Moorea, French Polynesia. Lionfish from three species (Pterois antennata, Pterois radiata, Dendrochirus biocellatus) were observed at a mean density of 267 individuals ha−1. This is substantially higher than previous estimates from the same area (Moorea) and represents the highest reported density of lionfishes from their Pacific range. Overall, this study highlights the importance of targeted survey techniques for detecting cryptic species on coral reefs.  相似文献   

5.
Using manipulated patch reefs with combinations of varying live‐coral cover (low, medium and high) and structural complexity (low and high), common community metrics (abundance, diversity, richness and community composition) collected through standard underwater visual census techniques were compared with exhaustive collections using a fish anaesthetic (clove oil). This study showed that reef condition did not influence underwater visual census estimates at a community level, but reef condition can influence the detectability of some small and cryptic species and this may be exacerbated if surveys are conducted on a larger scale.  相似文献   

6.
Synopsis We developed a modified visual census technique suitable for fairly sedentary, hole-dwelling species and used it to determine the diversity, density, biomass, and habitat use of morays at four sites including fringing, patch, and bank reefs in Barbados, West Indies. The method involved a careful search during two passages over transects by day and by night, noting size and position of morays seen, and using the number of new observations on the second passage to estimate the proportion of morays not seen. First passage counts were generally higher than numbers of morays recorded in previous visual censuses. These estimates were raised when we used the time period (day or night) with the highest average density visible for each species, added different individuals from the two passages, and corrected for individuals not seen. We saw more goldentail morays (Gymnothorax miliaris) during the day but more spotted (G. moringa), viper (Enchelycore nigricans), and chestnut (E. carychroa) morays at night. Counts of chain morays (Echidna catenata) did not differ significantly between night and day. Relative abundance and size of moray species varied among sites and to a lesser extent among habitat types within sites, but spotted morays were generally the most important in numbers and biomass. Mean estimated moray density and biomass were much higher than in most previous visual censuses, but similar to rotenone samples on other reefs and comparable to those of other families of predatory fishes. Our findings confirm that morays are abundant and potentially important predators that should be the focus of more attention in ecological studies of coral reefs.  相似文献   

7.
Synopsis Visual census techniques applicable to coral reef-associated fishes are reviewed and the results of field tests using six (three transect-based and three point-based) to estimate the density of carangids at Carter Reef, Great Barrier Reef, are presented. Data are analyzed with respect to the effects of observers on fishes seen, observer biasses, precision of the estimates and, as far as possible, accuracy of the estimates. Transects generate estimates of population density and structure different from those of point-based estimates. Various point-based census methods, however, generate density estimates consistent with one another and are generally more precise than transect-based methods. The results of the field study obviously cannot be generalized to other quite different types of reef fishes. The problems we encountered and a review of the techniques used to census reef fishes visually in the past, however, suggest that: (1) interval counts, such as Rapid Visual Census techniques, are likely to be inaccurate and difficult to compare; (2) for species with high probabilities of detection, instantaneous area counts appear to be the most effective way to estimate densities, whereas cryptic species are best censused using instantaneous variable distance point counts, and (3) strip transects may often be less efficient than line transects, due to inconstant levels of subject detectability.  相似文献   

8.

Of all reef-building coral species, 80–85 % initially draw their intracellular symbionts (dinoflagellates of the genus Symbiodinium) from the environment. Although Symbiodinium cells are crucial for the growth of corals and the formation of coral reefs, little is known about how corals first encounter free-living Symbiodinium cells. We report how the supply of free-living Symbiodinium cells to the benthos by adult corals can increase the rate of horizontal symbiont acquisition for conspecific recruits. Three species of newly settled aposymbiotic (i.e., symbiont-free) corals were maintained in an open aquarium system containing: sterilized sediment and adult coral fragments combined; adult coral fragments alone; sterilized sediment alone; or seawater at Heron Island, Great Barrier Reef, Australia. In all instances, the combination of an adult coral and sediment resulted in the highest symbiont acquisition rates by juvenile corals (up to five-fold greater than seawater alone). Juvenile corals exposed to individual treatments of adult coral or sediment produced an intermediate acquisition response (<52 % of recruits), and symbiont acquisition from unfiltered seawater was comparatively low (<20 % of recruits). Additionally, benthic free-living Symbiodinium cells reached their highest densities in the adult coral + sediment treatment (up to 1.2 × 104 cells mL−1). Our results suggest that corals seed microhabitats with free-living Symbiodinium cells suitable for many coral species during the process of coral recruitment.

  相似文献   

9.
Recreational and other human activities degrade coral reefs worldwide to a point where efficient restoration techniques are needed. Here we tested several strategies for gardening denuded reefs. The gardening concept consists of in situ or ex situ mariculture of coral recruits, followed by their transplantation into degraded reef sites. In situ nurseries were established in Eilat's (Northern Red Sea) shallow waters, sheltering three types of coral materials taken from the branching species Stylophora pistillata (small colonies, branch fragments, and spat) that were monitored for up to two years. Pruning more than 10% of donor colonies' branches increased mortality, and surviving colonies displayed reduced reproductive activity. Maricultured isolated branches, however, exceeded donor colony life span and reproductive activity and added 0.5–45% skeletal mass per year. Forty‐four percent of the small colonies survived after 1.5‐year mariculture, revealing average yearly growth of 75 ± 32%. Three months ex situ maintenance of coral spat (sexual recruits) prior to the in situ nursery phase increased survivorship. Within the next 1.5 years, they developed into colonies of 3–4 cm diameter. Nursery periods of 2 years, 4–5 years, and more than> 5 years have been estimated for small colonies, spat, and isolated branches, respectively. These and other results, including the possible use of nubbins (minute fragments the size of a single or few polyps), are discussed, revealing benefits and drawbacks for each material. In situ coral mariculture is an improved practice to the common but potentially harmful protocol of direct coral transplantation. It is suggested that reef gardening may be used as a key management tool in conservation and restoration of denuded reef areas. The gardening concept may be applicable for coral reefs worldwide through site‐specific considerations and the use of different local coral species.  相似文献   

10.
Field studies of the sea cucumber Holothuria scabra conducted in Kogu Veke, Solomon Islands, showed monthly recruitment of newly-settled juveniles on seagrass and indicated that size distribution was a function of substratum type and depth. Adults >250 mm body length were found mainly on sand, with <5% organic matter (OM), at depths of >1–3 m. Individuals >10–250 mm were found mostly in 30–120 cm of water, on mud and muddy sand with OM content between 5 and 10%. Specimens >40–150 mm were also found in the intertidal zone, sometimes burrowed on exposed sandflats at low tide. Holothuria scabra avoided substrata of fine silt or shell and coral pebbles, and sediment with an organic content 30%. Juveniles 100 mm burrowed at sunrise and surfaced at sunset, whereas individuals >100 mm burrowed and surfaced a few hours earlier. Holothuria scabra tended to burrow when salinity decreased, whereas increased water temperatures reduced normal burrowing behaviour. Spatial distribution, observed during tank experiments, suggested that adult H. scabra aggregated prior to spawning and in response to the lunar cycle. The formation of pairs, trios or larger groups increased during the new moon and was most common just before the full moon. Newly-settled juveniles up to ca. 9 mm were found on seagrass leaves. Typically, maximum densities and smallest recruits were observed a couple of weeks after the full moon, lower densities and slightly larger recruits were found a few days later. Juveniles with a mean length around 65 mm released on sand moved less and grew faster than juveniles released in seagrass beds or on substrata of shells and crushed coral.  相似文献   

11.
Theory suggests that density-associated processes can modulate community resilience following declines in population size. Here, we demonstrate density-associated processes in two scleractinian populations on the outer reef of Moorea, French Polynesia, that are rapidly increasing in size following the effects of two catastrophic disturbances. Between 2006 and 2010, predation by the corallivorous crown-of-thorns sea star reduced coral cover by 93 %; in 2010, the dead coral skeletons were removed by a cyclone, and in 2011 and 2012, high coral recruitment initiated population recovery. Coral recruitment was associated with coral cover, but the relationship differed between two coral genera that are almost exclusively broadcast spawners in Moorea. Acroporids recruited at low densities, and the density of recruits was positively associated with cover of Acropora, whereas pocilloporids recruited at high densities, and densities of their recruits were negatively associated with cover of Pocillopora. Together, our results suggest that associations between adult cover and density of both juveniles and recruits can mediate rapid coral community recovery after large disturbances. The difference between taxa in sign of the relationships between recruit density and coral cover indicate that they reflect contrasting mechanisms with the potential to mediate temporal shifts in taxonomic composition of coral communities.  相似文献   

12.
Coral recruitment describes the addition of new individuals to populations, and it is one of the most fundamental demographic processes contributing to population size. As many coral reefs around the world have experienced large declines in coral cover and abundance, there has been great interest in understanding the factors causing coral recruitment to vary and the conditions under which it can support community resilience. While progress in these areas is being facilitated by technological and scientific advances, one of the best tools to quantify recruitment remains the humble settlement tile, variants of which have been in use for over a century. Here I review the biology and ecology of coral recruits and the recruitment process, largely as resolved through the use of settlement tiles, by: (i) defining how the terms ‘recruit’ and ‘recruitment’ have been used, and explaining why loose terminology has impeded scientific advancement; (ii) describing how coral recruitment is measured and why settlement tiles have value for this purpose; (iii) summarizing previous efforts to review quantitative analyses of coral recruitment; (iv) describing advances from hypothesis-driven studies in determining how refuges, seawater flow, and grazers can modulate coral recruitment; (v) reviewing the biology of small corals (i.e. recruits) to understand better how they respond to environmental conditions; and (vi) updating a quantitative compilation of coral recruitment studies extending from 1974 to present, thus revealing long-term global declines in density of recruits, juxtaposed with apparent resilience to coral bleaching. Finally, I review future directions in the study of coral recruitment, and highlight the need to expand studies to deliver taxonomic resolution, and explain why time series of settlement tile deployments are likely to remain pivotal in quantifying coral recruitment.  相似文献   

13.
During a study of the spatial and temporal patterns of desmosponge (Porifera, Demospongiae) recruitment on rocky and coral reef habitats of Santa Marta, Colombian Caribbean Sea, preliminary attempts were made to estimate actual settlement rates from short-term (1 to a few days) recruitment censuses. Short-term recruitment rates on black, acrylic plastic plates attached to open, non-cryptic substratum by anchor screws were low and variable (0–5 recruits/plate in 1–2 days, sets of n=5–10 plates), but reflected the depth and seasonal trends found using mid-term (1 to a few months) censusing intervals. Moreover, mortality of recruits during 1–2 day intervals was low (0–12%). Thus, short-term censusing intervals can be used to estimate actual settlement rates. To be able to make statistical comparisons, however, it is necessary to increase the number of recruits per census by pooling data of n plates per set, and to have more than one set per site or treatment.  相似文献   

14.
The Cambrian coral Cambroctoconus occurs selectively in the crypts of calcimicrobe Epiphyton reefs of the Zhangxia Formation (Miaolingian) in Shandong Province, North China. These cryptobionts preferentially grow laterally and/or downward, in some cases showing pendent growth from the ceilings of the reef framework. The upside-down growth is clearly shown by the downward-oriented aperture and the presence of fork-like holdfasts at its base. The coral aggregations reveal two cryptic growth strategies: one involves the prevalence of far smaller individuals in vertically narrow spaces; the other involves the predominance of modular individuals in large cavernous spaces. Offset individuals frequently appear projecting downward and are connected to each other in a chain-like fashion. Individuals often undergo rejuvenescence laterally and downward, when the growth directions may change. Therefore, the size and modularity of individuals and the direction of budding depend largely upon the cryptic microenvironments available at the time. The cryptobionts make the best use of vacant spaces by modifying the location of budding and altering their growth directions through rejuvenescence. The cryptic growth strategies found in Cambroctoconus indicate a certain degree of morphological variability in the modules. More importantly, they indicate that the individuals flexibly and exquisitely utilized the microbial crypts that were still predominant even during the middle Cambrian. These modes of cryptic growth demonstrate the age-specific exploitation of niches by sessile skeletal organisms that was facilitated by the development of a firm attachment structure.  相似文献   

15.
Patterns of abundance, age structure and recruitment of coral trout (Plectropomus leopardus) and snapper (Lutjanus carponotatus) were described in different environments, which varied in benthic cover, in a 12-yr study at One Tree Island. It was hypothesized that both taxa would show strong preferences to different environments and benthic cover and that patterns would be consistent through time. Plectropomus leopardus were abundant on the reef slope and seaward edge of the lagoon, where live coral cover was high, and recruitment was generally low, in all environments. The population was sustained by a trickle of recruits, and total abundance varied little after 10 to 25 yr of protection in a no-take area, suggesting P. leopardus had reached an environment-related carrying capacity. Protogynous P. leopardus recruited to shallow environments at sites with 20% or more hard live coral and age data indicated the abundance of fish on the reef slope was from redistribution. Most recruits of gonochoristic L. carponotatus (<150 mm Standard length, SL) were found in the lagoonal environments, and adults were rare on the reef slope. Abundance of recruit L. carponotatus and P. leopardus did not correlate with percent cover of live and soft coral within environments. Recruits of L. carponotatus were usually rare in all lagoonal environments, but in 2003, many recruits (80 to 120 mm SL) were found in lagoonal environments with low and high hard live coral cover. A substantial proportion of the population (age max 18 yr) was from strong recruitment events. In 2003 and 2004, total abundance of L. carponotatus was supported by 1 year class 51.7 and 41% respectively. The utilization of environments and types of substrata varied among taxa and in some cases among life-history stages. There was also temporal variation in the importance of some environments (e.g. Lagoon Centre).  相似文献   

16.
The recruitment of algae is a critical process during algal colonization and invasions, including coral-to-algal phase shifts. Although algae are widely assumed to colonize and kill corals, there is very little known about the recruitment dynamics of coral reef algae. This study tested the ability of two dominant macroalgae (Fucales including Sargassum spp. and Lobophora variegata) to settle and grow on healthy coral tissue. The study also explored the effects of interactions with prior occupants, and of abiotic substrate properties (texture, and ceramic and carbonate material). The results indicate that healthy corals were able to prevent attachment or survival of recruits of these macroalgae. This is a significant point, since it suggests that the replacement of corals by algae may often require prior stress or death in the coral tissue. Pre-conditioning of plates at different sites had some effects, but these were relatively minor, whereas there was considerable variation within sites. Some of this variation appeared to be related to the amount of turf algae or crustose coralline algae on the plates. Recruitment was generally, but not always, higher on plates with rougher texture. Overall, this preliminary exploration indicates considerable potential for variability in outcomes of algal colonization, with implications for the dynamics of algal invasions. In particular, the results do not support suggestions that planktonic algal propagules can directly settle on and colonize healthy coral tissue.Communicated by Topic Editor D. Barnes  相似文献   

17.

Over small spatial scales, coral reefs represent a mosaic of suitable settlement microhabitat patches of varying size for late-stage larval reef fishes. Few studies have specifically examined how variation in patch size influences density of recently settled coral reef fishes (recruits). Using standardized units of coral rubble settlement substrate deployed on sandy bottom, we monitored the concurrent settlement of three reef fish taxa onto differently sized patches (0.28–1.68 m2) at 5-d intervals during a lunar settlement peak. We found marked differences among taxa in how recruit density scaled with patch size. Recruit density of a damselfish and a parrotfish decreased and increased, respectively, with the increase in patch size, while that of a wrasse was similar among patch sizes. Our results highlight the importance of the interaction between taxon-specific settlement behaviour and patch size in establishing initial spatial differences in density within and among coral reef fish taxa in a heterogeneous landscape.

  相似文献   

18.
Patterns of distribution and abundance of coral reef fish depend in part on recruitment of a pelagic larval stage, on subsequent dispersal among habitats, and survival of new recruits. We studied recruitment of five species of Stegastes and two species of Chromis damselfish onto reef habitats of St. Thomas, USVI during one year. The two study sites, Flat Cay and Outer Brass Island, were on the southern and northern sides of St. Thomas, respectively. At both sites, recruitment occurred largely in the summer months, although one species (Stegastes planifrons) showed significant winter recruitment at Flat Cay. The onset of increased summer recruitment in 1992 of other species occurred several weeks later and was shorter in duration at Outer Brass Island than at Flat Cay, perhaps indicating differences in oceanographic conditions (currents etc.) or spawning cycles between sites. The two Chromis species showed lunar periodicity of settlement at Flat Cay. At Flat Cay, recruits of three species (S. leucostictus, S. diencaeus and S. planifrons) were associated with conspecifics possibly due to preferential settlement. Similarly, new recruits were more often found near live coral than coral rubble, and very few occurred on sand habitat. Substratum complexity was a poor predictor of recruitment within a habitat, although larger juveniles of some species were more common on more complex substrate. Contrary to other studies, there were no apparent depth preferences among recruits, although larger juveniles of two Stegastes species were found more often in deeper water. It appears that within habitats, newly arriving larvae may be attracted first to the presence of conspecifics and secondarily take up position adjacent to live coral. Apparent survivorship of some Stegastes species and one Chromis species was higher at Outer Brass Island than at Flat Cay, and may partly compensate for lower recruitment of some species at Outer Brass Island.  相似文献   

19.
Analysis of mushroom-shaped rugose corals Schlotheimophyllum patellatum (Schlotheim, 1820) from the Silurian (Upper Visby Beds, Lower Wenlock, Sheinwoodian) of Gotland, Sweden, showed that they were colonized on both the upper (exposed) and lower (cryptic) sides by a variety of encrusting and boring (sclerobiont) biotas, represented by 10 taxa and at least 23 species. Bryozoans and microconchid tubeworms, the most abundant encrusters, dominated on the cryptic undersides of the corals, while the dominant endobionts responsible for Trypanites borings overwhelmingly dominated the exposed surfaces. Except for cnidarian sphenothallids, which were exclusive colonizers of the underside of only one coral host, no other encrusters could be referred to as obligate cryptobionts. Because the upper surface of these corals was likely covered by soft-tissues during life, in specimens lifted off the sea-floor sclerobionts must have settled on the cryptic sides first. They could colonize the upper side only after the coral’s death, unless it was covered by sediment as could be the case in some flat specimens. With time, the space on the underside of the coral skeleton may have progressively been filled by sediment as well, precluding further colonization by sclerobionts. In that respect, the colonization patterns of these corals by encrusters and borers were controlled by the complex interplay of environmental factors, sclerobiont dynamics and coral growth in a given Silurian habitat. Compared with Silurian stromatoporoid hosts, the sclerobiont diversity and abundance noted on the Schlotheimophyllum corals may be regarded as representative for the Silurian as a whole.  相似文献   

20.

Coral recruitment is important in sustaining coral reef ecosystems and contributing to their recovery after disturbances. Despite widespread acceptance that crustose coralline algae (CCA) positively influence coral recruitment success, especially by enhancing coral settlement and early post-settlement stages, there are no experimental data on the effects of CCA species on late post-settlement survival and growth of corals. This study tested the impact of four common, thick-crusted CCA species from two habitats (exposed and subcryptic) on the survival and growth of two recruit size categories of the coral genus Pocillopora. Coral recruits and CCA were transplanted adjacent to each other using epoxy in Petri dishes directly attached to the reef substratum on the forereef of Moorea (French Polynesia) in a 1-year field experiment. In the subcryptic habitat, survival of small-sized recruits adjacent to subcryptic CCA (0–5%) was lower than adjacent to dead CCA (35%), while in the exposed habitat, survival of small-sized recruits adjacent to exposed CCA (20–25%) was higher than adjacent to dead CCA (5%). None of the CCA species affected the survival of large-sized recruits within exposed or subcryptic habitats. However, the growth of large-sized recruits adjacent to subcryptic CCA was lower than adjacent to dead CCA. Recruits adjacent to exposed CCA died less from competition with turf algae relative to dead CCA, while recruits adjacent to subcryptic CCA frequently died from overgrowth by CCA. These results suggest that, in subcryptic habitats, CCA can reduce the survival and/or growth of coral recruits via direct competitive overgrowth, while in exposed habitats, they can enhance coral recruit survival by alleviating competition with turf algae. Importantly, our study demonstrates that not all CCA species are beneficial to the survival and growth of coral recruits and that there is considerable variability in both the outcome and process of competition between CCA and corals.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号